Lecture 10:

Training Neural Networks
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Overview

1. One time setup
activation functions, preprocessing, weight initialization,
regularization, gradient checking
2. Training dynamics
babysitting the learning process,
parameter updates, hyperparameter optimization
3. Evaluation
model ensembles
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Evaluation:

Model Ensembles
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1. Train multiple independent models
2. At test time average their results

Enjoy 2% extra performance (?!!!)
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Fun Tips/Tricks:

- can also get a small boost from averaging multiple model
checkpoints of a single model.
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Regularization: Dropout
“randomly set some neurons to zero in the forward pass”
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(aNStandard Neural Net (b) After applying dropout. [Srivastava et al., 2014]
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Example forward
pass with a 3-

rain_step(X):

"u* X contains the data """ IaYer network
using dropout

7 3 < ]

caver neudrat network
H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = np.random.rand(*H1l.shape) <p# f[Ds#\drcpout mask
H1 *= #drop?

H2 = np.maximum(©, np.dot(W2, H1l) + b2)

U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

# forward pass for example 3-

H haclkvward ~L ol ~nmniilT nrandiantc {nnt chmnwn)
# DaCKwarad pass. compute qgraaients... (NOT SNown)
¥ nerform ~ameter undate ‘not <hown)
# perrorm parameter upaate... (nNnot snown )
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Waaaait a second...
How could this possibly be a good idea?
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Waaaait a second...
How could this possibly be a good idea?

Forces the network to have a redundant representation.

Q > has an ear 4

Q > has atall s
Q " s furry XA———— cat
Q :

O

has claws
X /

mischievous
look
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Training with occlusions?

A
o !

-

Hiding because you
knowit's "Vet" day!
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Waaaait a second...
How could this possibly be a good idea?

Another interpretation:

Dropout Is training a large ensemble
of models (that share parameters).

Each binary mask is one model, gets
trained on only ~one datapoint.
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At test time....
Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

(this can be shown to be an
approximation to evaluating the
whole ensemble)
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At test time....
Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

Q: Suppose that with all inputs present at
test time the output of this neuron is x.

What would its output be during training
time, In expectation? (e.qg. if p = 0.5)
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At test time....

Can in fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).

during test: a = wO*X + w1*w

a : : —
during train:
E[la] = ¥4 * (wO*0 + w1*0
wO0*0 + wl*y
wo /1 A\ wl T wOox+ w10 .
O*x + W_l*J)
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At test time....
Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

during test: a = wO*x + Wl*y With p=0.5, using all inputs
in the forward pass would

deing train: inflate the activations by 2x
E[a] =1/ % (WO*O + W1*0 from what the network was

“used to” during training!

WO*O + Wl*y => Have to compensate by

scaling the activations back

w0 wl WO*X + W1*0O down by v
wO*X + wl*y)
= Y4 * (2 WwO*X + 2 wl*y)
=15 * (WO*X + wl*y)
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We can do something approximate analytically

def predict(X):

H1 = np.maximum(©, np.dot(Wl, X) + bl) * p # NOTE: scale the activations
H2 = np.maximum(®, np.dot(W2, Hl) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> \We must scale the activations so that for each neuron:
output at test time = expected output at training time
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"" Vanilla Dropout: Not recommended implementation (see notes below)

p=0.5# probability of keeping a unit active. higher = I DrOpOUt Summary
def train_step(X):
""" X contains the data """

H1 = np. max1mum(0, np. dot(w1 X) - bl)

Ul = np.random. rand(*Hl shape)gf’g////*“

H1 *=HI— droj -

A2 = np.maximum({U, np.dot(WZ, HI] + bZ) drop IN fOrward paSS
U2 = np.random.rand(*H2.shape) < p # second dropout mas} .
H2 *= U2 # dro;

out = np.dot(W3, H2) + b3

def predlct(X)

Hl = np. max1mum(0, np. dot(w1 X) + bl) NOTE: scale the activations I
H2 = np.maximum(©®, np.dot(W2, Hl) + bzl .®, scale the activations SCaIe at teSt tlme
out = np.dot(W3, H2) + b3
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Lecture 11;

Convolutional Neural Networks

C1: feature maps o4 f. maps 16@5x5

Full cmAeMnn | Gaussian connections
Convolutions Subsampling Corvolutions  Subsampling Full connection
[LeNet-5, LeCun 1980]
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Convolution Layer

32x32x3 image

32 height

32 width

3 depth
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Convolution Layer

32x32x3 image

5x5x3 filter

32

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32
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CO nVOI Ut|0 N Laye I Filters always extend the full
‘  depth of the input volume

32x32x3 image /

5x5x3 filter

32

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32
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Convolution Layer

__— 32x32x3 image

5x5x3 filter w
=

- ™~ 1 number:

the result of taking a dot product between the filter
and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

wlz + b
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Convolution Layer

e

__— 32x32x3 image

5x5x3 filter
=

convolve (slide) over all spatial
locations

32
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Convolution Layer

e

__— 32x32x3 image

5x5x3 filter
=

convolve (slide) over all spatial
locations

32
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consider a second, green filter

activation maps
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28
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For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

activation maps

32

28

Convolution Layer

32 28

3 6

We stack these up to get a “new image” of size 28x28x6!
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation

functions
32 28

CONYV,
RelLU

e.g. 6
5x5x3

32 filters 28
3 6
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Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation

functions
32 28 24

CONYV, CONYV, CONYV,
RelLU RelLU RelLU
e.g. 6 e.g. 10

5x5x3 5x5x6

32 filters 28 filters 24
3 6 10
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Preview [From recent Yann
LeCun slides]

Low-Level| |Mid-Level| |High-Level Trainable

—_ —_
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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Preview . _ _ [From recent Yann
Low-Level| |Mid-Level| |High-Level Trainable

Feature | | Feature Feature | | Classifier | LeCun slides]

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Hubel & Weisel featural hierarchy
topographical mapping

@ high level
@ mid level
D

complex cells

simplecells 7

i low [evel
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. RCINEERDONEIIA A NN CSEO RIS EERE SRS
one filter => .
one activation map example 5x5 filters
(32 total)

Activations:

We call the layer convolutional
because it is related to convolution of
two signals:

.
T— | fleylsglxyl = XY fln.nl-glx—n.y—n,)
A TS -
§ | elementwise multiplication and
sum of a filter and the signal
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oreview:

RELU RELU RELU RELU RELU RELU
CONV | CONV CONV | CONV CONV | CONV
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A closer look at spatial dimensions:

activation map

__— 32x32x3 image

5x5x3 filter
=
>® :

L convolve (slide) over all spatial
locations

32 28
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A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
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A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
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A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
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A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
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A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter

=> 5x5 output
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A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
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A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
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A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!
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A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?
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A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7 doesn’t fit!
cannot apply 3x3 filter on 7x7
input with stride 3.
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Output size:
(N -F)/stride+1

eg. N=7,F=3:
stride1=>(7-3)/1+1=5
stride2=>(7-3)/2+1=3
stride3=>(7-3)/3+1=2.33:\

11
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In practice: Common to zero pad the border

0/ 0|0j{0|0|O0

e.g. input 7x7/
0 3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?
0
0
0)

(recall:)
(N - F) /stride + 1

R Lecture 11- 44 12 Oct 2023
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In practice: Common to zero pad the border

0[O0

0

0

0

0

e.g. input 7x7/

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

S
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In practice: Common to zero pad the border

0[O0

0

0

0

0

e.g. input 7x7/

7x7 output!

S

3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

Lecture 11 -

46

in general, common to see CONV layers with stride 1,

filters of size FxF, and zero-padding with (F-1)/2. (will

preserve size spatially)

e.g. F =3 =>zero pad with 1
F=5=>zero pad with 2
F=7=>zero pad with 3

12 Oct 2023

ajun Wu, Erik Learned-Miller



Remember back to...
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32 28 24
CONYV, CONYV, CONYV,
RelLU RelLU RelLU
e.g. 6 e.g. 10
5x5x3 5x5x6
32 filters 28 filters 24
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
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Examples time:

Input volume: 32x32x
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 5*5*3 + 1 =76 params  (+1 for bias)
=>76*10 =760
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