Lecture 13:
Spatial Localization and
Image Segmentation
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Administrivia
Expect TA feedback on project proposal by 9/30

Reminder, that Homework 2 is due 9/29

Midterm

— Nov 16, In class
— Closed book
— Syllabus includes everything till the Nov. 9 lecture

Happy Dusshera / Vijaydashami
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Project milestone (due 11/5)

Your project milestone report should be between 2 - 3 pages using the provided template. The
following is a suggested structure for your report:

» Title, Author(s)
» Introduction: this section introduces your problem, and the overall plan for approaching your

problem
* Problem statement: Describe your problem precisely specifying the dataset to be used,

expected results and evaluation
» Technical Approach: Describe the methods you intend to apply to solve the given problem

* Intermediate/Preliminary Results: State and evaluate your results upto the milestone

Submission: Please upload a PDF file to Gradescope. Please coordinate with your teammate
and submit only under ONE of your accounts, and add your teammate on Gradescope.
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https://github.com/cvpr-org/author-kit/archive/refs/tags/CVPR2024-v2.zip

Computer Vision Tasks

Instance Semantic
Segmentation Segmentation

GRASS, , TREE,

" SKY Y.

Y~ '
Objects No objects, just pixels
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Instance segmentation

Instance Segmentation:
Detect all objects in the
image, and identify the
pixels that belong to
each object

This image is CCO public domain
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https://pixabay.com/p-1246693/?no_redirect
https://pixabay.com/en/cows-two-cows-dairy-agriculture-1264546/

Instance segmentation

Instance Segmentation:
Detect all objects in the
image, and identify the
pixels that belong to
each object

Approach: Perform
object detection, then
predict a segmentation
mask for each object!

This image is CCO public domain

Subhransu Maji, Chuang Gan and TAs | ecture 13 - 6 Oct. 24, 2023

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



https://pixabay.com/p-1246693/?no_redirect
https://pixabay.com/en/cows-two-cows-dairy-agriculture-1264546/

Object Detection: Faster R-CNN

Classification Bounding-box
0SS ["(“lg’zr(ngo N l0ss Rol pOOllng
"~ proposals
Object

Detection Region Proposal Ne

twork R
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CNN
4 /

DOG, DOG, CAT —crrr 77—

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks”, NeurlPS 2015

Subhransu Maji, Chuang Gan and TAs | ecture 13 -7 Oct. 24, 2023

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



Instance Segmentation: Mask R-CNN

Classification Bounding-box

0SS
10SS regression loss ' pooling

p rOpOSa IS
Instance 7

Segmentation

Region Proposal Network [,
feature map H

He et al, “Mask R-CNN”, ICCV 2017
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Mask R-CNN

, Classification Scores: C
Box coordinates (per class): 4 * C

/ 4 / /
: > :/// / //// > //// >
1 P R //// ////
SEIL\IN ;;; Rol Align _;:/ Conv _;:/ Conv
256x14x14 256x14x 14

Predict a mask for
each of C classes:
Cx28 x28

He et al, “Mask R-CNN”, ICCV 2017
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Mask R-CNN
e Mask R-CNN = Faster R-CNN with FCN on Rols
Faster R-CNN

/
[ j >F——7» Class
% ’ box

A

RolAlign

conv conv

/

%_/
FCN on Rol
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Parallel Heads

* Easy, fast to implement and train

cls
4 ) a ) | a2 )
stepl CIS
= cls ot - bbox
Feat. step? : eat. reg
p— |)|) OX . bbox
- reg reg
mask
(slow) R-CNN Fast/er R-CNN Mask R-CNN
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RolPool and RolAlign

Outputs: hbox
softmax regressor

—— PRI
Rol _1_,

pooling

layer FC};,;;
i H

Rol feature
vector

For each Rol

R. Girshick, Fast R-CNN, |CCV 2015
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http://arxiv.org/pdf/1504.08083.pdf

Cropping Features: Rol Pool

Project proposal
onto features

4

Input Image Image features: C x Hx W
(€.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN", ICCV 2015.
Girshick, “Fast R-CNN", ICCV 2015.
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Cropping Features: Rol Pool ...

. grid cells
Project proposal
onto features
. 4
Input Image Image features: C x H x W
(e.g. 3 x640 x 480) (e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN", ICCV 2015.
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Cropping Features: Rol Pool ...

. grid cells
Project proposal
onto features
4
Input Image Image features: CxHx W
(e.g. 3 x640 x 480) (e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN", ICCV 2015.

Divide into 2x2
grid of (roughly)
equal subregions

Max-pool within
each subregion

A4

_— .
V

Region features

(here 512 x 2 x 2;
In practice e.g 512 x 7 x 7)

Region features always the
same size even if input

regions have different sizes!
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I- Sample at regular points

CrOpping Features: Rol AJﬂ in each subregion using

No “snapping’! bilinear interpolation

Project proposal
onto features

Max-pool within
each subregion

—
V
Region features
(here 512 x 2 x 2;
L/ In practice e.g 512 x 7 x 7)
Input Image Image features: C x H x W
(e.g. 3 x640 x 480) (e.g. 512 x 20 x 15)

He et al. “Mask R-CNN", ICCV 2017
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Ablation: RolPool vs RolAlign

baseline: ResNet-50-Conv5 backbone, stride=32
mask AP box AP

AP  APsp AP75 | AP®™®  APY®  APR

RolPool 23.6 46.5 21.6 28.2 52.7 26.9
RolAlign | 30.9 51.8 32.1 34.0 55.3 36.4

+7.3 +5.3 +5.8 +26  +9.5

* huge gain at high loU,
in case of big stride (32)
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Ablation: Multinomial vs Binary Segmentation

baseline: ResNet-50-Conv4 backbone, stride=16 * cls head: did recognition

AP APsq  APrs cls s
softmax 24.8 44.1 25.1

lla p p I el)
sigmoid | 30.3 51.2 31.5 g ' ::>

+5.5 +7.1 +6.4 bbox

reg

Feat.

mask | * mask head: no need to recognize again
g ©
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Mask R-CNN: Very Good Results'

' ’fpl k
- -.‘ 4 ’ . ) )E
! » -' -.

object
surrounded by
same-category|
objects ~~f=

Mask R-CNN results on COCO
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Mask R-CNN: Very Good Results!

disconnected
object
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Mask R-CNN results on COCO
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Mask R-CNN: Very Good Results!

-

(.

small
objects

Mask R-CNN results on COCO
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Mask R-CNN: Failure Case
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Mask R-CNN results on COCO
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emantic Segmentation

This image is CCO public domain

Label each pixel in the image
with a category label

Don’t differentiate instances,
only care about pixels
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https://pixabay.com/p-1246693/?no_redirect
https://pixabay.com/en/cows-two-cows-dairy-agriculture-1264546/

Semantic vs Instance Segmentation

il

Object Detection Semantic Segmentation Instance Segmentation
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Segmentation: Sliding Window

Extract
patch

Full image

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014
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Classify center pixel
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Segmentation: Sliding Window

Extract Classify center pixel
patch with CNN
Full image e
oW
\ T R
i
—op Cow
zzﬁ\{ﬁ; M B M S
~ @rass

192 192 128 Max

Max 128 Max pooling
pooling pooling

204 2048

Problem: Very inefficient! Not
reusing shared features
between overlapping patches
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A Classification Network

convolution fully connected

/// “tabby cat”

227 x 227 55 X b5 27 x 27 13 x 13

Fully Convolutional Networks for Semantic Segmentation.
Jon Long, Evan Shelhamer, Trevor Darrell. CVPR 2015
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Becoming Fully Convolutional

convolution

e

221 x 227 55 x 55 27 x 27 13 x13 1 x1

no padding

A fully-connected layer is equivalent to a convolution layer.

Note: “Fully Convolutional” and “Fully Connected” aren’t the same thing.
They’re almost opposites, in fact.
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Fully Convolutional Network

Design a network as a bunch of convolutional
layers to make predictions for pixels all at once!

A &£

&

- Co ny Co ny Co ny Con
N J
Y
Convolutions:
DxHxW

Vv
>

Scores: Predictions:

CxHxW

HxW

Loss function: Per-Pixel cross-entropy

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015
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Fully Convolutional Network

Design a network as a bunch of convolutional
layers to make predictions for pixels all at once!

4 4 4

: > > g g

| A A

Input:  problem #1: Effective receptive
3XHXW  fiald size is linear in number of
conv layers: With L 3x3 conv
layers, receptive field is 1+2L

EUCREE Oct. 24, 2023

o>ome slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



Fully Convolutional Network

Design a network as a bunch of convolutional
layers to make predictions for pixels all at once!

4 4 4

Conv Conv Conv
> > >

| A A

A TR i
. ."v .
e B
. % 2 v“
it i § "—, 3 AN
S
S
I u t .
I l °

3XHXW
Problem #1: Effective receptive
field size is linear in number of Problem #2: Convolution on
conv layers: With L 3x3 conv high res images is expensive!

layers, receptive field is 1+2L
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Fully Convolutional Network

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

Med-res: Med-res:
D,x H/4 x W/4  D,xH/4xW/4/ <

Low-res:
Input: | —/—/ Dyx H/4 x W/ —/—/
3xHXW High-res: 4 High-res: Predictions:
D, X H/2 x W/2 D, x H/2 x W/2 Hx W
Downsampling: ,
. p. 5 Upsampling:
Pooling, strided 95
CO nVO I U t i O n Long, Shelhamer, and Darrell, ”F:J”;/ C;nvolutional Networks for Semantic Segmentation”, CVPR 2015

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015
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In-Network Upsampling: "Unpooling”

Bed of Nails Nearest Neighbor
110120
1|2 O0[{0JO|O0 1|2
> >
34 30140 314
O0[{0JO|O0
Input Output Input Output
Cx2x?2 Cx4x4 Cx2x?2 Cx4x4
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Upsampling: Bilinear Interpolation

1.00 { 1.25 | 1.75 | 2.00

1 2 1.50 [ 1.75 | 2.25 | 2.50

2.50 | 2.75 | 3.25 | 3.50
3 4

3.00 1 3.25 | 3.75 | 4.00

Input: Cx 2 x 2 Output: Cx4 x4

fey =) fiymax(0,1— |z —i)max(0,1 =y —j) e {|z]|—1,...,[2] +1)}
" je{lyl —1,..., [y| +1}

Use two closest neighbors in x and y

o o
e ()] ] il= elelde (] ()] |
- - A -

Subhransu Maji, Chuang Gan and TAs | ecture 13 -34 Oct. 24, 2023

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



Fully Convolutional Network

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

Med-res: Med-res:
D,x H/4 x W/4  D,xH/4xW/4/ <

" " [
FE PRt
v 5 el
@ R TR
T R <> k
. " ) i o
Q TR o ihls

N A0 Low-res:
Input: | —/—/ Dyx H/4 x W/ —/—/
3xHxW High-res: 4 High-res: Predictions:
D, x H/2 x W/2 D, x H/2 x W/2 Hx W
Downsampling: ,
. p. 5 Upsampling:

Pooling, strided 95
convolution o
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U - N et O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks
for Biomedical Image Segmentation, MICCAI 2015

* Like FCN, fuse upsampled higher-level feature maps with higher-
res, lower-level feature maps

 Unlike FCN, fuse by concatenation, predict at the end

128 64 64 2
Input
imapge > olele output
: segmentation
tle sl 5l 2 map
') ool ofl ™
qll o A s
(@) (o)
M ™

572 x 572

' 128 128

256 128
C 8| i
B E 5 2|<3
N N

' 256 256

280

512 256

J*I*I

_
1382W
_

=>
O

=»conv 3x3, ReLU
copy and crop

=)
<<
—

512 512 1024 512
- m»-.- ¥ max pool 26
o / 1024 % 4 up-conv 2x2

N-IP_"_

('\J
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https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
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road

sidewalk
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wall

vegetation

sky
person

rider
car
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Evaluation of Semantic Segmentation

, area<Q>
g loU (kite) = =—

-y
ground truth prediction

mloU (mean loU) per class
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Instance and Semantlc Segmentation

person. =

instance segmentation semantic Segmentatlon
real-world application likely requires both modalities
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What do instance segmentation models see?

no understanding of the
general scene layout

?
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What do semantic segmentation models see”

Does not differentiate
different instances
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Panoptic Segmentation: Unified Segmentation

e e
"" river single task that combines semantic

boat o . .
g person 5 > person 1 and instance segmentation

person

oozt 5 l& — J

person 3 Person 4

OB g g boat 2 Seew==Ss -
- \ ‘- e . |
B 27255 R ‘

B A

things: categories with instance-
level annotation (person, boat)

stuff: categories without the
notion of instances (sky, road)

Subhransu Maji, Chuang Gan and TAs | | ecture 13 -42 Oct. 24, 2023

Some slides Windly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



Panoptic Segmentation

’ ] sky iﬂ ﬂlﬂ traffic
' 1 “ bulldln‘gsJ sign

riderq

person

person .
sidewal

Subhransu Maji, Chuang Gan and TAs _
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Available Panoptic Segmentation Datasets

CO (2014) + COCO-stuff (2017) Mapillary Vistas (2017) Cityscapes (2015) ADE20k (2016)

COCO-panoptic challenges: Vistas-panoptic challenges: panoptic test set >22k images, 150 categories
ECCV™18,ICCV 19 ECCV™18,ICCV 19 leaderboard (2019)
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Panoptic Segmentation for Autonomous Driving

s R

3 “ 5 3 : >
s 3 (T ] :@

https://blogs.nvidia.com/blog/2019/10/23/drive-labs-panoptic-segmentation/
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Deep Networks for Segmentation Tasks

Object Detection/Seg

72

predlct \

Semantic Segmentation

f %

predlct N

K

7—» predi(ﬂ\

dict

'

(e
=

'

/— predict

T

£

/

& Fast /er R—CN&

\:

Mask R-CNN
RetinaNet

/— predict

SegNet

/

/ predict

/

DeepLab

\° PSPNet /

FPN net

dilated net

Oct. 24, 2023

classification net decoder-encoder net
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Panoptic FPN

backbone o _|MaskR-CNN
— L head
| }
N | region-based recognition head
b ' =

Feature Pyramid Network (FPN)
pixel-level recognition head

Figure Credit: Alexander Kirillov
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Dense Prediction: Depth and normal estimation

Predicted depth Ground truth

I

nput
. )
Wl i
, - |
- g’ 0
. s - -
. full conn.

conv/pool

D. Eigen and R. Fergus, Predicting Depth, Surface Normals and Semantic Labels with a
Slide credit: S. Lazebnik Common Multi-Scale Convolutional Architecture, ICCV 2015
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https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Eigen_Predicting_Depth_Surface_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Eigen_Predicting_Depth_Surface_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Eigen_Predicting_Depth_Surface_ICCV_2015_paper.pdf

Dense Prediction: Depth and normal estimation

Predicted normals Ground truth
I

nput
F ‘
\\ i f
- i
¥
L H B B
-
e

concat

conv/pool

1 ‘. £ YA M

D. Eigen and R. Fergus, Predicting Depth, Surface Normals and Semantic Labels with a
Slide credit: S. Lazebnik W; ICCV 2015
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https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Eigen_Predicting_Depth_Surface_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Eigen_Predicting_Depth_Surface_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Eigen_Predicting_Depth_Surface_ICCV_2015_paper.pdf

Dense Prediction: Colorization

Lightness L Color ab Lab Image

convl convZ2 conv3 conv4 convs convb conv? conv8
atrous / dilated atrous / dilated

64

et 256 < - 512 912 512 S
| ;
Yy, 64 32 32 32 £ 32 64
128
(a,b) probability ‘
distribution
313 64

. . . R. Zhang, P. Isola, and A. Efros, Colorful Image Colorization, ECCV 2016
Slide credit: S. Lazebnik
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http://richzhang.github.io/colorization/

