Lecture 11:

Convolutional Neural Networks

A closer look at spatial dimensions:

A closer look at spatial dimensions:

7x7 input (spatially) assume 3×3 filter

A closer look at spatial dimensions:

7x7 input (spatially) assume 3×3 filter

A closer look at spatial dimensions:

7x7 input (spatially) assume 3×3 filter

A closer look at spatial dimensions:

7x7 input (spatially) assume 3×3 filter

A closer look at spatial dimensions:

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2

A closer look at spatial dimensions:

7x7 input (spatially) assume 3×3 filter applied with stride 2

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2 => $3 x 3$ output!

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride $\mathbf{3 ?}$

A closer look at spatial dimensions:

7x7 input (spatially) assume 3×3 filter applied with stride $\mathbf{3 ?}$

doesn't fit!

cannot apply $3 x 3$ filter on $7 x 7$ input with stride 3.

			F			
	F					

Output size:
 (N - F) / stride + 1

e.g. $N=7, F=3$:
stride $1=>(7-3) / 1+1=5$
stride $2=>(7-3) / 2+1=3$
stride $3=>(7-3) / 3+1=2.33: \$

In practice: Common to zero pad the border

0	0	0	0	0	0			
0								
0								
0								
0								

e.g. input 7×7
3×3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

In practice: Common to zero pad the border

0	0	0	0	0	0			
0								
0								
0								
0								

e.g. input 7×7
3×3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

In practice: Common to zero pad the border

0	0	0	0	0	0			
0								
0								
0								
0								

e.g. input $7 x 7$
3×3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with ($\mathrm{F}-1$)/2. (will preserve size spatially)
e.g. $F=3=>$ zero pad with 1

F = $5=>$ zero pad with 2
F = 7 => zero pad with 3

Remember back to...

E.g. 32x32 input convolved repeatedly with 5×5 filters shrinks volumes spatially! (32-> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

Examples time:

Input volume: 32x32x3 105×5 filters with stride 1 , pad 2

Output volume size: ?

Examples time:

Input volume: 32x32x3 105×5 filters with stride 1, pad 2

Output volume size:
$\left(32+2^{*} 2-5\right) / 1+1=32$ spatially, so
32x32x10

Examples time:

Input volume: 32x32x3 105×5 filters with stride 1 , pad 2

Number of parameters in this layer?

Examples time:

Input volume: 32x32x3 105×5 filters with stride 1 , pad 2

Number of parameters in this layer? each filter has $5 * 5 * 3+1=76$ params (+1 for bias) => $76 * 10=760$

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_{1} \times H_{1} \times D_{1}$
- Requires four hyperparameters:
- Number of filters K,
- their spatial extent F,
- the stride S,
- the amount of zero padding P.
- Produces a volume of size $W_{2} \times H_{2} \times D_{2}$ where:
- $W_{2}=\left(W_{1}-F+2 P\right) / S+1$
- $H_{2}=\left(H_{1}-F+2 P\right) / S+1$ (i.e. width and height are computed equally by symmetry)
- $D_{2}=K$
- With parameter sharing, it introduces $F \cdot F \cdot D_{1}$ weights per filter, for a total of $\left(F \cdot F \cdot D_{1}\right) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_{2} \times H_{2}$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Common settings:

Summary. To summarize, the Conv Layer:

$$
\begin{aligned}
K= & \text { (powers of } 2, \text { e.g. } 32,64,128,512) \\
- & F=3, S=1, P=1 \\
- & F=5, S=1, P=2 \\
- & F=5, S=2, P=? \text { (whatever fits) } \\
- & F=1, S=1, P=0
\end{aligned}
$$

- Accepts a volume of size $W_{1} \times H_{1} \times D_{1}$
- Requires four hyperparameters:
- Number of filters K,
- their spatial extent F,
- the stride S
- the amount of zero padding P
- Produces a volume of size $W_{2} \times \mathrm{H}_{2} \times D_{2}$ where:
- $W_{2}=\left(W_{1}-F+2 P\right) / S+1$
- $H_{2}=\left(H_{1}-F+2 P\right) / S+1$ (i.e. width and height are computed equally by symmetry)
- $D_{2}=K$
- With parameter sharing, it introduces $F \cdot F \cdot D_{1}$ weights per filter, for a total of $\left(F \cdot F \cdot D_{1}\right) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_{2} \times H_{2}$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.
(btw, 1×1 convolution layers make perfect sense)

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

Single depth slice

max pool with 2×2 filters and stride 2

- Accepts a volume of size $W_{1} \times H_{1} \times D_{1}$
- Requires three hyperparameters:
- their spatial extent F,
- the stride S,
- Produces a volume of size $W_{2} \times H_{2} \times D_{2}$ where:
- $W_{2}=\left(W_{1}-F\right) / S+1$
- $H_{2}=\left(H_{1}-F\right) / S+1$
- $D_{2}=D_{1}$
- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

Common settings:

- Accepts a volume of size $W_{1} \times H_{1} \times D_{1}$
- Requires three hyperparameters:
- their spatial extent F,
- the stride S,
- Produces a volume of size $W_{2} \times H_{2} \times D_{2}$ where:
- $W_{2}=\left(W_{1}-F\right) / S+1$
- $H_{2}=\left(H_{1}-F\right) / S+1$
- $D_{2}=D_{1}$
- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

$$
\begin{aligned}
& F=2, S=2 \\
& F=3, S=2
\end{aligned}
$$

Why do we need pooling?

- Pool information by increasing receptive field
- Provide some spatial invariance

Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural Networks

[ConvNetJS demo: training on CIFAR-10]

http://cs.stanford.edu/people/karpathy/convnetis/demo/cifar10.html

Receptive field

Which pixels in the input image have impact on the value of \mathbf{v} ?

Receptive field

Which pixels in the input image have impact on the value of \mathbf{v} ?
With POOL Layers?

Dilated convolution, for even larger receptive fields

(a)

(b)

(c)

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of resolution or coverage. (a) F_{1} is produced from F_{0} by a 1-dilated convolution; each element in F_{1} has a receptive field of 3×3. (b) F_{2} is produced from F_{1} by a 2-dilated convolution; each element in F_{2} has a receptive field of 7×7. (c) F_{3} is produced from F_{2} by a 4 -dilated convolution; each element in F_{3} has a receptive field of 15×15. The number of parameters associated with each layer is identical. The receptive field grows exponentially while the number of parameters grows linearly.

Multi-Scale Context Aggregation by Dilated Convolutions, Fisher Yu, Vladlen Koltun

Case Study: LeNet-5

[LeCun et al., 1998]

Conv filters were 5×5, applied at stride 1
Subsampling (Pooling) layers were 2×2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Q: what is the output volume size? Hint: $(227-11) / 4+1=55$

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]
Q: What is the total number of parameters in this layer?

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]
Parameters: $\left(11^{*} 11^{*} 3\right)^{*} 96=35 \mathrm{~K}$

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96
Second layer (POOL1): 3×3 filters applied at stride 2
Q: what is the output volume size? Hint: $(55-3) / 2+1=27$

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96
Second layer (POOL1): 3×3 filters applied at stride 2 Output volume: 27x27x96

Q: what is the number of parameters in this layer?

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96
Second layer (POOL1): 3×3 filters applied at stride 2
Output volume: 27x27x96
Parameters: 0!

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96
After POOL1: $27 \times 27 \times 96$

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT

[55x55x96] CONV1: 9611×11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3×3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 2565×5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3×3 filters at stride 2
[13×13x256] NORM2: Normalization layer
[13×13×384] CONV3: 3843×3 filters at stride 1, pad 1
[13x13x384] CONV4: 3843×3 filters at stride 1, pad 1
[13×13x256] CONV5: 2563×3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3×3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT

[55x55x96] CONV1: 9611×11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3×3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 2565×5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3×3 filters at stride 2
[13×13x256] NORM2: Normalization layer
[13×13×384] CONV3: 3843×3 filters at stride 1, pad 1
[13×13×384] CONV4: 3843×3 filters at stride 1, pad 1
[13×13x256] CONV5: 2563×3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Case Study: ZFNet [Zeiere and Fergus, 2013$]$

Input Image

Layer 2

Layer 4

Layer 6 Layer 7

Output

AlexNet but:
CONV1: change from (11×11 stride 4) to (7×7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512 ImageNet top 5 error: 15.4\% -> 14.8\%

Case Study: VGGNet

[Simonyan and Zisserman, 2014]
Only $3 x 3$ CONV stride 1, pad 1 and $2 x 2$ MAX POOL stride 2

best model

11.2\% top 5 error in ILSVRC 2013

ConvNet Configuration					
A	A-LRN	B	C	D	E
11 weight layers	11 weight layers	13 weight layers	$\begin{gathered} \hline 16 \text { weight } \\ \text { layers } \\ \hline \end{gathered}$	$\begin{gathered} 16 \text { weight } \\ \text { layers } \\ \hline \end{gathered}$	$\begin{gathered} 19 \text { weight } \\ \text { layers } \\ \hline \end{gathered}$
input (224×224 RGB imag)					
conv3-64	$\begin{aligned} & \hline \text { conv3-64 } \\ & \text { LRN } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	$\begin{aligned} & \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$
maxpool					
conv3-128	conv3-128	$\begin{aligned} & \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-128 } \\ & \text { conv3-128 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-128 } \\ & \text { conv3-128 } \\ & \hline \end{aligned}$
maxpool					
$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { conv3-256 } \\ \text { conv3-256 } \end{array} \\ \hline \text { conv1-256 } \end{array}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \hline \end{aligned}$
maxpool					
$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv1-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	conv3-512 conv3-512 conv3-512 conv3-512
maxpool					
$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv1-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$
maxpool					
FC-4096					
FC-4096					
FC-1000					
soft-max					

->
7.3% top 5 error
Table 2: Number of parameters (in millions).

Network	A,A-LRN	B	C	D	E
Number of parameters	133	133	134	138	144

INPUT: [224×224x3] memory: $224 * 224 * 3=150 \mathrm{~K}$ params: 0
(not counting biases)
CONV3-64: [224×224x64] memory: 224*224*64=3.2M params: $\left(3^{*} 3 * 3\right)^{*} 64=1,728$
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 $=36,864$
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112×112x128] memory: $112^{*} 112^{*} 128=1.6 \mathrm{M}$ params: $\left(3^{*} 3^{*} 64\right)^{*} 128=73,728$
CONV3-128: $[112 \times 112 \times 128]$ memory: $112^{*} 112^{*} 128=1.6 \mathrm{M}$ params: $\left(3^{*} 3^{*} 128\right)^{*} 128=147,456$
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: $56 * 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 128\right)^{*} 256=294,912$
CONV3-256: [56x56x256] memory: $56 * 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
CONV3-256: [56x56x256] memory: $56^{*} 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
POOL2: [28x28×256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 512=1,179,648$
CONV3-512: [28x28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
CONV3-512: [28x28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$ POOL2: [14x14×512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: 0
CONV3-512: [14x14x512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $(3 * 3 * 512)^{*} 512=2,359,296$ CONV3-512: [14x14x512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$ CONV3-512: [14x14x512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$ POOL2: [7x7x512] memory: $7^{*} 7^{*} 512=25 \mathrm{~K}$ params: 0
FC: [1x1x4096] memory: 4096 params: $7^{*} 7^{*} 512^{*} 4096=102,760,448$
FC: [1x1x4096] memory: 4096 params: $4096 * 4096=16,777,216$
FC: [1x1x1000] memory: 1000 params: $4096 * 1000=4,096,000$

ConvNet Configuration			
B	C	D	
13 weight layers	16 weight layers	16 weight layers	19
put (224×224 RGB image			
$\begin{aligned} & \hline \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	cc cc
maxpool			
$\begin{aligned} & \hline \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	$\begin{aligned} & \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	co co
maxpool			
$\begin{aligned} & \hline \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-256 } \\ & \text { conv3-256 } \\ & \text { conv1-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	co co co
maxpool			
$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv1-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	co co co
maxpool			
$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv1-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	co co co
maxpool			
FC-4096			
FC-4096			
FC-1000			
soft-max			

INPUT: [224×224×3] memory: $224 * 224 * 3=150 \mathrm{~K}$ params: 0
(not counting biases)
CONV3-64: [224×224x64] memory: 224*224*64=3.2M params: $\left(3^{*} 3 * 3\right)^{*} 64=1,728$
CONV3-64: [224x224x64] memory: $224^{*} 224^{*} 64=3.2 \mathrm{M}$ params: $\left(3^{*} 3^{*} 64\right)^{*} 64=36,864$
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112×112×128] memory: $112^{*} 112^{*} 128=1.6 \mathrm{M}$ params: $\left(3^{*} 3^{*} 64\right)^{*} 128=73,728$
CONV3-128: $[112 \times 112 \times 128]$ memory: $112^{*} 112^{*} 128=1.6 \mathrm{M}$ params: $\left(3^{*} 3^{*} 128\right)^{*} 128=147,456$
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: $56 * 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 128\right)^{*} 256=294,912$
CONV3-256: [56x56x256] memory: $56 * 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
CONV3-256: [56x56x256] memory: $56^{*} 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
POOL2: [28x28×256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 512=1,179,648$
CONV3-512: [28×28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
CONV3-512: [28x28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
POOL2: [14x14×512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: 0
CONV3-512: [14x14x512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $(3 * 3 * 512)^{*} 512=2,359,296$
CONV3-512: [14x14x512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
CONV3-512: [14x14x512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
POOL2: [7x7x512] memory: $7^{*} 7^{*} 512=25 \mathrm{~K}$ params: 0
FC: [1x1x4096] memory: 4096 params: $7^{*} 7^{*} 512^{*} 4096=102,760,448$
FC: [1x1x4096] memory: 4096 params: $4096 * 4096=16,777,216$
FC: [1x1x1000] memory: 1000 params: $4096 * 1000=4,096,000$
TOTAL memory: $24 \mathrm{M} * 4$ bytes $\sim=93 \mathrm{MB}$ / image (only forward! $\sim^{*} 2$ for bwd)
TOTAL params: 138M parameters

CONV3-64: [224x224x64] memory: $224^{*} 224 * 64=3.2 \mathrm{M}$ params: $\left(3^{*} 3^{*} 64\right)^{*} 64=36,864$
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112×112x128] memory: $112^{*} 112^{*} 128=1.6 \mathrm{M}$ params: $\left(3^{*} 3^{*} 64\right)^{*} 128=73,728$
CONV3-128: [112x112x128] memory: $112^{* 112 * 128=1.6 M ~ p a r a m s: ~}\left(3^{*} 3^{*} 128\right)^{*} 128=147,456$
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: $56 * 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 128\right)^{*} 256=294,912$
CONV3-256: [56x56x256] memory: $56 * 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
CONV3-256: [56x56x256] memory: $56 * 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
POOL2: [28x28×256] memory: $28^{*} 28^{*} 256=200 \mathrm{~K}$ params: 0
CONV3-512: [28x28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 512=1,179,648$
CONV3-512: [28×28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
CONV3-512: [28x28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
POOL2: [14x14×512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: 0
CONV3-512: [14×14×512] memory: $14 * 14 * 512=100 \mathrm{~K}$ params: $(3 * 3 * 512)^{*} 512=2,359,296$
CONV3-512: [14×14×512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
CONV3-512: [14×14×512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
POOL2: [7x7x512] memory: $7^{*} 7 * 512=25 \mathrm{~K}$ params: 0
Most memory is in early CONV

FC: $[1 \times 1 \times 4096]$ memory: 4096 params: $7^{*} 7^{*} 512^{*} 4096=\mathbf{1 0 2 , 7 6 0 , 4 4 8}$
FC: [1x1x4096] memory: 4096 params: $4096 * 4096=16,777,216$
FC: [1x1x1000] memory: 1000 params: $4096 * 1000=4,096,000$
TOTAL memory: $24 \mathrm{M} * 4$ bytes $\sim=93 \mathrm{MB}$ / image (only forward! $\sim * 2$ for bwd)
TOTAL params: 138M parameters

Case Study: GoogLeNet

Inception module

ILSVRC 2014 winner (6.7\% top 5 error)

Case Study: GoogLeNet

type	patch size/ stride	$\begin{gathered} \hline \text { output } \\ \text { size } \\ \hline \end{gathered}$	depth	$\# 1 \times 1$	$\# 3 \times 3$ reduce	$\# 3 \times 3$	$\# 5 \times 5$ reduce	$\# 5 \times 5$	pool proj	params	ops
convolution	$7 \times 7 / 2$	$112 \times 112 \times 64$	1							2.7 K	34 M
max pool	$3 \times 3 / 2$	$56 \times 56 \times 64$	0								
convolution	$3 \times 3 / 1$	$56 \times 56 \times 192$	2		64	192				112 K	360M
max pool	$3 \times 3 / 2$	$28 \times 28 \times 192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159 K	128 M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
max pool	$3 \times 3 / 2$	$14 \times 14 \times 480$	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364 K	73 M
inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437 K	88 M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463 K	100 M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580 K	119M
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
max pool	$3 \times 3 / 2$	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54 M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388 K	71 M
avg pool	$7 \times 7 / 1$	$1 \times 1 \times 1024$	0								
dropout (40\%)		$1 \times 1 \times 1024$	0								
linear		$1 \times 1 \times 1000$	1							1000 K	1M
softmax		$1 \times 1 \times 1000$	0								

Fun features:

- Only 5 million params! (Removes FC layers completely)

Compared to AlexNet:

- 12X less params
- $2 x$ more compute
- 6.67% (vs. 16.4\%)

Case Study: ResNet
 ILSVRC 2015 winner (3.6% top 5 error)

```
Research
```


MSRA @ ILSVRC \& COCO 2015 Competitions

```
- 1st places in all five main tracks
- ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
- ImageNet Detection: 16\% better than 2nd
- ImageNet Localization: 27\% better than 2nd
- COCO Detection: 11\% better than 2nd
- COCO Segmentation: 12\% better than 2nd
```


Deep Residual Learning for Image Recognition

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun

(slide from Kaiming He's recent presentation)

CIFAR-10 experiments

CIFAR-10 plain nets

CIFAR-10 ResNets

Case Study: ResNet [He et al, 2015$]$

ILSVRC 2015 winner (3.6% top 5 error)

Research
2-3 weeks of training on 8 GPU machine
at runtime: faster than a VGGNet! (even though it has 8x more layers)

(slide from Kaiming He's presentation)

Case Study: ResNet

[He et al., 2015]

34-layer plain

34-layer residual

Case Study: ResNet [He et al., 2015]

Case Study: ResNet [He et al., 2015]

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1 e-5
- No dropout used

Case Study: ResNet [He etal, 2015

Case Study: ResNet IHe etal, 2015]

(this trick is also used in GoogLeNet)

	Sasestury Resmet [He et al., 2015]						
	layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
\%	conv1	112×112	$7 \times 7,64$, stride 2				
			3×3 max pool, stride 2				
	conv2_x	56×56	$\left[\begin{array}{l}3 \times 3,64 \\ 3 \times 3,64\end{array}\right] \times 2$	$\left[\begin{array}{l}3 \times 3,64 \\ 3 \times 3,64\end{array}\right] \times 3$	$\left[\begin{array}{c}1 \times 1,64 \\ 3 \times 3,64 \\ 1 \times 1,256\end{array}\right] \times 3$	$\left[\begin{array}{c}1 \times 1,64 \\ 3 \times 3,64 \\ 1 \times 1,256\end{array}\right] \times 3$	$\left[\begin{array}{c}1 \times 1,64 \\ 3 \times 3,64 \\ 1 \times 1,256\end{array}\right] \times 3$
	conv3_x	28×28	$\left[\begin{array}{l}3 \times 3,128 \\ 3 \times 3,128\end{array}\right] \times 2$	$\left[\begin{array}{l}3 \times 3,128 \\ 3 \times 3,128\end{array}\right] \times 4$	$\left[\begin{array}{l}1 \times 1,128 \\ 3 \times 3,128 \\ 1 \times 1,512\end{array}\right] \times 4$	$\left[\begin{array}{l}1 \times 1,128 \\ 3 \times 3,128 \\ 1 \times 1,512\end{array}\right] \times 4$	$\left[\begin{array}{l}1 \times 1,128 \\ 3 \times 3,128 \\ 1 \times 1,512\end{array}\right] \times 8$
	conv4_x	14×14	$\left[\begin{array}{l}3 \times 3,256 \\ 3 \times 3,256\end{array}\right] \times 2$	$\left[\begin{array}{l}3 \times 3,256 \\ 3 \times 3,256\end{array}\right] \times 6$	$\left[\begin{array}{c}1 \times 1,256 \\ 3 \times 3,256 \\ 1 \times 1,1024\end{array}\right] \times 6$	$\left[\begin{array}{c}1 \times 1,256 \\ 3 \times 3,256 \\ 1 \times 1,1024\end{array}\right] \times 23$	$\left[\begin{array}{c}1 \times 1,256 \\ 3 \times 3,256 \\ 1 \times 1,1024\end{array}\right] \times 36$
	conv5_x	7×7	$\left[\begin{array}{l}3 \times 3,512 \\ 3 \times 3,512\end{array}\right] \times 2$	$\left[\begin{array}{l}3 \times 3,512 \\ 3 \times 3,512\end{array}\right] \times 3$	$\left[\begin{array}{c}1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048\end{array}\right] \times 3$	$\left[\begin{array}{c}1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048\end{array}\right] \times 3$	$\left[\begin{array}{c}1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048\end{array}\right] \times 3$
		1×1	average pool, $1000-\mathrm{d} \mathrm{fc}$, softmax				
	FLOPs		1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^{9}	11.3×10^{9}

Case Study: ResNet teeala, 2015

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like [(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX where N is usually up to $\sim 5, \mathrm{M}$ is large, $0<=\mathrm{K}<=2$.
- but recent advances such as ResNet/GoogLeNet challenge this paradigm

