Lecture 10:

Training Neural Networks

Overview

1. One time setup

activation functions, preprocessing, weight initialization, regularization, gradient checking
2. Training dynamics
babysitting the learning process,
parameter updates, hyperparameter optimization
3. Evaluation
model ensembles

Evaluation: Model Ensembles

1. Train multiple independent models
 2. At test time average their results

Enjoy 2\% extra performance (?!!!)

Fun Tips/Tricks:

- can also get a small boost from averaging multiple model checkpoints of a single model.

Regularization: Dropout

"randomly set some neurons to zero in the forward pass"

(a) Standard Neural Net
(b) After applying dropout.

```
p = 0.5 F probability of keeping a unit active. higher = less dropout
def train_step (X):
    """ X contains the data """
    # forward pass for example 3-layer neural network
    H1 = np.maximum(0, np.dot(W1, X) + b1)
    U1 = np. random. rand(*H1.shape) < p # f1才s.qdropout mask
    H1 *= U1 # drop!
    U2 = np.random.rand(*H2.shape) < p # second dropout mask
    H2 *= U2 # drop!
    out = np.dot(W3, H2) + b3
    # backward pass: compute gradients... (not shown)
    # perform parameter update... (not shown)
```


Waaaait a second...

How could this possibly be a good idea?

Waaaait a second...
 How could this possibly be a good idea?

Forces the network to have a redundant representation.

Training with occlusions?

Waaaait a second...
 How could this possibly be a good idea?

Another interpretation:
Dropout is training a large ensemble of models (that share parameters).

Each binary mask is one model, gets trained on only ~one datapoint.

At test time....

Can in fact do this with a single forward pass! (approximately)
 Leave all input neurons turned on (no dropout).

> (this can be shown to be an approximation to evaluating the whole ensemble)

At test time....

Can in fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).

Q: Suppose that with all inputs present at test time the output of this neuron is x.

What would its output be during training time, in expectation? (e.g. if $p=0.5$)

At test time....

Can in fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).
 during test: $\mathbf{a}=\underline{w}^{\mathbf{*} \mathbf{x}}+\underline{\mathbf{w} 1^{*} \mathbf{y}}$ during train:

$$
\mathrm{E}[\mathrm{a}]=1 / 4^{*} \frac{\left(\frac{\mathrm{w} 0^{*} 0+\mathrm{w} 1^{*} 0}{\mathrm{w} 0^{*} 0+w 1^{*} y}\right.}{\mathrm{w} 0^{*} x+w 1^{*} 0}
$$

$$
\left.w 0^{*} x+w 1^{*} y\right)
$$

$$
=1 / 4^{*}\left(2 w 0^{*} x+2 w 1^{*} y\right)
$$

$$
=1 / 2{ }^{*}\left(w 0^{*} x+w 1^{*} y\right)
$$

At test time....

Can in fact do this with a single forward pass! (approximately)
 Leave all input neurons turned on (no dropout).

 during test: $a=\mathbf{W} 0^{*} \mathbf{x}+\mathbf{W} \mathbf{1}^{*} \mathbf{y} \quad$ With $\mathrm{p}=0.5$, using all inputs during train:

$$
\begin{aligned}
& \mathrm{E}[\mathrm{a}]=1 / 4^{*}\left(\mathrm{w} 0^{*} 0\right.+\mathrm{w} 1^{*} 0 \\
& \mathrm{w} 0^{*} 0+\mathrm{w} 1^{*} \mathrm{y} \\
& \mathrm{w} 0^{*} x+w 1^{*} 0
\end{aligned}
$$ in the forward pass would inflate the activations by $2 x$ from what the network was "used to" during training! => Have to compensate by scaling the activations back down by $1 / 2$

$$
\left.w 0^{*} x+w 1^{*} y\right)
$$

$$
=1 / 4^{*}\left(2 w 0^{*} x+2 w 1^{*} y\right)
$$

$$
=1 / 2^{*}\left(w 0^{*} x+w 1^{*} y\right)^{*}
$$

We can do something approximate analytically

```
def predict(X):
    # ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
    H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
    out = np.dot(W3, H2) + b3
```

At test time all neurons are active always
=> We must scale the activations so that for each neuron: output at test time $=\underline{\text { expected output at training time }}$

```
"""" Vanilla Dropout: Not recommended implementation (see notes below)
```


Dropout Summary

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
```

p = 0.5 \# probability of keeping a unit active. higher = less dropout
def train_step(X):
""" X contains the data """
\# forward pass for example 3-layer neural network
H1 = np.maximum(0, np.dot(W1, X) + b1)
U1 = np.random.rand(*H1.shape) < p \# first dropout mask
H1 *=U1 \# drop!
H2 = np.maximum(0, np.dot(W2, H1) + b2)
U2 = np.random.rand(*H2.shape) < p \# second dropout mask
H2 *= U2 \# drop!
out = np.dot(W3, H2) + b3
\# backward pass: compute gradients... (not shown)
\# perform parameter update... (not shown)
def predict(X):
\# ensembled forward pass
H1 = np.maximum(0, np.dot(W1, X) + b1) * p \# NOTE: scale the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2 *-NOTE: scale the activations
out = np.dot(W3, H2) + b3

```

\section*{Lecture 11:}

\section*{Convolutional Neural Networks}

[LeNet-5, LeCun 1980]

\section*{Convolution Layer}
\(32 \times 32 \times 3\) image


\section*{Convolution Layer}
\(32 \times 32 \times 3\) image


\section*{\(5 \times 5 \times 3\) filter}


Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

\section*{Convolution Layer}

Filters always extend the full depth of the input volume

\section*{ \\ \(32 \times 32 \times 3\) image \\ }

\section*{\(5 \times 5 \times 3\) filter}


Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

\section*{Convolution Layer}


\section*{1 number:}
the result of taking a dot product between the filter and a small \(5 \times 5 \times 3\) chunk of the image
(i.e. \(5^{*} 5^{*} 3=75\)-dimensional dot product + bias)
\[
w^{T} x+b
\]

\section*{Convolution Layer}

\section*{activation map}


\section*{Convolution Layer}

\section*{consider a second, green filter}


For example, if we had \(65 \times 5\) filters, we'll get 6 separate activation maps: activation maps


We stack these up to get a "new image" of size \(28 \times 28 \times 6\) !

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions


Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions


Preview
[From recent Yann LeCun slides]


Feature visualization of convolutional net trained on ImageNet from [Zeiler \& Fergus 2013]

\section*{Preview}


Feature visualization of convolutional net trained on ImageNet from [Zeiler \& Fergus 2013]

one filter => one activation map


\section*{example \(5 \times 5\) filters}
(32 total)

We call the layer convolutional because it is related to convolution of two signals:
\[
\begin{aligned}
& f[x, y] * g[x, y]=\sum_{n_{1}=-\infty}^{\infty} \sum_{n_{2}=-\infty}^{\infty} f\left[n_{1}, n_{2}\right] \cdot g\left[x-n_{1}, y-n_{2}\right] \\
& \text { elementwise multiplication and } \\
& \text { sum of a filter and the signal } \\
& \text { (image) }
\end{aligned}
\]


\section*{A closer look at spatial dimensions:}


\section*{A closer look at spatial dimensions:}


\section*{\(7 x 7\) input (spatially) assume \(3 \times 3\) filter}

\section*{A closer look at spatial dimensions:}


\section*{\(7 x 7\) input (spatially) assume \(3 \times 3\) filter}

\section*{A closer look at spatial dimensions:}


\section*{\(7 x 7\) input (spatially) assume \(3 \times 3\) filter}

\section*{A closer look at spatial dimensions:}


\section*{\(7 x 7\) input (spatially) assume \(3 \times 3\) filter}

\section*{A closer look at spatial dimensions:}


\section*{A closer look at spatial dimensions:}


\section*{\(7 x 7\) input (spatially) assume \(3 \times 3\) filter applied with stride 2}

\section*{A closer look at spatial dimensions:}


\section*{\(7 x 7\) input (spatially) assume \(3 \times 3\) filter applied with stride 2}

\section*{A closer look at spatial dimensions:}


\section*{A closer look at spatial dimensions:}


\section*{\(7 x 7\) input (spatially) assume \(3 \times 3\) filter applied with stride 3 ?}

\section*{A closer look at spatial dimensions:}


\title{
\(7 x 7\) input (spatially) assume \(3 \times 3\) filter applied with stride \(\mathbf{3}\) ?
}

\section*{doesn't fit! \\ cannot apply \(3 x 3\) filter on 7x7 input with stride 3.}


\section*{Output size: \\ ( \(\mathrm{N}-\mathrm{F}\) ) / stride +1}
e.g. \(N=7, F=3\) :
stride \(1=>(7-3) / 1+1=5\)
stride \(2=>(7-3) / 2+1=3\)
stride \(3=>(7-3) / 3+1=2.33: \backslash\)

\section*{In practice: Common to zero pad the border}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline 0 & & & & & & & & \\
\hline 0 & & & & & & & & \\
\hline 0 & & & & & & & & \\
\hline 0 & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}
e.g. input \(7 \times 7\)
\(3 \times 3\) filter, applied with stride 1
pad with 1 pixel border => what is the output?
(recall:)
( \(\mathrm{N}-\mathrm{F}\) ) / stride +1

\section*{In practice: Common to zero pad the border}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline 0 & & & & & & & & \\
\hline 0 & & & & & & & & \\
\hline 0 & & & & & & & & \\
\hline 0 & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}
e.g. input \(7 \times 7\)
\(3 \times 3\) filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

\section*{In practice: Common to zero pad the border}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline 0 & & & & & & & & \\
\hline 0 & & & & & & & & \\
\hline 0 & & & & & & & & \\
\hline 0 & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}
e.g. input \(7 \times 7\)
\(3 \times 3\) filter, applied with stride 1
pad with 1 pixel border => what is the output?

\section*{7x7 output!}
in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)
e.g. \(F=3=>\) zero pad with 1
\[
\begin{aligned}
& \text { F }=5 \Rightarrow>\text { zero pad with } 2 \\
& F=7 \Rightarrow>\text { zero pad with } 3
\end{aligned}
\]

\section*{Remember back to...}
E.g. \(32 \times 32\) input convolved repeatedly with \(5 \times 5\) filters shrinks volumes spatially! ( 32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.


\section*{Examples time:}

\section*{Input volume: 32x32x3 \\ \(105 x 5\) filters with stride 1 , pad 2}


\section*{Output volume size: ?}

\section*{Examples time:}

\section*{Input volume: 32x32x3 \\ \(105 \times 5\) filters with stride 1 , pad 2}


Output volume size:
\((32+2 * 2-5) / 1+1=32\) spatially, so 32x32x10

\section*{Examples time:}

\section*{Input volume: 32x32x3 \(105 x 5\) filters with stride 1 , pad 2}


\section*{Number of parameters in this layer?}

\section*{Examples time:}

\section*{Input volume: 32x32x3 \(105 \times 5\) filters with stride 1, pad 2}


Number of parameters in this layer? each filter has \(5 * 5 * 3+1=76\) params ( +1 for bias) => \(76 * 10=760\)```

