Lecture 11:

Convolutional Neural Networks

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 1 17 Oct 2023

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 2 17 Oct 2023

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 3 17 Oct 2023

7x7 input (spatially) assume 3x3 filter

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 4 17 Oct 2023

7x7 input (spatially) assume 3x3 filter

Lecture 11 - 5

17 Oct 2023

7x7 input (spatially) assume 3x3 filter

Lecture 11 - 6

17 Oct 2023

7x7 input (spatially) assume 3x3 filter

Lecture 11 - 7 17 Oct 2023

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 8 17 Oct 2023

7x7 input (spatially) assume 3x3 filter applied **with stride 2**

Lecture 11 - 9

17 Oct 2023

7x7 input (spatially) assume 3x3 filter applied **with stride 2**

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 10 17 Oct 2023

7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 11 17 Oct 2023

7x7 input (spatially) assume 3x3 filter applied **with stride 3?**

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 12 17 Oct 2023

7x7 input (spatially) assume 3x3 filter applied **with stride 3?**

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 13 17 Oct 2023

Ν

Output size: (N - F) / stride + 1

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 14 17 Oct 2023

In practice: Common to zero pad the border

e.g. input 7x7 **3x3** filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:) (N - F) / stride + 1

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 15 17 Oct 2023

In practice: Common to zero pad the border

e.g. input 7x7 **3x3** filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 16 17 Oct 2023

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially) e.g. F = 3 => zero pad with 1 F = 5 => zero pad with 2 F = 7 => zero pad with 3

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 17 17 Oct 2023

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

Lecture 11 - 18

17 Oct 2023

Output volume size: ?

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 19 17 Oct 2023

Examples time:

Output volume size: (32+2*2-5)/1+1 = 32 spatially, so 32x32x10

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 20 17 Oct 2023

Number of parameters in this layer?

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 21 17 Oct 2023

Examples time:

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params (+1 for bias) => 76*10 = 760

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 22 17 Oct 2023

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K,
 - \circ their spatial extent F,
 - $\circ\;$ the stride S,
 - the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $\circ W_2 = (W_1 F + 2P)/S + 1$
 - $\circ~~H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $\circ D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 23 17 Oct 2023

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - \circ Number of filters K,
 - \circ their spatial extent F,
 - \circ the stride S,
 - $\circ\;\;$ the amount of zero padding $P.\;$
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:

$${ W_2 = (W_1 - F + 2P)/S + 1 }$$

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)

- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0

Lecture 11 - 24

17 Oct 2023

- $H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry) • $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

(btw, 1x1 convolution layers make perfect sense)

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 25 17 Oct 2023

two more layers to go: POOL/FC

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 26 17 Oct 2023

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 27 17 Oct 2023

MAX POOLING

Single depth slice

Х

max pool with 2x2 filters and stride 2

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

V

Lecture 11 - 28 17 Oct 2023

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires three hyperparameters:
 - $\circ\;$ their spatial extent F,
 - $\circ\;\;$ the stride S ,
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F)/S + 1$
 - $\circ H_2 = (H_1 F)/S + 1$
 - $\circ D_2 = D_1$
- Introduces zero parameters since it computes a fixed function of the input

Lecture 11 - 29

17 Oct 2023

Note that it is not common to use zero-padding for Pooling layers

Common settings:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires three hyperparameters:
 - \circ their spatial extent F,
 - \circ the stride S,
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $\circ W_2 = (W_1 F)/S + 1$
 - $\circ H_2 = (H_1 F)/S + 1$
 - $\circ D_2 = D_1$
- · Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

F = 2, S = 2F = 3, S = 2

Lecture 11 - 30

17 Oct 2023

Why do we need pooling?

- Pool information by increasing receptive field
- Provide some spatial invariance

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 31 17 Oct 2023

Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural Networks

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 32 17 Oct 2023

[ConvNetJS demo: training on CIFAR-10]

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 33 17 Oct 2023

Receptive field

Which pixels in the input image have impact on the value of v?

Lecture 11 - 34

17 Oct 2023

Receptive field

Which pixels in the input image have impact on the value of **v**? With POOL Layers?

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 35 17 Oct 2023

Dilated convolution, for even larger receptive fields

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of resolution or coverage. (a) F_1 is produced from F_0 by a 1-dilated convolution; each element in F_1 has a receptive field of 3×3 . (b) F_2 is produced from F_1 by a 2-dilated convolution; each element in F_2 has a receptive field of 7×7 . (c) F_3 is produced from F_2 by a 4-dilated convolution; each element in F_3 has a receptive field of 15×15 . The number of parameters associated with each layer is identical. The receptive field grows exponentially while the number of parameters grows linearly.

Multi-Scale Context Aggregation by Dilated Convolutions, Fisher Yu, Vladlen Koltun

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 36 17 Oct 2023

Case Study: LeNet-5

[LeCun et al., 1998]

Lecture 11 - 37

17 Oct 2023

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2

i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

Lecture 11 - 38

17 Oct 2023

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4 => Q: what is the output volume size? Hint: (227-11)/4+1 = 55

Lecture 11 - 39

17 Oct 2023

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4 => Output volume **[55x55x96]**

Q: What is the total number of parameters in this layer?

17 Oct 2023

Lecture 11 - 40

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4 =>

Output volume **[55x55x96]** Parameters: (11*11*3)*96 = **35K**

Input: 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Case Study: AlexNet

[Krizhevsky et al. 2012]

Lecture 11 - 41

17 Oct 2023

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2 Output volume: 27x27x96

Q: what is the number of parameters in this layer?

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Case Study: AlexNet

[Krizhevsky et al. 2012]

Lecture 11 - 42

17 Oct 2023

After CONV1: 55x55x96 Second laver (POOL1): 3x3 filters applied

Second layer (POOL1): 3x3 filters applied at stride 2 Output volume: 27x27x96 Parameters: 0!

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images

Lecture 11 - 43 17 Oct 2023

Case Study: AlexNet

[Krizhevsky et al. 2012]

. . .

Lecture 11 - 44

17 Oct 2023

Input: 227x227x3 images After CONV1: 55x55x96 After POOL1: 27x27x96

Case Study: AlexNet

[Krizhevsky et al. 2012]

Lecture 11 - 45 17 Oct 2023

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 46 17 Oct 2023

Case Study: ZFNet

[Zeiler and Fergus, 2013]

AlexNet but: CONV1: change from (11x11 stride 4) to (7x7 stride 2) CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 15.4% -> 14.8%

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 47 17 Oct 2023

		ConvNet C	onfiguration		
A	A-LRN	B	С	D	E
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
	i	nput (224×2	24 RGB imag	:)	
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
		max	pool		
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
		max	pool		
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256
					conv3-256
2.512			pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		max	pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		max	pool		
			4096		
			4096		
			1000		
		soft	-max		

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

best model

11.2% top 5 error in ILSVRC 2013

-> 7.3% top 5 error

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Table 2: Number of parameters (in millions).

Network	A,A-LRN	B	С	D	E	
Number of parameters	133	133	134	138	144	

Lecture 11 - 48 17 Oct 2023

INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)	C
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728	Co
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864	13
POOL2: [112x112x64] memory: 112*112*64=800K params: 0	1
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728	l put co
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456	co
POOL2: [56x56x128] memory: 56*56*128=400K params: 0	
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912	cor
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	cor
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	cor
POOL2: [28x28x256] memory: 28*28*256=200K params: 0	cor
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648	
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296	
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296	cor
POOL2: [14x14x512] memory: 14*14*512=100K params: 0	cor
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	cor
POOL2: [7x7x512] memory: 7*7*512=25K params: 0	cor
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448	
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216	
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000	

B	С	D	
13 weight	16 weight	16 weight	1
layers	layers	layers	
out (224×2)	24 RGB image		F
conv3-64	conv3-64	conv3-64	
conv3-64	conv3-64	conv3-64	.3
	pool		
conv3-128	conv3-128	conv3-128	С
conv3-128	conv3-128	conv3-128	с
max	pool		Г
conv3-256	conv3-256	conv3-256	с
conv3-256	conv3-256	conv3-256	c
	conv1-256	conv3-256	с
			c
max	pool		Г
conv3-512	conv3-512	conv3-512	C
conv3-512	conv3-512	conv3-512	с
	conv1-512	conv3-512	c
			c
max	pool		
conv3-512	conv3-512	conv3-512	С
conv3-512	conv3-512	conv3-512	с
	conv1-512	conv3-512	c
			c
max	pool		
	4096		
FC-	4096		
FC-	1000		
soft	-max		

(not counting biogoo)

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 49 17 Oct 2023

(not counting biogoo)	
INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)	C
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728	0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864	13
POOL2: [112x112x64] memory: 112*112*64=800K params: 0	
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728	put
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456	c
POOL2: [56x56x128] memory: 56*56*128=400K params: 0	
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912	co
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	co
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	co
POOL2: [28x28x256] memory: 28*28*256=200K params: 0	co
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648	
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296	
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296	co
POOL2: [14x14x512] memory: 14*14*512=100K params: 0	co
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	co
POOL2: [7x7x512] memory: 7*7*512=25K params: 0	co
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448	
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216	
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000	_
	_

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)

B	С	D	
13 weight	16 weight	16 weight	1
layers	layers	layers	1
	24 RGB image		⊨
conv3-64	conv3-64	conv3-64	с
conv3-64	conv3-64	conv3-64	с
max	pool		
conv3-128	conv3-128	conv3-128	CC
conv3-128	conv3-128	conv3-128	co
max	pool		
conv3-256	conv3-256	conv3-256	co
conv3-256	conv3-256	conv3-256	co
	conv1-256	conv3-256	co
			co
max	pool		
conv3-512	conv3-512	conv3-512	CC
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
2			co
	pool		
conv3-512	conv3-512	conv3-512	CC
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	CO
			C
114 CONV	pool		
	4096		
	4096		
FC-	1000		
	-max		

(not constinue bioco)

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

TOTAL params: 138M parameters

Lecture 11 - 50 17 Oct 2023

(not counting biases) INPUT: [224x224x3] memory: 224*224*3=150K params: 0 CONV3-64: [224x224x64] memory: **224*224*64=3.2M** params: (3*3*3)*64 = 1,728 Note: CONV3-64: [224x224x64] memory: **224*224*64=3.2M** *carams*: (3*3*64)*64 = 36,864 POOL2: [112x112x64] memory: 112*112*64=800K params: 0 Most memory is in CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728 early CONV CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456 POOL2: [56x56x128] memory: 56*56*128=400K params: 0 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 POOL2: [28x28x256] memory: 28*28*256=200K params: 0 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 POOL2: [14x14x512] memory: 14*14*512=100K params: 0 Most params are CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 in late FC CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 POOL2: [7x7x512] memory: 7*7*512=25K params: 0 FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216 FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd) TOTAL params: 138M parameters

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 51 17 Oct 2023

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 52 17 Oct 2023

Case Study: GoogLeNet

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	$112 \times 112 \times 64$	1							2.7K	34M
max pool	3×3/2	$56 \times 56 \times 64$	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	$28 \times 28 \times 192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	$14 \times 14 \times 480$	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1 \times 1 \times 1024$	0								
dropout (40%)		$1 \times 1 \times 1024$	0						8		
linear		$1 \times 1 \times 1000$	1							1000K	IM
softmax		$1 \times 1 \times 1000$	0						8		1

Fun features:

- Only 5 million params! (Removes FC layers completely)

Compared to AlexNet:

17 Oct 2023

- 12X less params
- 2x more compute
- 6.67% (vs. 16.4%)

Lecture 11 - 53

Case Study: ResNet [He et al., 2015] ILSVRC 2015 winner (3.6% top 5 error)

According to Google Scholar Metrics, as of June 2017:

Deep Residual Learning for Image Recognition

"Deep Residual Learning for Image Recognition" is the most cited paper published in CVPR 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016 (Oral). CVPR Best Paper Award

arXiv code/models talk slides: ILSVRC workshop ICML tutorial CVPR oral

ILSVRC & COCO competitions 2015: we won the 1st places in ImageNet classification, ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation!

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 54 17 Oct 2023

(slide from Kaiming He's recent presentation)

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 55 17 Oct 2023

CIFAR-10 experiments

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 56 17 Oct 2023

Case Study: ResNet [He et al., 2015] ILSVRC 2015 winner (3.6% top 5 error)

(slide from Kaiming He's presentation)

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 57 17 Oct 2023

Case Study: ResNet

[He et al., 2015]

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 58 17 Oct 2023

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 59 17 Oct 2023

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus

17 Oct 2023

Lecture 11 - 60

- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 61 17 Oct 2023

(this trick is also used in GoogLeNet)

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 62 17 Oct 2023

layer name	output size	18-layer 34-layer		50-layer	101-layer	152-layer				
conv1	112×112	7×7, 64, stride 2								
			3×3 max pool, stride 2							
conv2_x	56×56	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$				
conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,128\\3\times3,128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$				
conv4_x	14×14	$\begin{bmatrix} 3\times3,256\\3\times3,256\end{bmatrix}\times2$	$\begin{bmatrix} 3\times3,256\\3\times3,256\end{bmatrix}\times6$	$\begin{bmatrix} 1 \times 1, 256\\ 3 \times 3, 256\\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$				
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$				
	1×1		ave	softmax						
FLO	OPs	1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^{9}	11.3×10^{9}				

Lecture 11 - 63

17 Oct 2023

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like [(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX where N is usually up to ~5, M is large, 0 <= K <= 2.
 - but recent advances such as ResNet/GoogLeNet challenge this paradigm

Lecture 11 - 64

17 Oct 2023