Date Lecture Readings Logistics
2/1 Lecture #1 (Grant):
Introduction and logistics

Setup Piazza, Gradescope

Module 1: Image Formation and Representation
2/6 Lecture #2 (Grant):
Radiometry

HW1 out (due 2/20)

2/8 Lecture #3 (Grant):
Light and color

2/9 Lecture #4 (Max, Fabien):
Python tutorial (Friday, 2-3pm)

CS 150/151

2/13 Lecture #5 (Grant):
Light and color; Image formation
  • Szeliski book, Chapter 2

2/15 Lecture #6 (Grant):
Image formation

Module 2: Basic Image Processing
2/20 Lecture #7 (Grant):
Modeling images

HW2 out (due 3/5)

2/22 No class
2/27 Lecture #8 (Grant):
Linear filtering

Module 3: Correspondence, Alignment, Geometry
2/29 Lecture #9 (Grant):
Optical flow

3/5 Lecture #10 (Grant):
Feature detection and matching
  • Szeliski book, Chapter 7.1

3/7 Lecture #11 (Grant):
Image transformations and alignment
  • Szeliski book, Chapter 8.1

3/12 Lecture #12 (Grant):
Applications of image alignment

HW3 out (due 4/2)

Module 4: Fundamentals of Neural Networks
3/14 Lecture #13 (Grant):
Intro to recognition

3/19 No class (Spring recess)
3/21 No class (Spring recess)
3/26 Lecture #14 (Grant):
Linear models

3/28 Lecture #15 (Grant):
Neural networks

4/2 Lecture #16 (Grant):
Neural networks

HW4 out (due 5/2)

Module 5: Advanced Topics in Recognition
4/4 Lecture #17 (Grant):
Transfer learning

4/9 Lecture #18 (Grant, remote):
Project feedback

4/11 Lecture #19 (Grant, remote):
Project feedback

4/16 Lecture #20 (Grant):
Transfer learning

4/18 Lecture #21 (Grant):
Object detection

4/23 Lecture #22 (Grant):
Object detection; Image segmentation

4/25 Lecture #23 (Grant):
Image generation

4/30 Lecture #24 (Grant):
Image generation

5/2 Lecture #25 (Grant):
Unsupervised learning

5/7 Lecture #26 (Grant):
Unsupervised learning

5/9 Lecture #27 (Grant):
3D shape understanding

5/10 Poster presentations (CS 150/151) (Friday)