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Lecture 11:

Convolutional Neural Networks

[LeNet-5, LeCun 1980]
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preview:
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A closer look at spatial dimensions:

32

32

3

32x32x3 image

5x5x3 filter

convolve (slide) over all 

spatial locations

activation map

1

28

28
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7x7 input (spatially)

assume 3x3 filter

7

7

A closer look at spatial dimensions:

4



Lecture 11 - 17 Oct 2023Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 17 Oct 2023Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

7x7 input (spatially)

assume 3x3 filter

7

7

A closer look at spatial dimensions:

5



Lecture 11 - 17 Oct 2023Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 17 Oct 2023Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

7x7 input (spatially)

assume 3x3 filter

7

7

A closer look at spatial dimensions:

6



Lecture 11 - 17 Oct 2023Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 17 Oct 2023Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

7x7 input (spatially)

assume 3x3 filter

7

7

A closer look at spatial dimensions:

7



Lecture 11 - 17 Oct 2023Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 17 Oct 2023Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

7x7 input (spatially)

assume 3x3 filter

=> 5x5 output

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)

assume 3x3 filter

applied with stride 2

7

7

A closer look at spatial dimensions:

9



Lecture 11 - 17 Oct 2023Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 17 Oct 2023Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

7x7 input (spatially)

assume 3x3 filter

applied with stride 2

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)

assume 3x3 filter

applied with stride 2

=> 3x3 output!

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)

assume 3x3 filter

applied with stride 3?

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)

assume 3x3 filter

applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit! 

cannot apply 3x3 filter on 

7x7 input with stride 3.
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N

NF

F

Output size:

(N - F) / stride + 1

e.g. N = 7, F = 3:

stride 1 => (7 - 3)/1 + 1 = 5

stride 2 => (7 - 3)/2 + 1 = 3

stride 3 => (7 - 3)/3 + 1 = 2.33 :\
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In practice: Common to zero pad the border

0 0 0 0 0 0

0

0

0

0

e.g. input 7x7

3x3 filter, applied with stride 1 

pad with 1 pixel border => what is the output?

(recall:)

(N - F) / stride + 1
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In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1 

pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0
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e.g. input 7x7

3x3 filter, applied with stride 1 

pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with 

stride 1, filters of size FxF, and zero-padding with 

(F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2

F = 7 => zero pad with 3

17

In practice: Common to zero pad the border

0 0 0 0 0 0

0

0

0

0
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Remember back to… 

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!

(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

3

CONV,

ReLU

e.g. 6 

5x5x3 

filters 28

28

6

CONV,

ReLU

e.g. 10 

5x5x6 

filters

CONV,

ReLU

….

10

24

24
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Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size: ?
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Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size: 

(32+2*2-5)/1+1 = 32 spatially, so

32x32x10
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Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
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Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

each filter has 5*5*3 + 1 = 76 params      (+1 for bias)

=> 76*10 = 760
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Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)

- F = 3, S = 1, P = 1

- F = 5, S = 1, P = 2

- F = 5, S = 2, P = ? (whatever fits)

- F = 1, S = 1, P = 0
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(btw, 1x1 convolution layers make perfect sense)

64

56

56
1x1 CONV

with 32 filters

32

56

56

(each filter has size 

1x1x64, and performs a 

64-dimensional dot 

product)
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two more layers to go: POOL/FC
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Pooling layer
- makes the representations smaller and more manageable 

- operates over each activation map independently:
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1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 

and stride 2 6 8

3 4

MAX POOLING
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Common settings:

F = 2, S = 2

F = 3, S = 2
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Why do we need pooling? 

31

● Pool information by increasing receptive field

● Provide some spatial invariance
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Fully Connected Layer (FC layer)
- Contains neurons that connect to the entire input volume, as in ordinary Neural 

Networks
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http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

[ConvNetJS demo: training on CIFAR-10]

33

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
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Receptive field 

Which pixels in the input image have impact on the value of v? 

32

32

3

CONV

(5x5x3),

ReLU

28

28

6

CONV

(5x5x6),

ReLU

CONV,

ReLU

….

10

24

24

34

v

9x9
5x5

1x1
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Receptive field 

Which pixels in the input image have impact on the value of v?

With POOL Layers?  

32

32

3

CONV

(5x5x3),

ReLU,

POOL

(2x2) 14

14

6

CONV

(5x5x6),

ReLU,

POOL

(2x2)

CONV,

ReLU,

POOL

….

10
5

5

35

v

16x16
6x6

1x1
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Dilated convolution, for even larger receptive fields

36

Multi-Scale Context Aggregation by Dilated Convolutions, Fisher Yu, Vladlen Koltun
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Case Study: LeNet-5
[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1

Subsampling (Pooling) layers were 2x2 applied at stride 2

i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

37



Lecture 11 - 17 Oct 2023Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 11 - 17 Oct 2023Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Q: what is the output volume size? Hint: (227-11)/4+1 = 55
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Q: What is the total number of parameters in this layer?
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Parameters: (11*11*3)*96 = 35K
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Q: what is the number of parameters in this layer?
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Parameters: 0!
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

After CONV1: 55x55x96

After POOL1: 27x27x96

...
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

45
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives: 

- first use of ReLU

- used Norm layers (not common anymore)

- heavy data augmentation

- dropout 0.5

- batch size 128

- SGD Momentum 0.9

- Learning rate 1e-2, reduced by 10

manually when val accuracy plateaus

- L2 weight decay 5e-4

- 7 CNN ensemble: 18.2% -> 15.4%
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Case Study: ZFNet [Zeiler and Fergus, 2013]

AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)

CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 15.4% -> 14.8%
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Case Study: VGGNet
[Simonyan and Zisserman, 2014]

best model

Only 3x3 CONV stride 1, pad 1

and  2x2 MAX POOL stride 2

11.2% top 5 error in ILSVRC 2013

->

7.3% top 5 error
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INPUT: [224x224x3]       memory:  224*224*3=150K params: 0

CONV3-64: [224x224x64] memory:  224*224*64=3.2M params: (3*3*3)*64 = 1,728

CONV3-64: [224x224x64] memory:  224*224*64=3.2M params: (3*3*64)*64 = 36,864

POOL2: [112x112x64] memory:  112*112*64=800K params: 0

CONV3-128: [112x112x128] memory:  112*112*128=1.6M params: (3*3*64)*128 = 73,728

CONV3-128: [112x112x128] memory:  112*112*128=1.6M params: (3*3*128)*128 = 147,456

POOL2: [56x56x128] memory:  56*56*128=400K params: 0

CONV3-256: [56x56x256] memory:  56*56*256=800K params: (3*3*128)*256 = 294,912

CONV3-256: [56x56x256] memory:  56*56*256=800K params: (3*3*256)*256 = 589,824

CONV3-256: [56x56x256] memory:  56*56*256=800K params: (3*3*256)*256 = 589,824

POOL2: [28x28x256] memory:  28*28*256=200K params: 0

CONV3-512: [28x28x512] memory:  28*28*512=400K params: (3*3*256)*512 = 1,179,648

CONV3-512: [28x28x512] memory:  28*28*512=400K params: (3*3*512)*512 = 2,359,296

CONV3-512: [28x28x512] memory:  28*28*512=400K params: (3*3*512)*512 = 2,359,296

POOL2: [14x14x512] memory:  14*14*512=100K params: 0

CONV3-512: [14x14x512] memory:  14*14*512=100K params: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512] memory:  14*14*512=100K params: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512] memory:  14*14*512=100K params: (3*3*512)*512 = 2,359,296

POOL2: [7x7x512] memory:  7*7*512=25K params: 0

FC: [1x1x4096] memory:  4096 params: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] memory:  4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory:  1000 params: 4096*1000 = 4,096,000

(not counting biases)
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INPUT: [224x224x3]       memory:  224*224*3=150K params: 0

CONV3-64: [224x224x64] memory:  224*224*64=3.2M params: (3*3*3)*64 = 1,728

CONV3-64: [224x224x64] memory:  224*224*64=3.2M params: (3*3*64)*64 = 36,864

POOL2: [112x112x64] memory:  112*112*64=800K params: 0

CONV3-128: [112x112x128] memory:  112*112*128=1.6M params: (3*3*64)*128 = 73,728

CONV3-128: [112x112x128] memory:  112*112*128=1.6M params: (3*3*128)*128 = 147,456

POOL2: [56x56x128] memory:  56*56*128=400K params: 0

CONV3-256: [56x56x256] memory:  56*56*256=800K params: (3*3*128)*256 = 294,912

CONV3-256: [56x56x256] memory:  56*56*256=800K params: (3*3*256)*256 = 589,824

CONV3-256: [56x56x256] memory:  56*56*256=800K params: (3*3*256)*256 = 589,824

POOL2: [28x28x256] memory:  28*28*256=200K params: 0

CONV3-512: [28x28x512] memory:  28*28*512=400K params: (3*3*256)*512 = 1,179,648

CONV3-512: [28x28x512] memory:  28*28*512=400K params: (3*3*512)*512 = 2,359,296

CONV3-512: [28x28x512] memory:  28*28*512=400K params: (3*3*512)*512 = 2,359,296

POOL2: [14x14x512] memory:  14*14*512=100K params: 0

CONV3-512: [14x14x512] memory:  14*14*512=100K params: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512] memory:  14*14*512=100K params: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512] memory:  14*14*512=100K params: (3*3*512)*512 = 2,359,296

POOL2: [7x7x512] memory:  7*7*512=25K params: 0

FC: [1x1x4096] memory:  4096 params: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] memory:  4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory:  1000 params: 4096*1000 = 4,096,000

(not counting biases)

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)

TOTAL params: 138M parameters
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INPUT: [224x224x3]       memory:  224*224*3=150K params: 0

CONV3-64: [224x224x64] memory:  224*224*64=3.2M params: (3*3*3)*64 = 1,728

CONV3-64: [224x224x64] memory:  224*224*64=3.2M params: (3*3*64)*64 = 36,864

POOL2: [112x112x64] memory:  112*112*64=800K params: 0

CONV3-128: [112x112x128] memory:  112*112*128=1.6M params: (3*3*64)*128 = 73,728

CONV3-128: [112x112x128] memory:  112*112*128=1.6M params: (3*3*128)*128 = 147,456

POOL2: [56x56x128] memory:  56*56*128=400K params: 0

CONV3-256: [56x56x256] memory:  56*56*256=800K params: (3*3*128)*256 = 294,912

CONV3-256: [56x56x256] memory:  56*56*256=800K params: (3*3*256)*256 = 589,824

CONV3-256: [56x56x256] memory:  56*56*256=800K params: (3*3*256)*256 = 589,824

POOL2: [28x28x256] memory:  28*28*256=200K params: 0

CONV3-512: [28x28x512] memory:  28*28*512=400K params: (3*3*256)*512 = 1,179,648

CONV3-512: [28x28x512] memory:  28*28*512=400K params: (3*3*512)*512 = 2,359,296

CONV3-512: [28x28x512] memory:  28*28*512=400K params: (3*3*512)*512 = 2,359,296

POOL2: [14x14x512] memory:  14*14*512=100K params: 0

CONV3-512: [14x14x512] memory:  14*14*512=100K params: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512] memory:  14*14*512=100K params: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512] memory:  14*14*512=100K params: (3*3*512)*512 = 2,359,296

POOL2: [7x7x512] memory:  7*7*512=25K params: 0

FC: [1x1x4096] memory:  4096 params: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] memory:  4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory:  1000 params: 4096*1000 = 4,096,000

(not counting biases)

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)

TOTAL params: 138M parameters

Note:

Most memory is in 

early CONV

Most params are

in late FC
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Case Study: GoogLeNet [Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)
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Case Study: GoogLeNet

Fun features:

- Only 5 million params!

(Removes FC layers 

completely)

Compared to AlexNet:

- 12X less params

- 2x more compute

- 6.67% (vs. 16.4%)
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Slide from Kaiming He’s recent presentation https://www.youtube.com/watch?v=1PGLj-uKT1w

Case Study: ResNet [He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)
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(slide from Kaiming He’s recent presentation)
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Case Study: ResNet [He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

(slide from Kaiming He’s presentation)

2-3 weeks of training 

on 8 GPU machine

at runtime: faster 

than a VGGNet! 

(even though it has 

8x more layers)
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Case Study: 

ResNet

[He et al., 2015]

224x224x3

spatial dimension 

only 56x56!
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Case Study: ResNet [He et al., 2015]
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Case Study: ResNet [He et al., 2015]

- Batch Normalization after every CONV layer

- Xavier/2 initialization from He et al.

- SGD + Momentum (0.9) 

- Learning rate: 0.1, divided by 10 when validation error plateaus

- Mini-batch size 256

- Weight decay of 1e-5

- No dropout used
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Case Study: ResNet [He et al., 2015]
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Case Study: ResNet [He et al., 2015]

(this trick is also used in GoogLeNet)
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Case Study: ResNet [He et al., 2015]
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Summary

- ConvNets stack CONV,POOL,FC layers

- Trend towards smaller filters and deeper architectures

- Trend towards getting rid of POOL/FC layers (just CONV)

- Typical architectures look like 

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX

where N is usually up to ~5, M is large, 0 <= K <= 2.

- but recent advances such as ResNet/GoogLeNet

challenge this paradigm
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