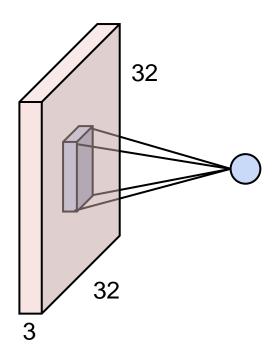
Lecture 12:

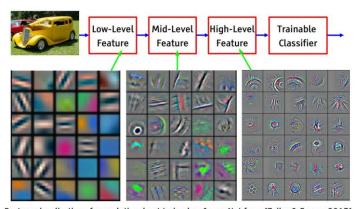
Spatial Localization and Detection

Convolution



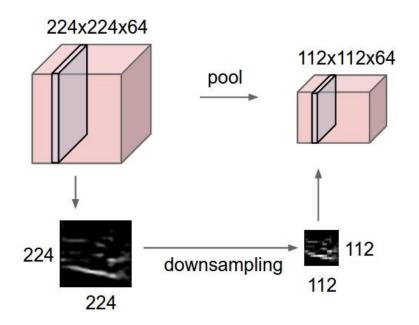
Summary. To summarize, the Conv Layer:

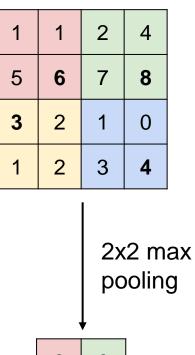
- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K.
 - \circ their spatial extent F,
 - the stride S,
 - the amount of zero padding P.



Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

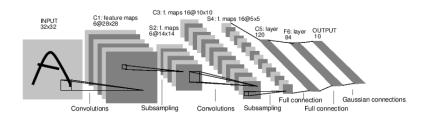
Pooling



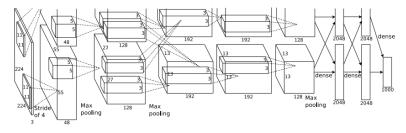


Case Studies

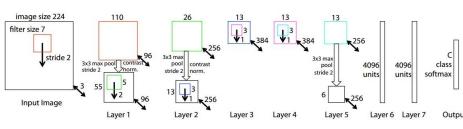
LeNet (1998)



AlexNet (2012)



ZFNet (2013)

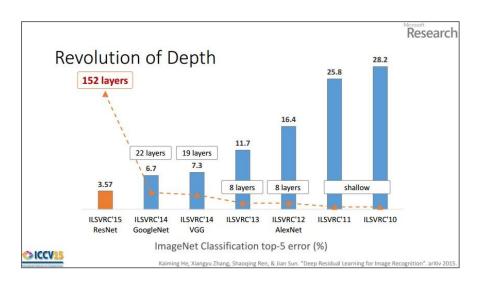


Case Studies

D	E		
16 weight	19 weight		
layers	layers		
conv3-64	conv3-64		
conv3-64	conv3-64		
conv3-128	conv3-128		
conv3-128	conv3-128		
conv3-256	conv3-256		
conv3-256	conv3-256		
conv3-256	conv3-256		
	conv3-256		
conv3-512	conv3-512		
conv3-512	conv3-512		
conv3-512	conv3-512		
	conv3-512		
conv3-512	conv3-512		
conv3-512	conv3-512		
conv3-512	conv3-512		
CONV3-312	conv3-512		
max	nool		
	4096		
	1096		
	1000		

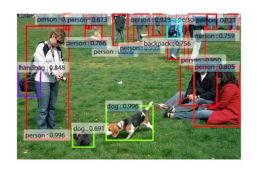
VGG (2014)

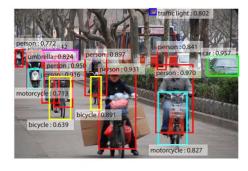
GoogLeNet (2014)



ResNet (2015)

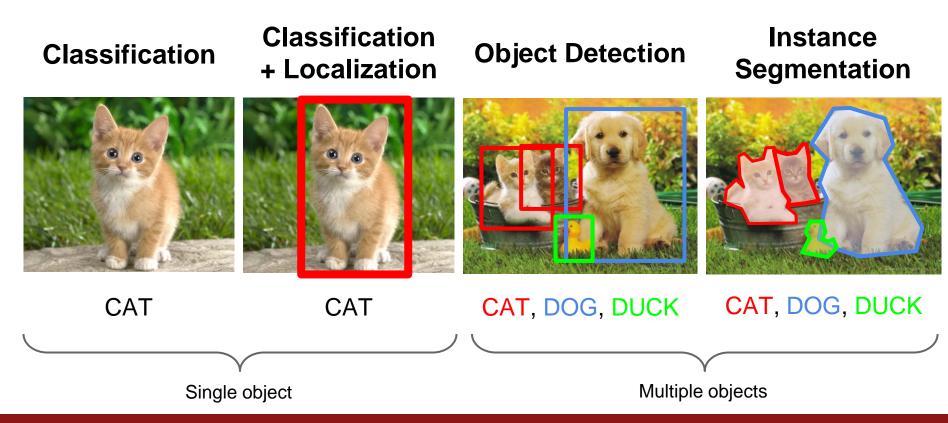
Localization and Detection





Results from Faster R-CNN, Ren et al 2015

Computer Vision Tasks



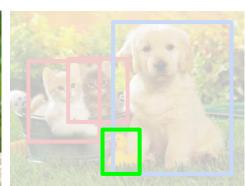
Computer Vision Tasks

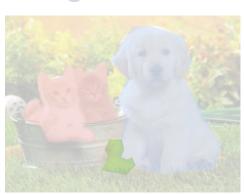
Classification

Classification + Localization

Object Detection

Instance Segmentation





Classification + Localization: Task

Classification: C classes

Input: Image

Output: Class label

Evaluation metric: Accurac

----- CAT

Localization:

Input: Image

Output: Box in the image (x, y, w, h)

Evaluation metric: Intersection over Unic

(x, y, w, h)

Classification + Localization: Do both

Classification + Localization: ImageNet

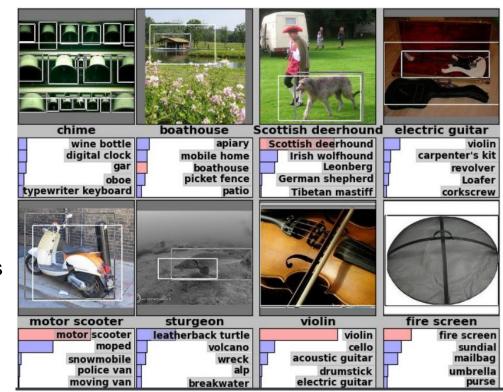
1000 classes (same as classification)

Each image has 1 class, at least one bounding box

~800 training images per class

Algorithm produces 5 (class, box) guesses

Example is correct if at least one guess has correct class AND bounding box at least 0.5 intersection over union (IoU)



Krizhevsky et. al. 2012

Idea #1: Localization as Regression

Input: image

Neural Net

Only one object, simpler than detection

Output:

Box coordinates (4 numbers)

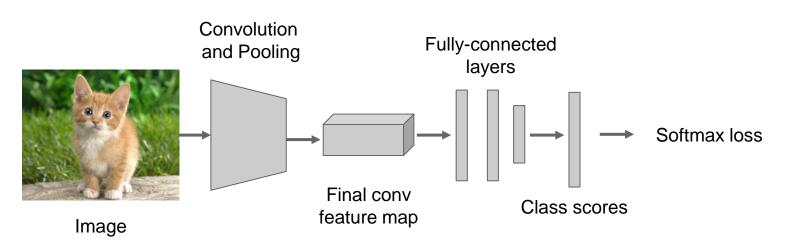
Correct output: box coordinates

(4 numbers)

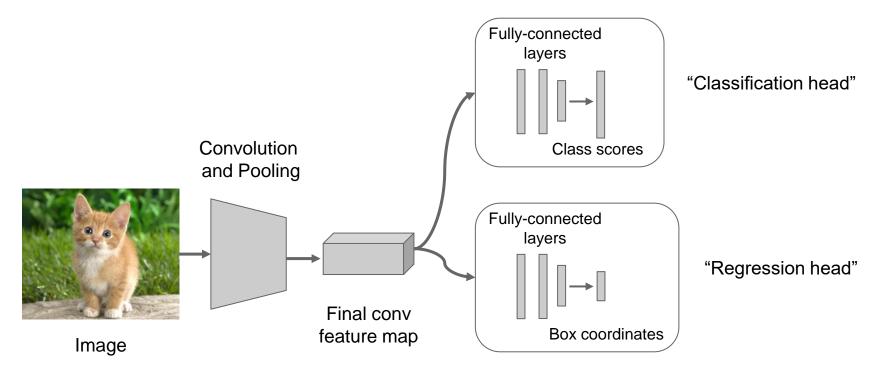
Loss:

L2 distance

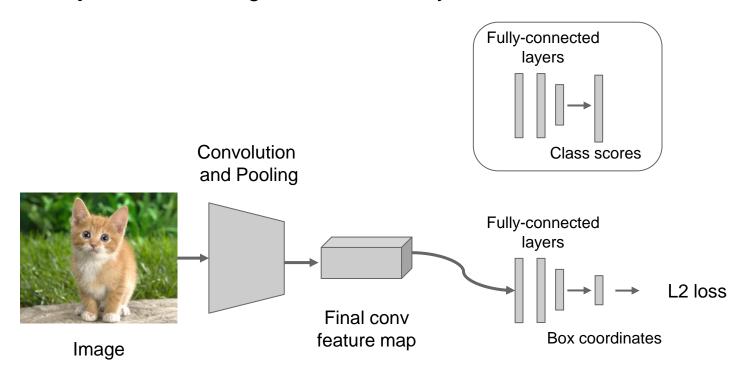
Step 1: Train (or download) a classification model (AlexNet, VGG, GoogLeNet)



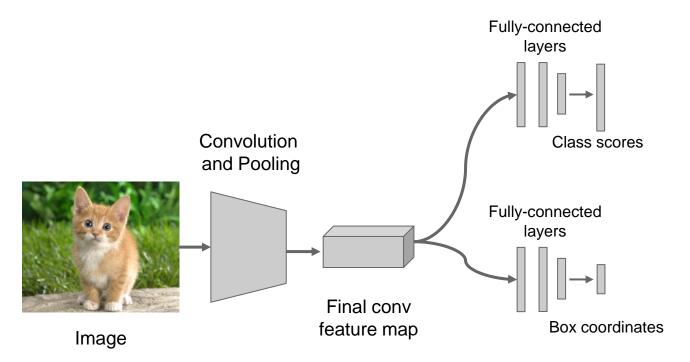
Step 2: Attach new fully-connected "regression head" to the network



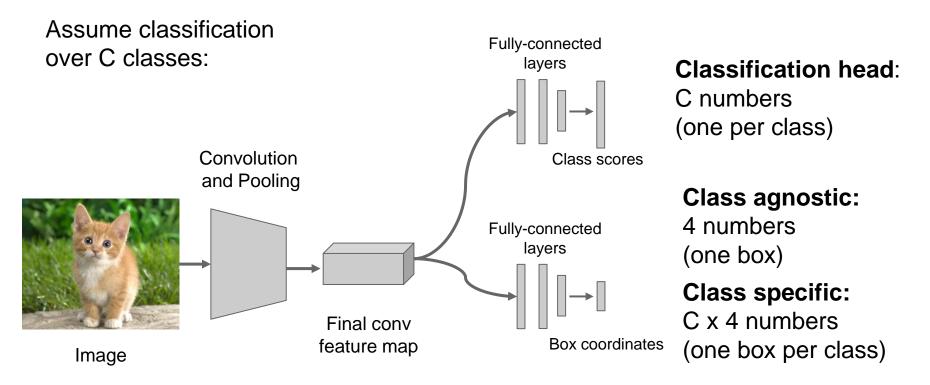
Step 3: Train the regression head only with SGD and L2 loss



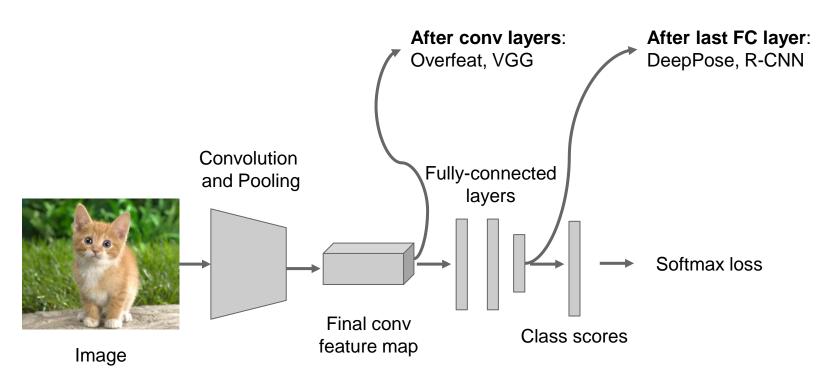
Step 4: At test time use both heads



Per-class vs class agnostic regression



Where to attach the regression head?



Aside: Localizing multiple objects

Want to localize **exactly** K objects in each image Fully-connected layers (e.g. whole cat, cat head, cat left ear, cat right ear for K=4) Convolution Class scores and Pooling Fully-connected layers Final conv Box coordinates feature map Image

K x 4 numbers (one box per object)

Aside: Human Pose Estimation

Represent a person by K joints

Regress (x, y) for each joint from last fully-connected layer of AlexNet

(Details: Normalized coordinates, iterative refinement)

220 x 220 **DNN-based** regressor

Toshev and Szegedy, "DeepPose: Human Pose Estimation via Deep Neural Networks", CVPR 2014

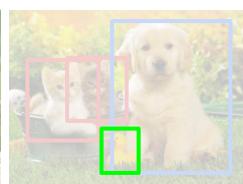
Computer Vision Tasks

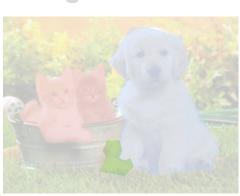
Classification

Classification + Localization

Object Detection

Instance Segmentation





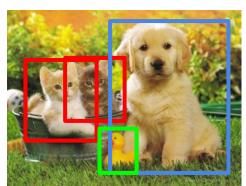
Computer Vision Tasks

Classification

Classification + Localization

Object Detection

Instance Segmentation



Detection as Regression?

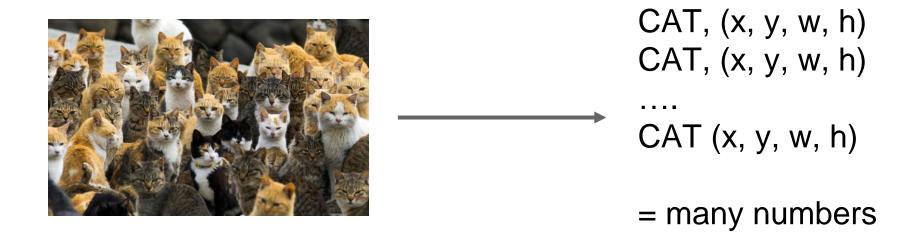
= 16 numbers

Detection as Regression?

DOG, (x, y, w, h) CAT, (x, y, w, h)

= 8 numbers

Detection as Regression?



Need variable sized outputs

Idea #2: Sliding Window

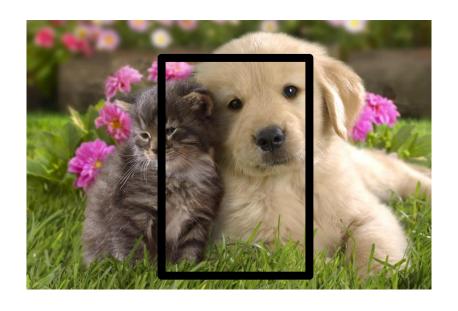
- Run classification + regression network at multiple locations on a highresolution image
- Convert fully-connected layers into convolutional layers for efficient computation
- Combine classifier and regressor predictions across all scales for final prediction

CAT? NO

DOG? NO

CAT? YES!

DOG? NO



CAT? NO

DOG? NO

Problem: Need to test many positions and scales

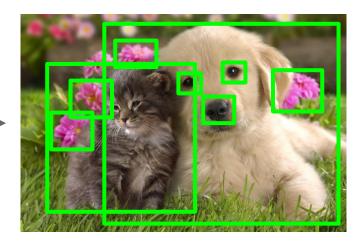
Solution: If your classifier is fast enough, just do it

Problem: Need to test many positions and scales, and use a computationally demanding classifier (CNN)

Solution: Only look at a tiny subset of possible positions

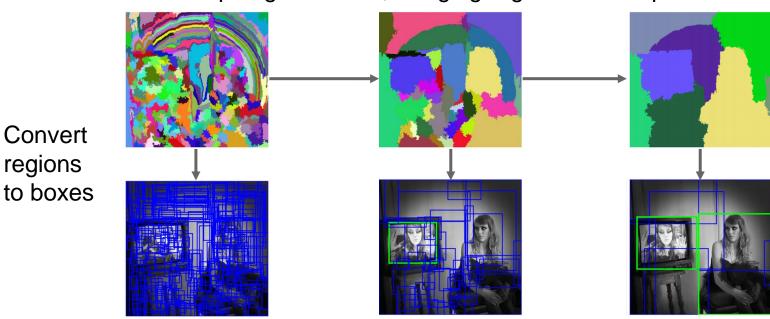
Region Proposals

- Find "blobby" image regions that are likely to contain objects
- "Class-agnostic" object detector
- Look for "blob-like" regions



Region Proposals: Selective Search

Bottom-up segmentation, merging regions at multiple scales



Uijlings et al, "Selective Search for Object Recognition", IJCV 2013

Region Proposals: Many other choices

Method	Approach	Outputs Segments	Outputs Score	Control #proposals	Time (sec.)	Repea- tability	Recall Results	Detection Results
Bing [18]	Window scoring		✓	✓	0.2	***	*	•
CPMC [19]	Grouping	✓	✓	\checkmark	250	-	**	*
EdgeBoxes [20]	Window scoring		✓	✓	0.3	**	***	***
Endres [21]	Grouping	✓	\checkmark	\checkmark	100	-	***	**
Geodesic [22]	Grouping	✓		\checkmark	1	*	***	**
MCG [23]	Grouping	✓	✓	\checkmark	30	*	***	***
Objectness [24]	Window scoring		✓	✓	3		*	
Rahtu [25]	Window scoring		\checkmark	\checkmark	3			*
RandomizedPrim's [26]	Grouping	✓		\checkmark	1	*	*	**
Rantalankila [27]	Grouping	\checkmark		\checkmark	10	**		**
Rigor [28]	Grouping	\checkmark		\checkmark	10	*	**	**
SelectiveSearch [29]	Grouping	✓	\checkmark	\checkmark	10	**	***	***
Gaussian				✓	0	•	•	*
SlidingWindow				\checkmark	0	***	•	
Superpixels		✓			1	*	•	
Uniform				✓	0			•

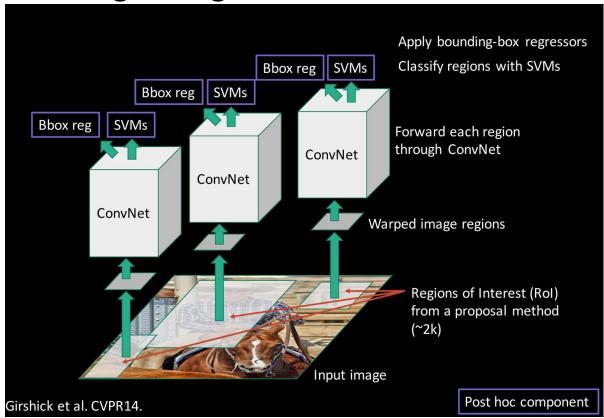
Hosang et al, "What makes for effective detection proposals?", PAMI 2015

Region Proposals: Many other choices

Method	Approach	Outputs Segments	Outputs Score	Control #proposals	Time (sec.)	Repea- tability	Recall Results	Detection Results
Bing [18]	Window scoring		✓	✓	0.2	***	*	•
CPMC [19]	Grouping	✓	✓	\checkmark	250	-	**	*
EdgeBoxes [20]	Window scoring		✓	✓	0.3	**	***	***
Endres [21]	Grouping	√	✓	✓	100	-	***	**
Geodesic [22]	Grouping	\checkmark		\checkmark	1	*	***	**
MCG [23]	Grouping	\checkmark	✓	\checkmark	30	*	***	***
Objectness [24]	Window scoring		✓	✓	3		*	•
Rahtu [25]	Window scoring		✓	✓	3			*
RandomizedPrim's [26]	Grouping	✓		✓	1	*	*	**
Rantalankila [27]	Grouping	✓		✓	10	**		**
Rigor [28]	Grouping	✓		✓	10	*	**	**
SelectiveSearch [29]	Grouping	✓	✓	\checkmark	10	**	***	***
Gaussian				✓	0		•	*
SlidingWindow				✓	0	***	•	•
Superpixels		✓			1	*	•	
Uniform				\checkmark	0			

Hosang et al, "What makes for effective detection proposals?", PAMI 2015

Putting it together: R-CNN

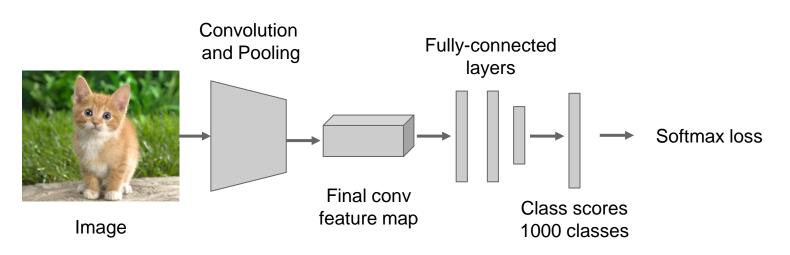


Girschick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014

Slide credit: Ross Girschick

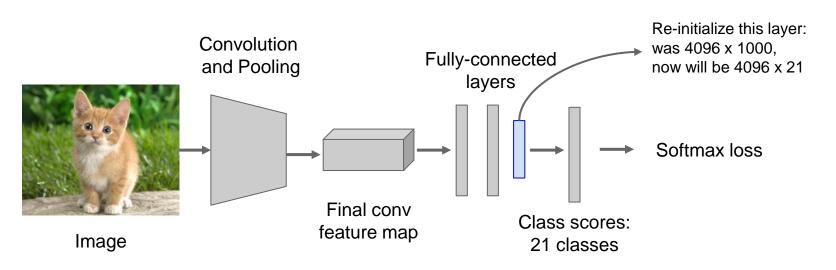
R-CNN Training

Step 1: Train (or download) a classification model for ImageNet (AlexNet)



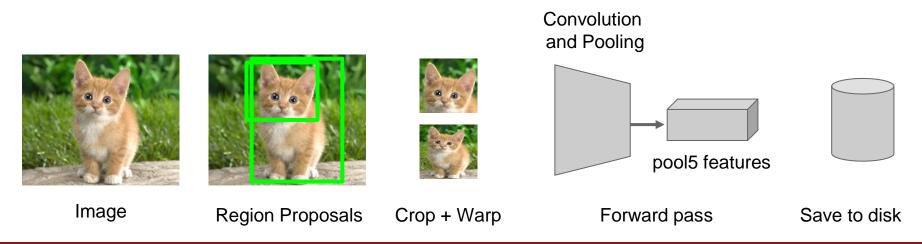
Step 2: Fine-tune model for detection

- Instead of 1000 ImageNet classes, want 20 object classes + background
- Throw away final fully-connected layer, reinitialize from scratch
- Keep training model using positive / negative regions from detection images

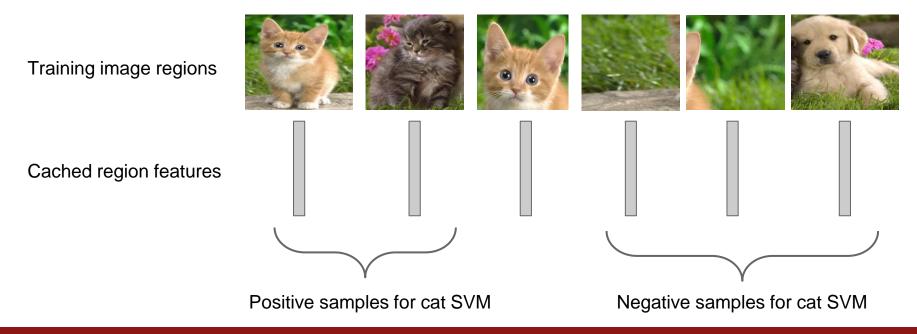


Step 3: Extract features

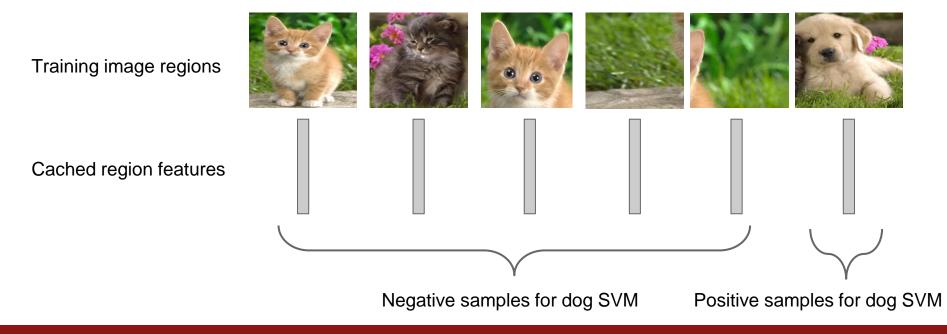
- Extract region proposals for all images
- For each region: warp to CNN input size, run forward through CNN, save pool5 features to disk
- Have a big hard drive: features are ~200GB for PASCAL dataset!



Step 4: Train one binary SVM per class to classify region features



Step 4: Train one binary SVM per class to classify region features



Step 5 (bbox regression): For each class, train a linear regression model to map from cached features to offsets to GT boxes to make up for "slightly wrong" proposals

Training image regions Cached region features (.25, 0, 0, 0)(0, 0, -0.125, 0)Regression targets (0, 0, 0, 0)Proposal too Proposal too Proposal is good (dx, dy, dw, dh) far to left wide Normalized coordinates

Object Detection: Datasets

	PASCAL VOC (2010)	ImageNet Detection (ILSVRC 2014)	MS-COCO (2014)
Number of classes	20	200	80
Number of images (train + val)	~20k	~470k	~120k
Mean objects per image	2.4	1.1	7.2

Object Detection: Evaluation

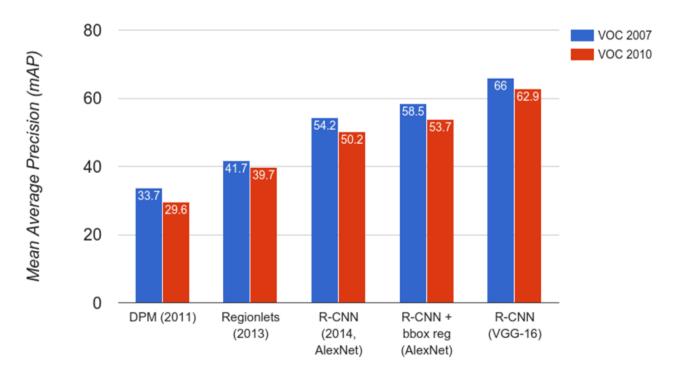
We use a metric called "mean average precision" (mAP)

Compute average precision (AP) separately for each class, then average over classes (https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2)

A detection is a true positive if it has IoU with a ground-truth box greater than some threshold (usually 0.5) (mAP@0.5)

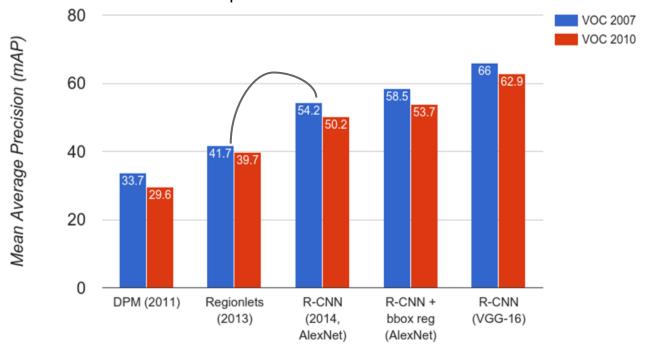
Combine all detections from all test images to draw a precision / recall curve for each class; AP is area under the curve

mAP is a number from 0 to 100; high is good

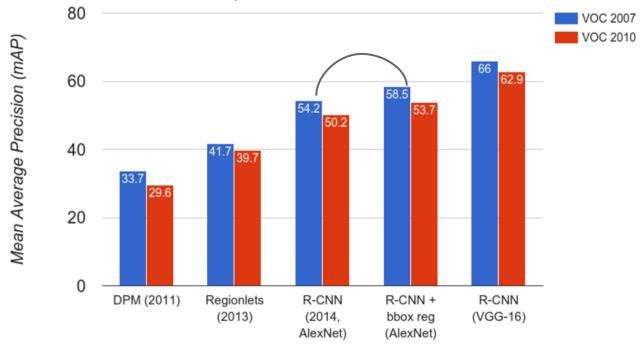


Wang et al, "Regionlets for Generic Object Detection", ICCV 2013

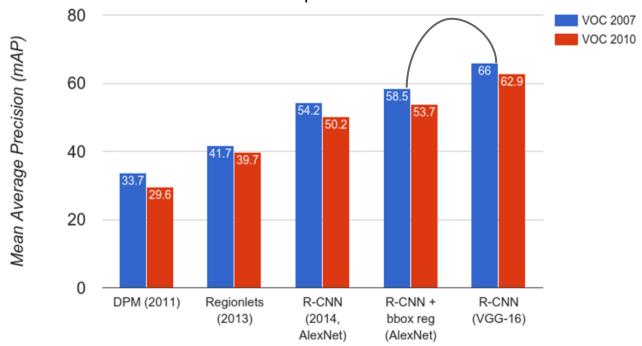
Big improvement compared to pre-CNN methods



Bounding box regression helps a bit



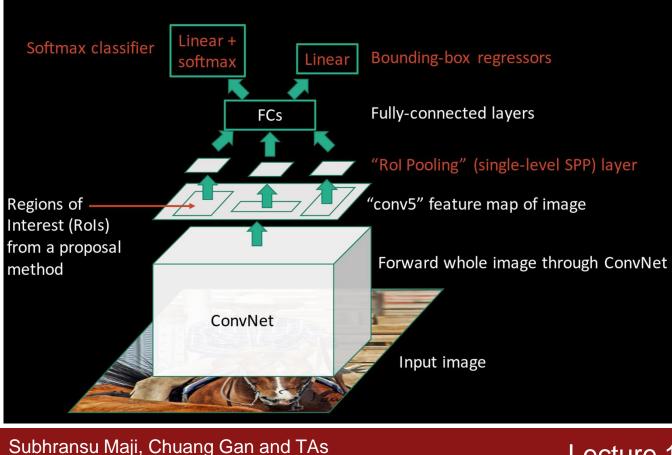
Features from a deeper network help a lot



R-CNN Problems

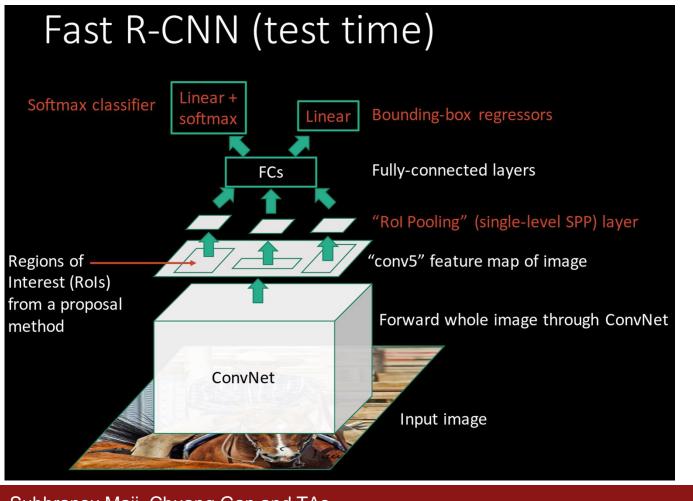
- 1. Slow at test-time: need to run full forward pass of CNN for each region proposal
- 2. SVMs and regressors are post-hoc: CNN features not updated in response to SVMs and regressors
- 3. Complex multistage training pipeline

Fast R-CNN (test time)



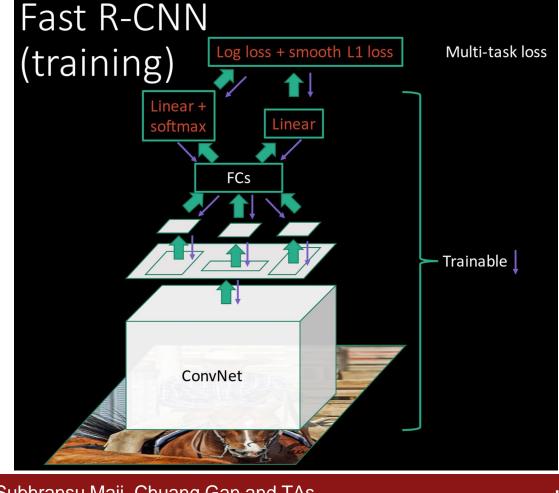
Girschick, "Fast R-CNN", ICCV 2015 SPP: Spatial Pyramid Pooling

Slide credit: Ross Girschick



R-CNN Problem #1: Slow at test-time due to independent forward passes of the CNN

Solution:
Share computation of convolutional layers between proposals for an image



R-CNN Problem #2:

Post-hoc training: CNN not updated in response to final classifiers and regressors

R-CNN Problem #3:
Complex training pipeline

Solution:

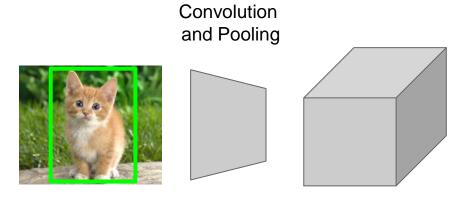
Just train the whole system end-to-end all at once!

Slide credit: Ross Girschick

er

Lecture 12 -51

19 Oct 2023

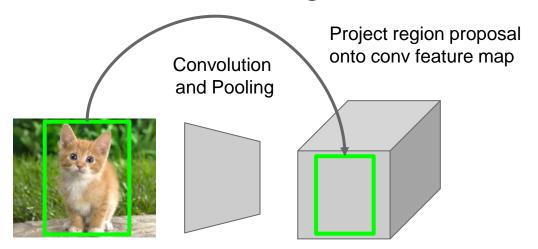


Hi-res input image: 3 x 800 x 600 with region proposal

Hi-res conv features: C x H x W with region proposal

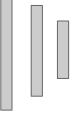
Fully-connected layers

Problem: Fully-connected layers expect low-res conv features: C x h x w

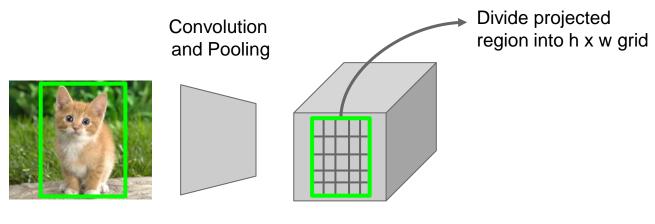


Hi-res input image: 3 x 800 x 600 with region proposal

Hi-res conv features: C x H x W with region proposal Fully-connected layers



Problem: Fully-connected layers expect low-res conv features: C x h x w

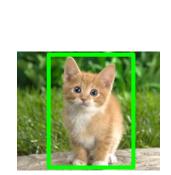


Fully-connected

layers

Hi-res input image: 3 x 800 x 600 with region proposal

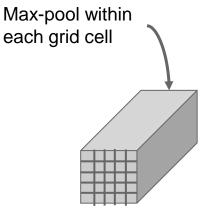
Hi-res conv features: C x H x W with region proposal **Problem**: Fully-connected layers expect low-res conv features: C x h x w



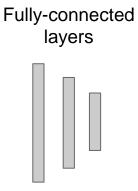
Hi-res input image: 3 x 800 x 600 with region proposal



Hi-res conv features: C x H x W with region proposal

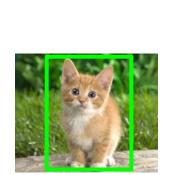


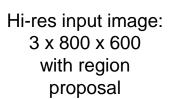
Rol conv features: C x h x w for region proposal

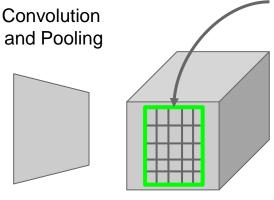


Fully-connected layers expect low-res conv features:

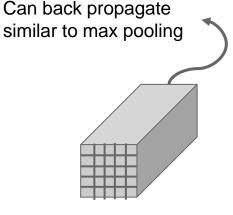
C x h x w



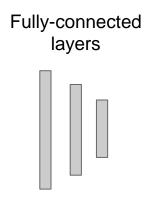




Hi-res conv features: C x H x W with region proposal



Rol conv features: C x h x w for region proposal



Fully-connected layers expect low-res conv features:

C x h x w

Fast R-CNN Results

Faster!

	R-CNN	Fast R-CNN
Training Time:	84 hours	9.5 hours
(Speedup)	1x	8.8x

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN Results

		R-CNN	Fast R-CNN
Faster!	Training Time:	84 hours	9.5 hours
	(Speedup)	1x	8.8x
FASTER !	Test time per image	47 seconds	0.32 seconds
	(Speedup)	1x	146x

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN Results

		R-CNN	Fast R-CNN
Faster!	Training Time:	84 hours	9.5 hours
	(Speedup)	1x	8.8x
FASTER !	Test time per image	47 seconds	0.32 seconds
	(Speedup)	1x	146x
Better!	mAP (VOC 2007)	66.0	66.9

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN Problem:

Test-time speeds don't include region proposals

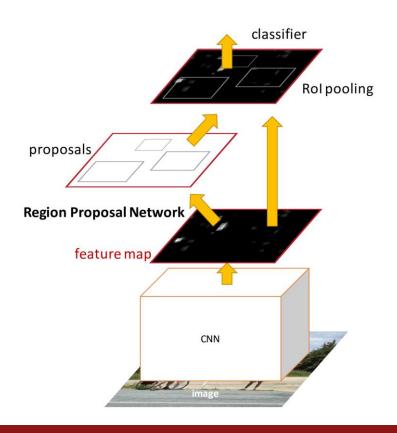
	R-CNN	Fast R-CNN
Test time per image	47 seconds	0.32 seconds
(Speedup)	1x	146x
Test time per image with Selective Search	50 seconds	2 seconds
(Speedup)	1x	25x

Fast R-CNN Problem Solution:

Test-time speeds don't include region proposals Just make the CNN do region proposals too!

	R-CNN	Fast R-CNN
Test time per image	47 seconds	0.32 seconds
(Speedup)	1x	146x
Test time per image with Selective Search	50 seconds	2 seconds
(Speedup)	1x	25x

Faster R-CNN:



Insert a Region Proposal Network (RPN) after the last convolutional layer

RPN trained to produce region proposals directly; no need for external region proposals!

After RPN, use Rol Pooling and an upstream classifier and bbox regressor just like Fast R-CNN

Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015

Slide credit: Ross Girschick

Faster R-CNN: Region Proposal Network

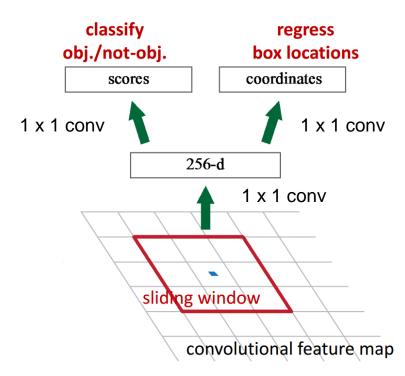
Slide a small window on the feature map

Build a small network for:

- classifying object or not-object, and
- regressing bbox locations

Position of the sliding window provides localization information with reference to the image

Box regression provides finer localization information with reference to this sliding window



Slide credit: Kaiming He

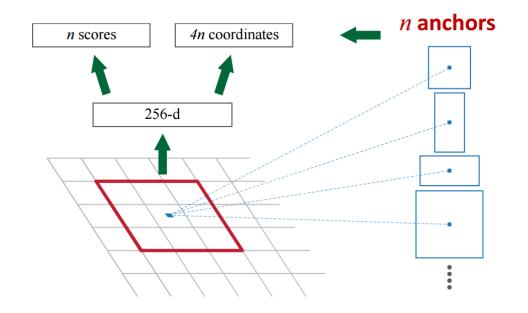
Faster R-CNN: Region Proposal Network

Use N anchor boxes at each location

Anchors are **translation invariant**: use the same ones at every location

Regression gives offsets from anchor boxes

Classification gives the probability that each (regressed) anchor shows an object



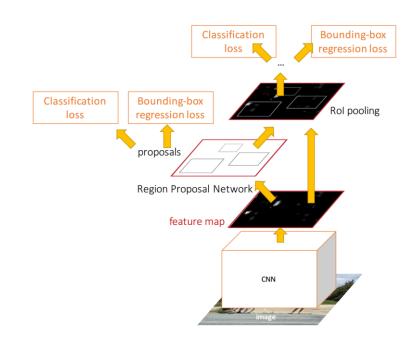
Faster R-CNN: Training

In the paper: Ugly pipeline

- Use alternating optimization to train RPN, then Fast R-CNN with RPN proposals, etc.
- More complex than it has to be

Since publication: Joint training! One network, four losses

- RPN classification (anchor good / bad)
- RPN regression (anchor -> proposal)
- Fast R-CNN classification (over classes)
- Fast R-CNN regression (proposal -> box)



Slide credit: Ross Girschick

Faster R-CNN: Results

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds
(Speedup)	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	66.9

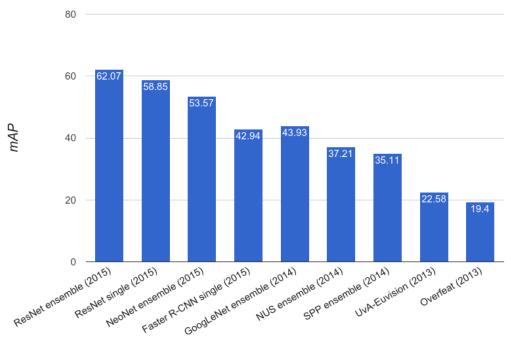
Object Detection State-of-the-art: ResNet 101 + Faster R-CNN + some extras

training data	COCO train		COCO trainval	
test data	COCO val		COCO test-dev	
mAP	@.5	@[.5, .95]	@.5	@[.5, .95]
baseline Faster R-CNN (VGG-16)	41.5	21.2		
baseline Faster R-CNN (ResNet-101)	48.4	27.2		
+box refinement	49.9	29.9		
+context	51.1	30.0	53.3	32.2
+multi-scale testing	53.8	32.5	55.7	34.9
ensemble			59.0	37.4

He et. al, "Deep Residual Learning for Image Recognition", arXiv 2015

ImageNet Detection 2013 - 2015

ImageNet Detection (mAP)



YOLO: You Only Look Once Detection as Regression

Divide image into S x S grid

Within each grid cell predict:

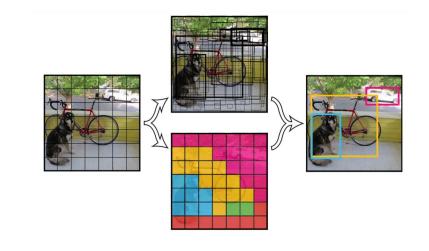
B Boxes: 4 coordinates +

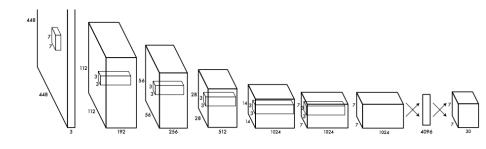
confidence

Class scores: C numbers

Regression from image to $7 \times 7 \times (5 * B + C)$ tensor

Direct prediction using a CNN





YOLO: You Only Look Once Detection as Regression

Faster than Faster R-CNN, but not as good

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [30]	2007	16.0	100
30Hz DPM [30]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [37]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[27]	2007+2012	73.2	7
Faster R-CNN ZF [27]	2007+2012	62.1	18

D - 1 TI' - - D - 4 - - 4

Redmon et al, "You Only Look Once: Unified, Real-Time Object Detection", arXiv 2015

Object Detection code links:

R-CNN

(Cafffe + MATLAB): https://github.com/rbgirshick/rcnn Probably don't use this; too slow

Fast R-CNN

(Caffe + MATLAB): https://github.com/rbgirshick/fast-rcnn

Faster R-CNN

(Caffe + MATLAB): https://github.com/ShaoqingRen/faster_rcnn (Caffe + Python): https://github.com/rbgirshick/py-faster-rcnn

YOLO

http://pjreddie.com/darknet/yolo/
Maybe try this for projects?

Recap

Localization:

- Find a fixed number of objects (one or many)
- L2 regression from CNN features to box coordinates
- Overfeat: Regression + efficient sliding window with FC -> conv conversion
- Deeper networks do better

Object Detection:

- Find a variable number of objects by classifying image regions
- Avoid dense sliding window with region proposals
- R-CNN: Selective Search + CNN classification / regression
- Fast R-CNN: Swap order of convolutions and region extraction
- Faster R-CNN: Compute region proposals within the network
- Deeper networks do better