Lecture 13: Spatial Localization and Image Segmentation

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Administrivia

Expect TA feedback on **project proposal** by 9/30

Reminder, that **Homework 2** is due 9/29

Midterm

- Nov 16, in class
- Closed book
- Syllabus includes everything till the Nov. 9 lecture

Happy Dusshera / Vijaydashami (may you defeat the non-converging networks)

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 13 - 2

Project milestone (due 11/5)

Your project milestone report should be between 2 - 3 pages using the provided template. The following is a suggested structure for your report:

- Title, Author(s)
- problem
- Problem statement: Describe your problem precisely specifying the dataset to be used, expected results and evaluation
- Intermediate/Preliminary Results: State and evaluate your results upto the milestone

and submit only under ONE of your accounts, and add your teammate on Gradescope.

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

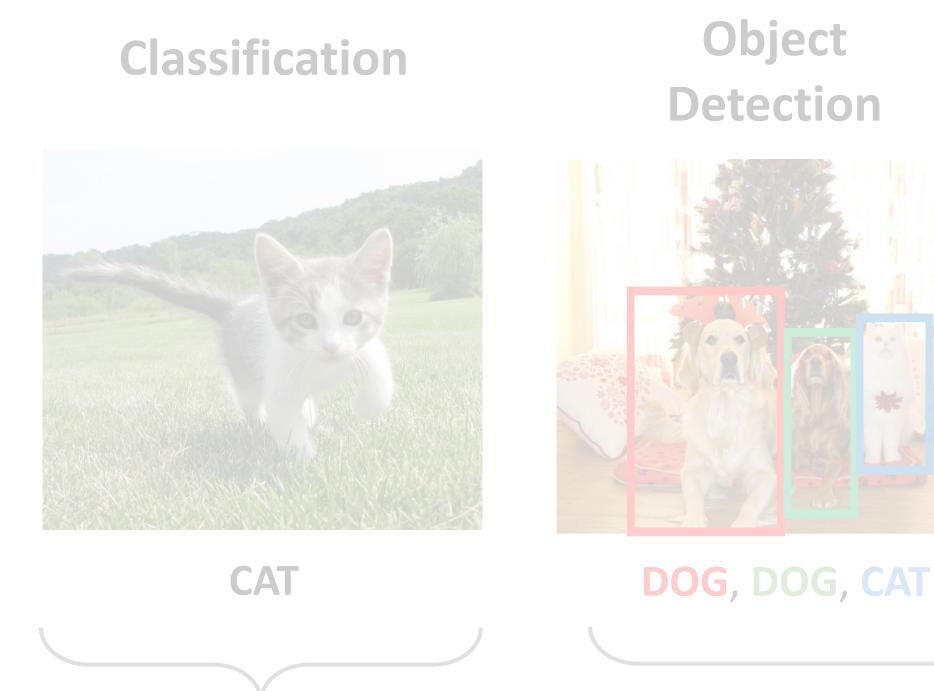
Introduction: this section introduces your problem, and the overall plan for approaching your

Technical Approach: Describe the methods you intend to apply to solve the given problem

Submission: Please upload a PDF file to Gradescope. Please coordinate with your teammate

Lecture 13 - 3

Computer Vision Tasks



No spatial extent

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Instance Segmentation

DOG, DOG, CAT

Multiple Objects

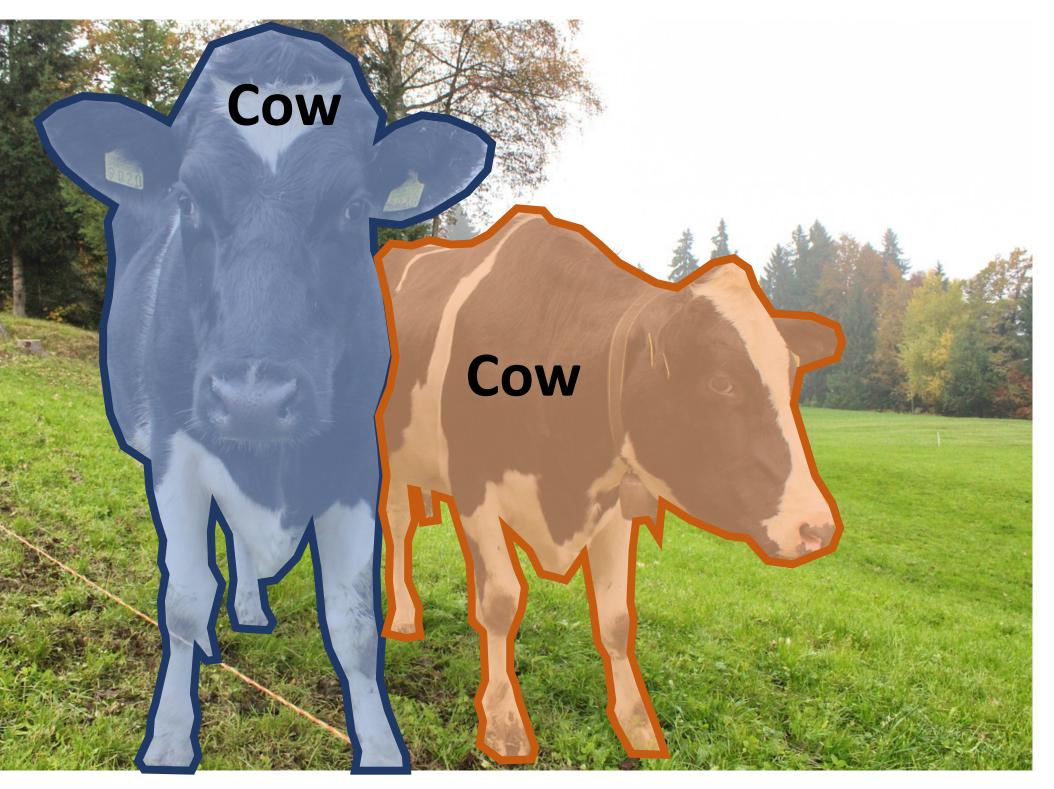
Semantic Segmentation

Lecture 13 - 4

Instance segmentation

Instance Segmentation: Detect all objects in the image, and identify the pixels that belong to each object

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



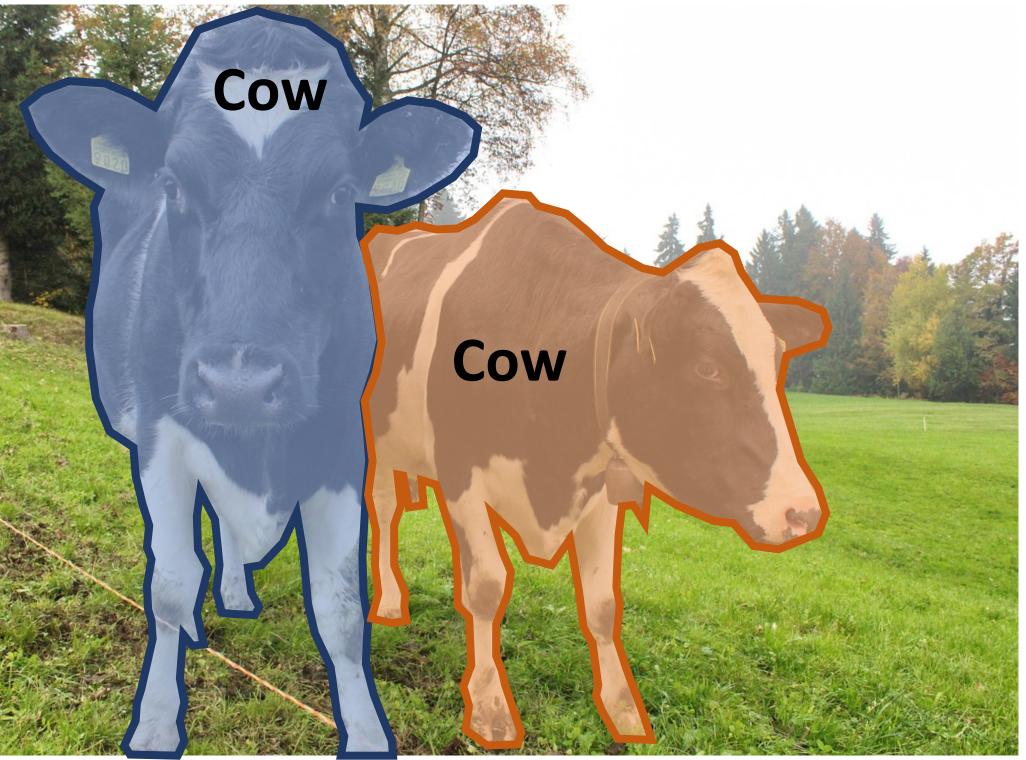
This image is CC0 public doma

Instance segmentation

Instance Segmentation: Detect all objects in the image, and identify the pixels that belong to each object

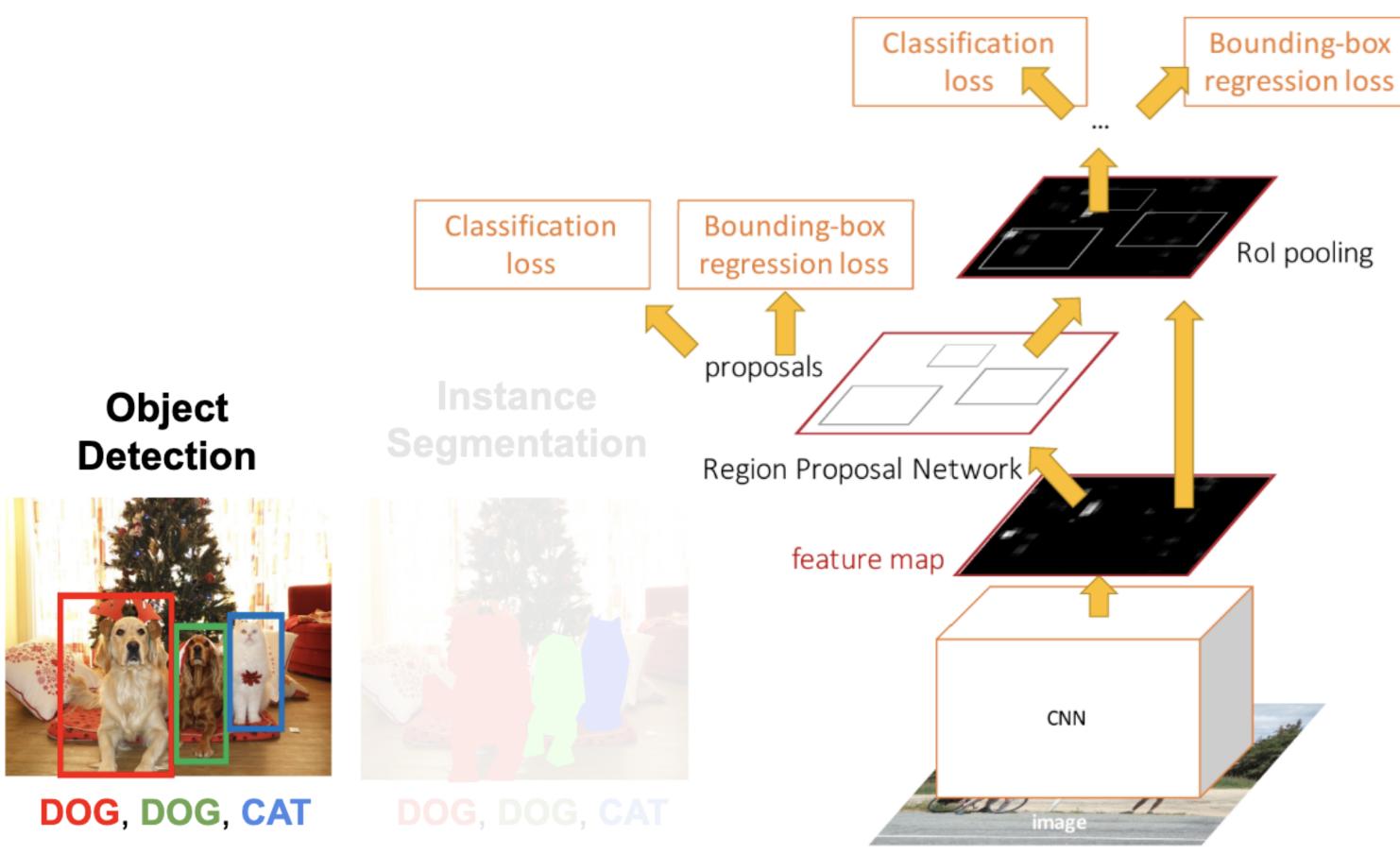
Approach: Perform object detection, then predict a segmentation mask for each object!

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



This image is CC0 public doma

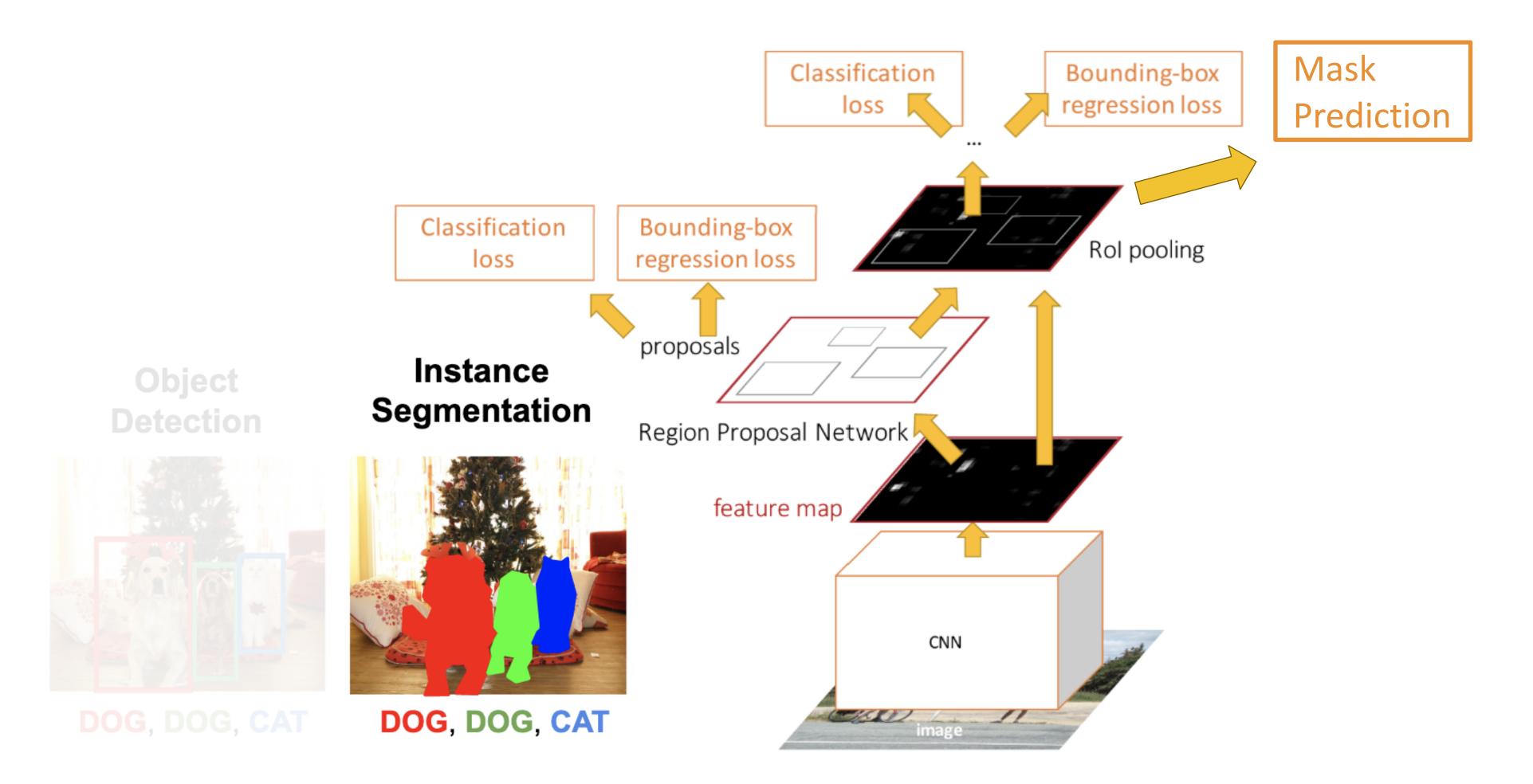
Object Detection: Faster R-CNN



Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NeurIPS 2015

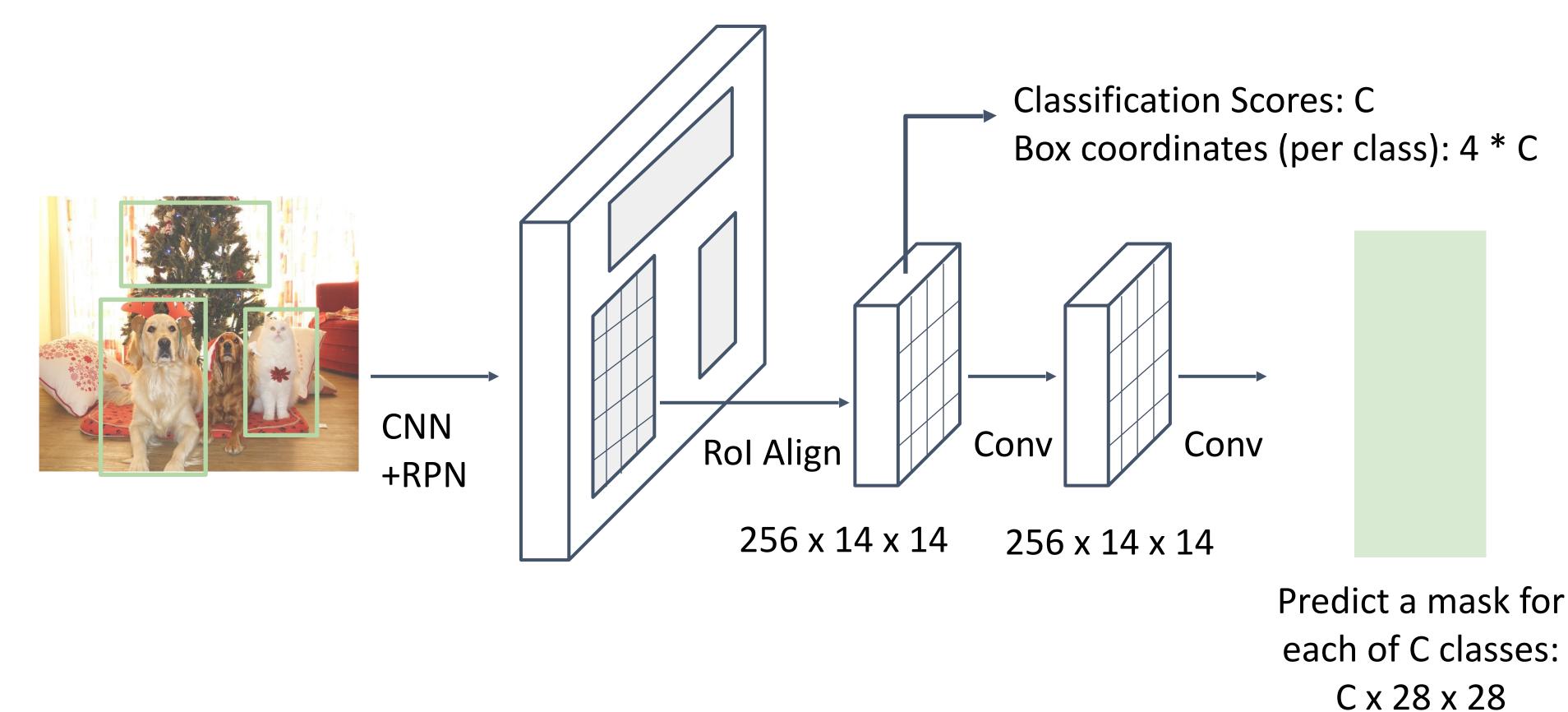
Instance Segmentation: Mask R-CNN



Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller He et al, "Mask R-CNN", ICCV 2017

Lecture 13 - 8

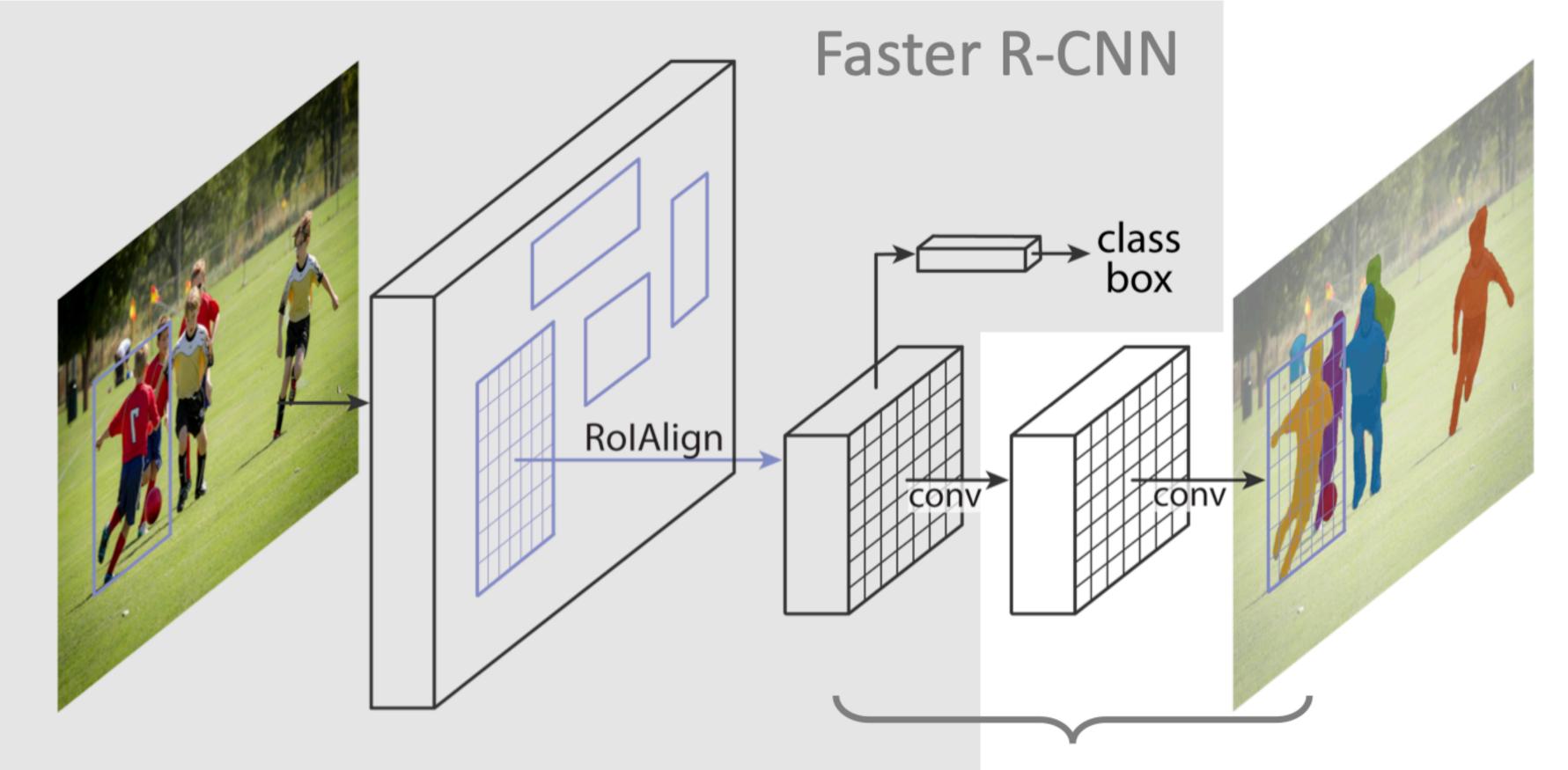
Mask R-CNN



He et al, "Mask R-CNN", ICCV 2017

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Mask R-CNN - Foctor P C



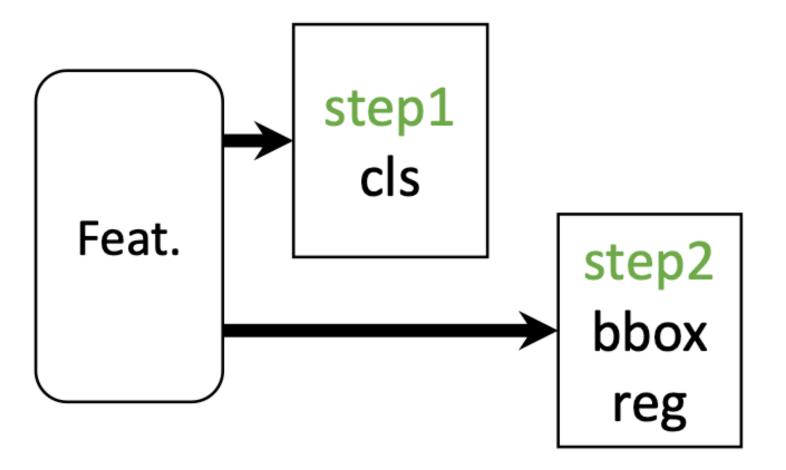
Subhransu Maji, Chuang Gan and TAs

Mask R-CNN = Faster R-CNN with FCN on Rols

FCN on Rol

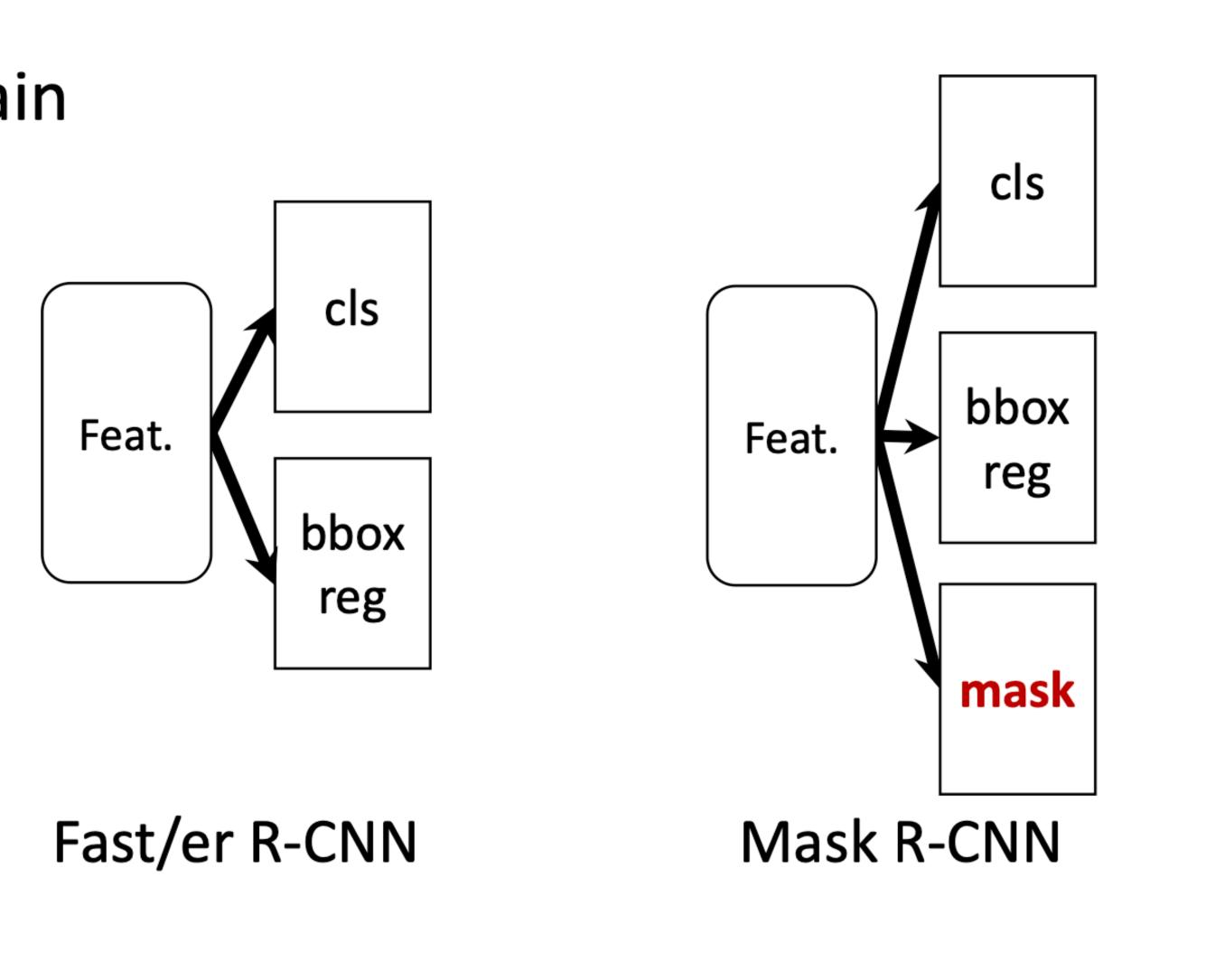
Parallel Heads

Easy, fast to implement and train

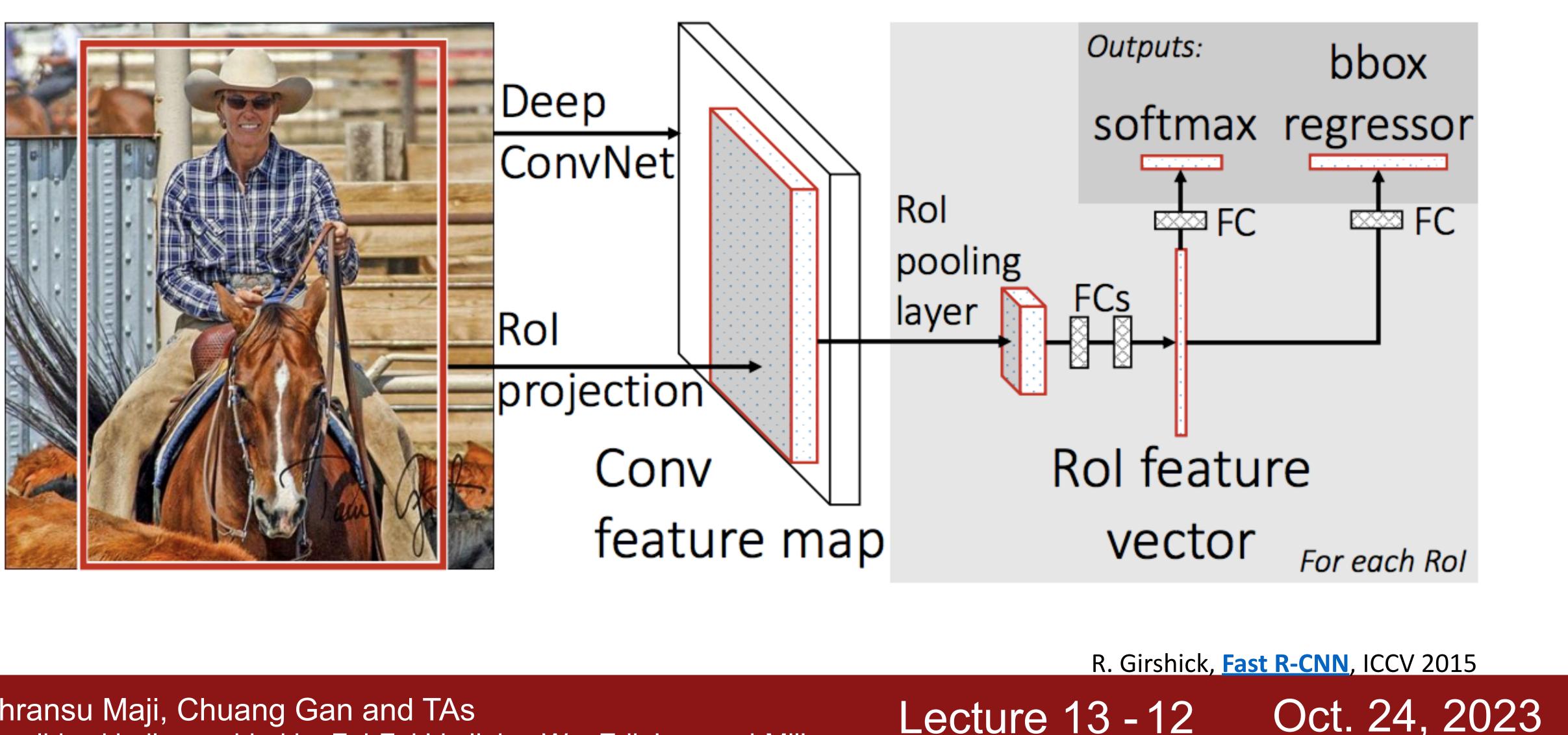


(slow) R-CNN

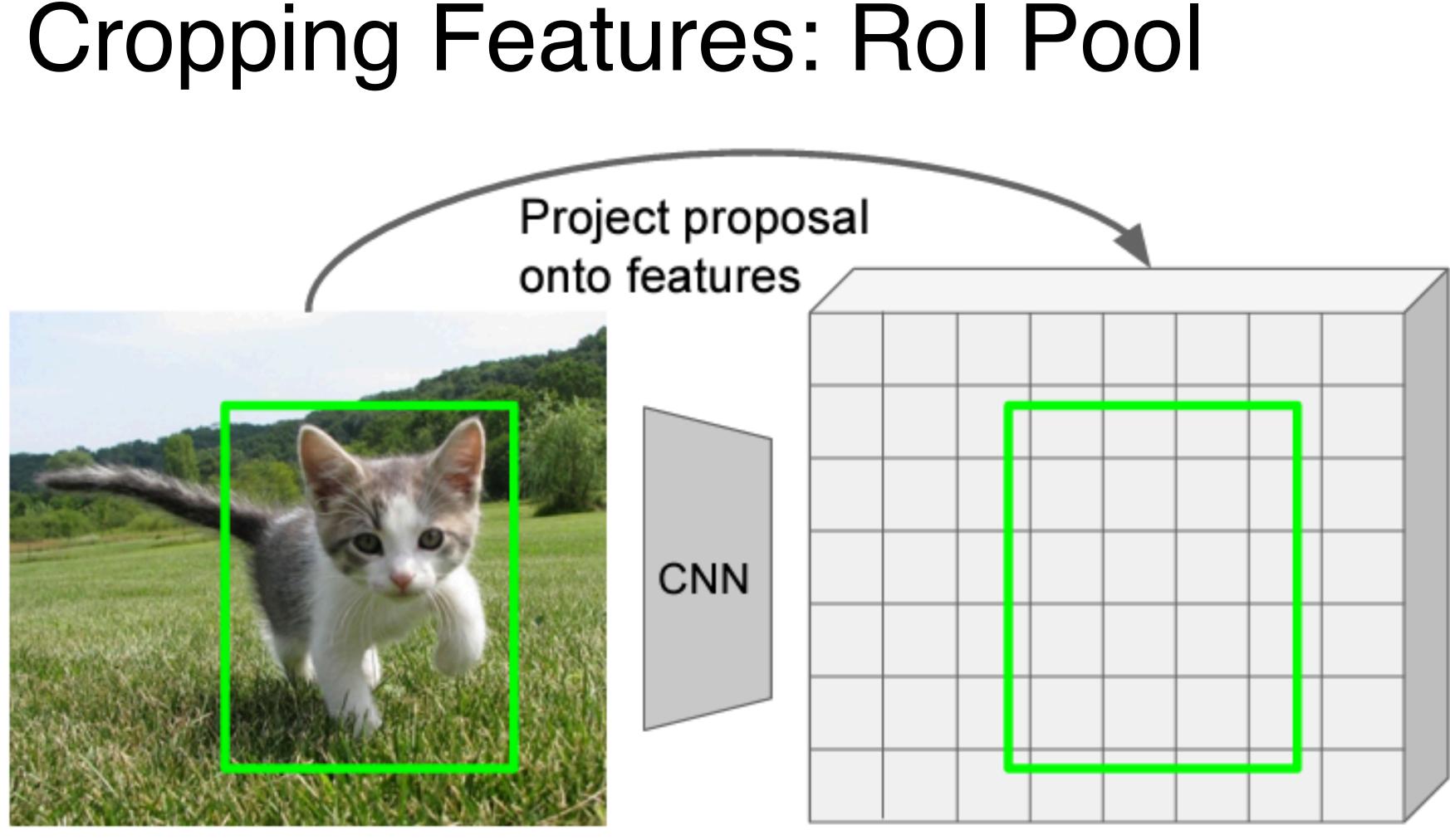
Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



RolPool and RolAlign



Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



Input Image (e.g. 3 x 640 x 480)

Girshick, "Fast R-CNN", ICCV 2015.

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Image features: C x H x W (e.g. 512 x 20 x 15)

Girshick, "Fast R-CNN", ICCV 2015.

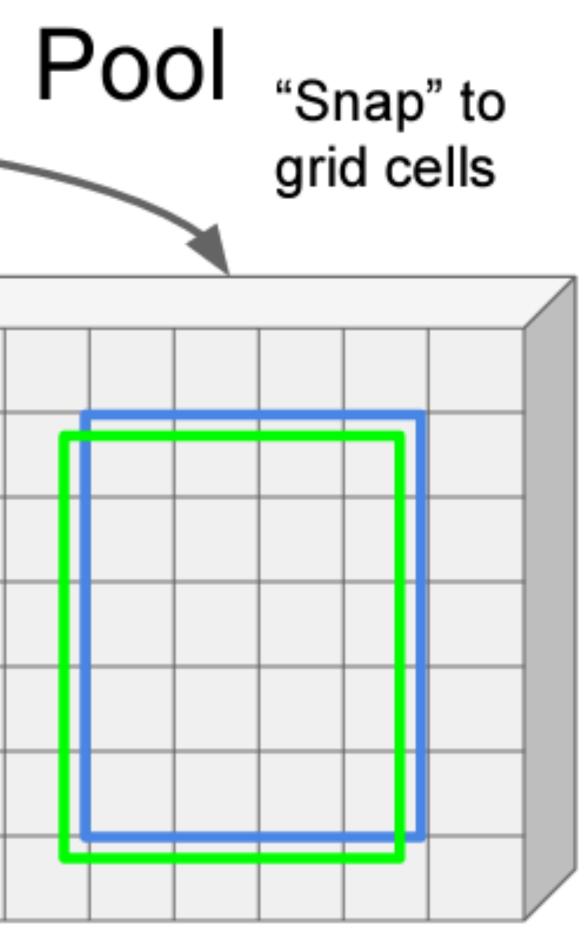
Cropping Features: Rol Pool Project proposal onto features CNN

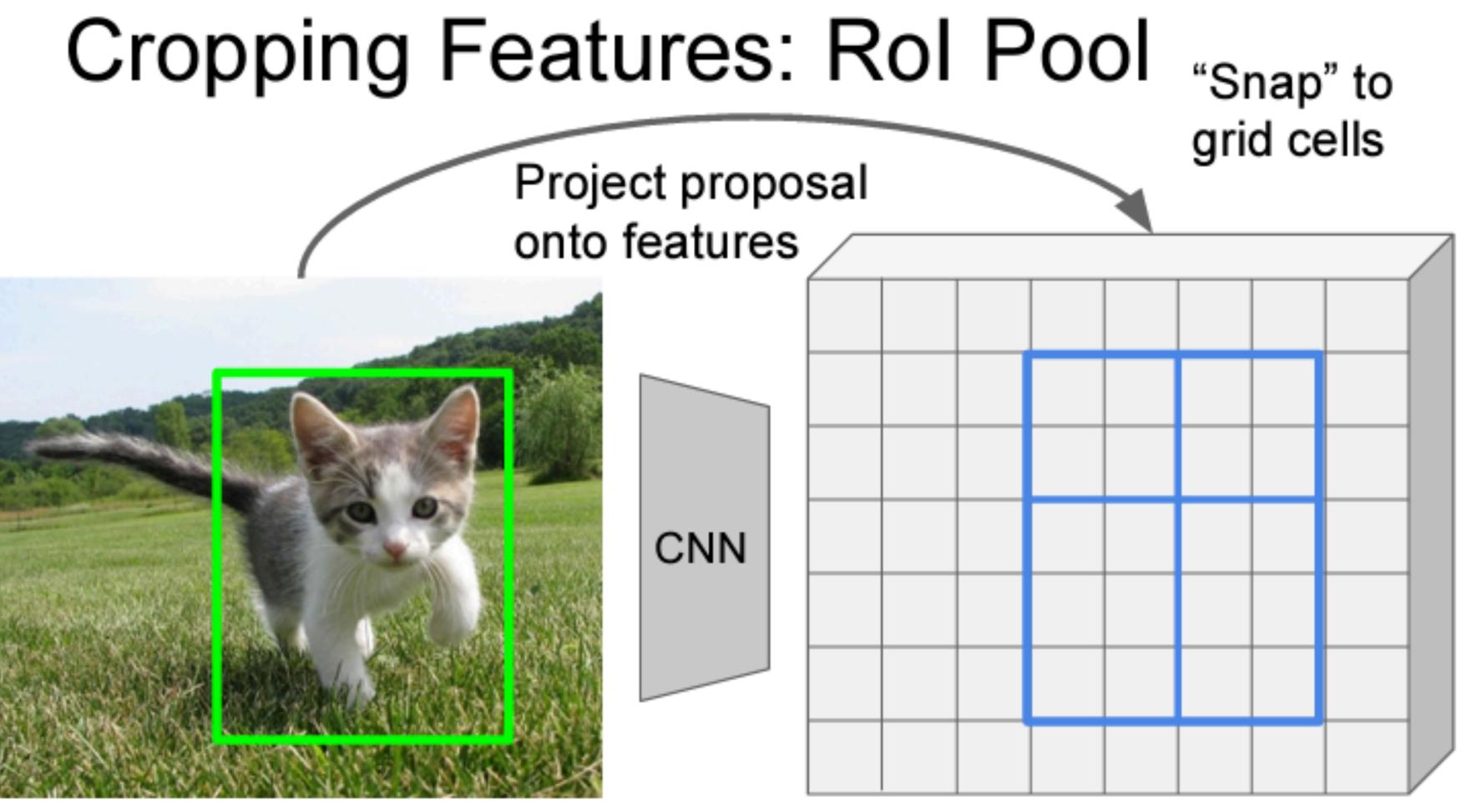
Input Image (e.g. 3 x 640 x 480)

Image features: C x H x W (e.g. 512 x 20 x 15)

Girshick, "Fast R-CNN", ICCV 2015.

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller





Input Image (e.g. 3 x 640 x 480)

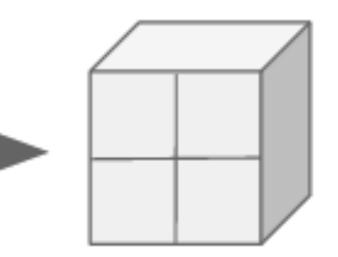
Image features: C x H x W (e.g. 512 x 20 x 15)

Girshick, "Fast R-CNN", ICCV 2015.

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Divide into 2x2 grid of (roughly) equal subregions

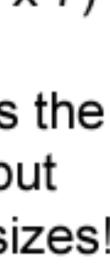
Max-pool within each subregion

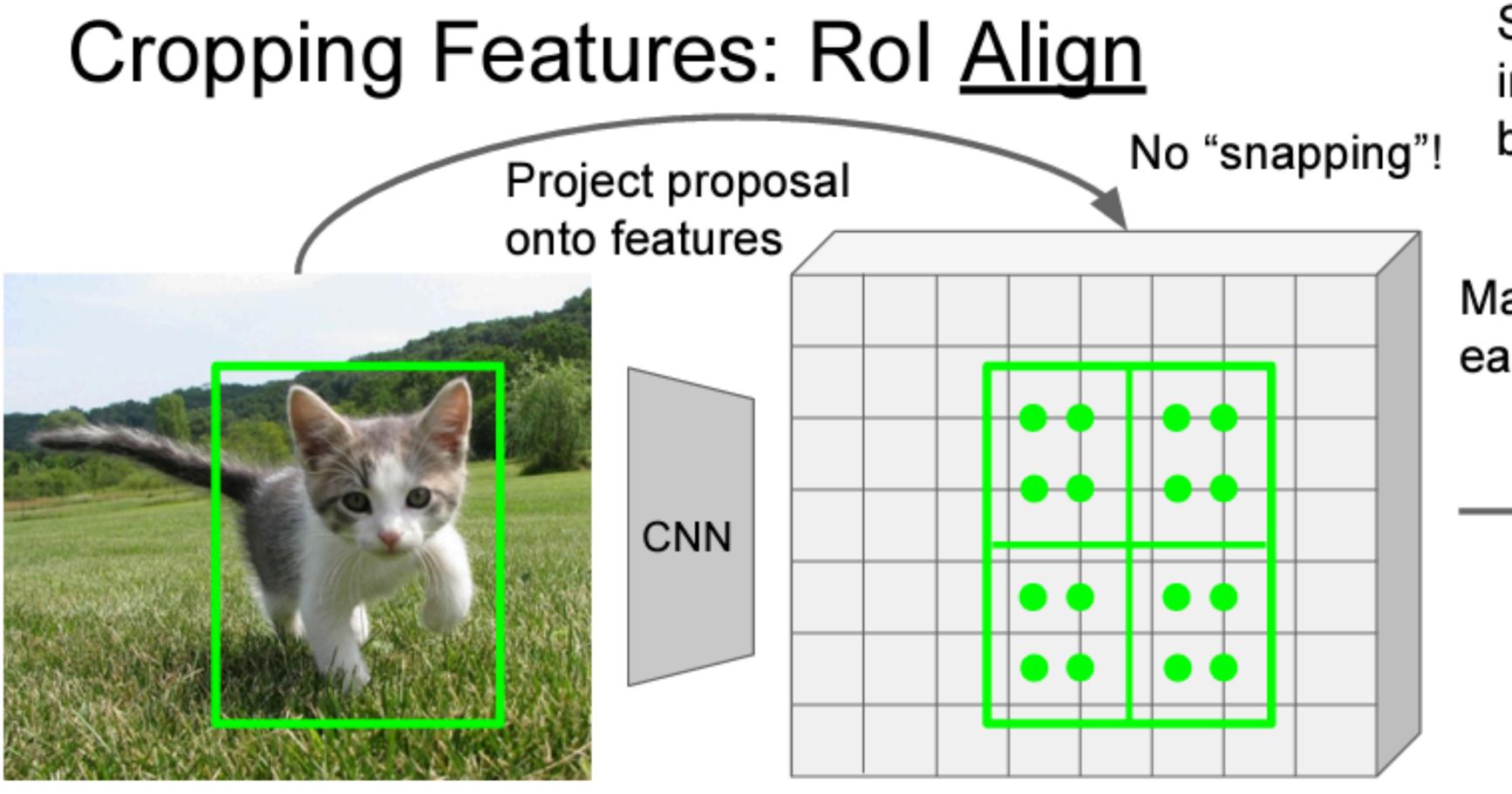


Region features (here 512 x 2 x 2; In practice e.g 512 x 7 x 7)

Region features always the same size even if input regions have different sizes!

Oct. 24, 2023 Lecture 13 - 15





Input Image (e.g. 3 x 640 x 480)

Image features: C x H x W (e.g. 512 x 20 x 15)

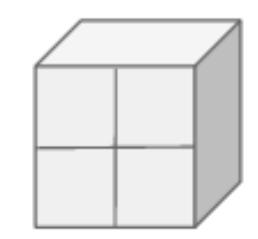
He et al, "Mask R-CNN", ICCV 2017

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Sample at regular points in each subregion using bilinear interpolation

Max-pool within each subregion

Lecture 13 - 16



Region features (here 512 x 2 x 2; In practice e.g 512 x 7 x 7)

Ablation: RolPool vs RolAlign

mack AD

	mask AP			box AP		
	AP	AP ₅₀	AP ₇₅	AP ^{bb}	AP_{50}^{bb}	AP ^{bb} ₇₅
RoIPool	23.6	46.5	21.6	28.2	52.7	26.9
RoIAlign	30.9	51.8	32.1	34.0	55.3	36.4
	+7.3	+ 5.3	+10.5	+5.8	+2.6	+9.5
			1	•		

huge gain at high IoU in case of big stride (3

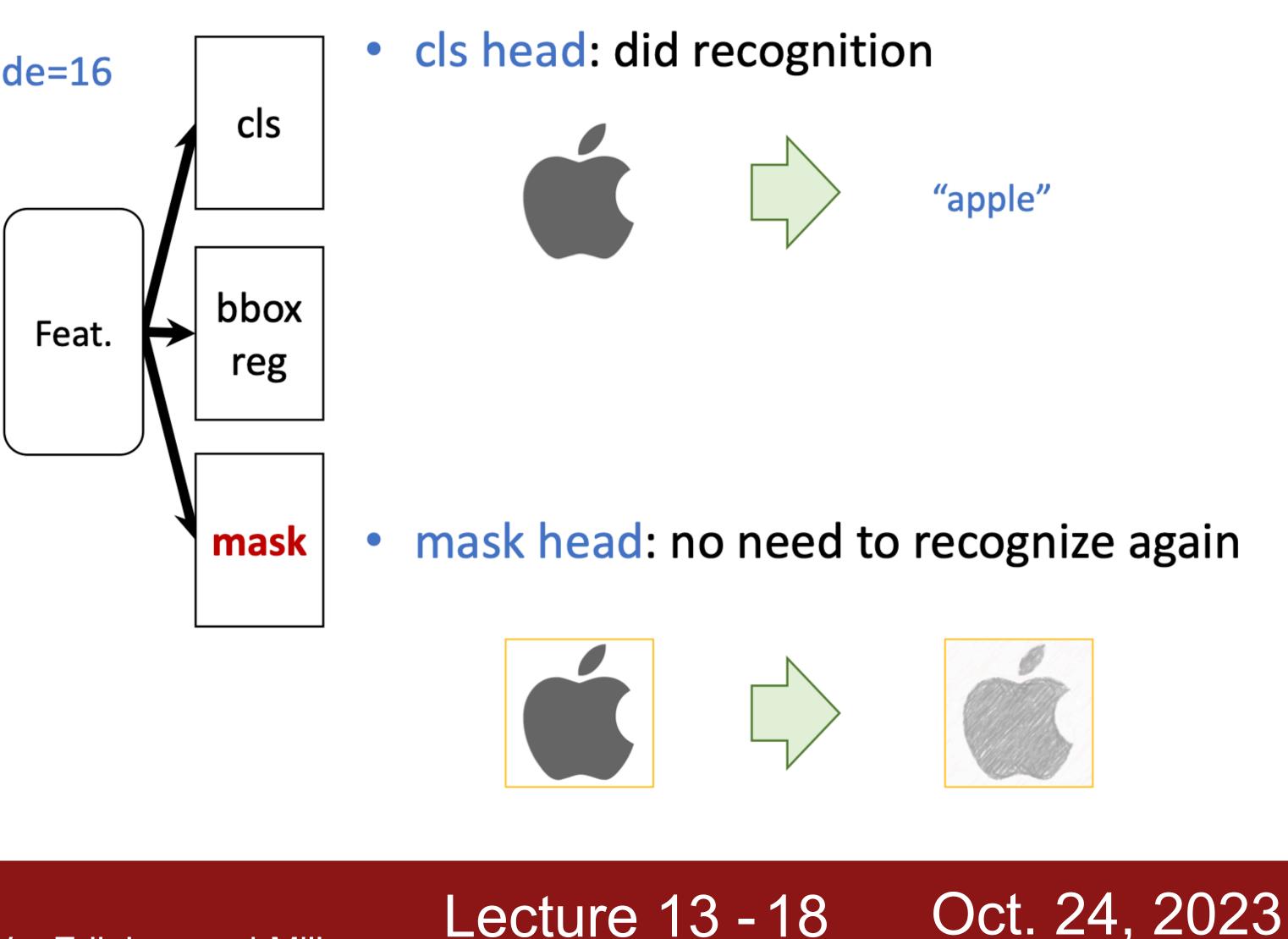
Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

baseline: ResNet-50-Conv5 backbone, stride=32

Ablation: Multinomial vs Binary Segmentation

baseline: ResNet-50-Conv4 backbone, stride=16

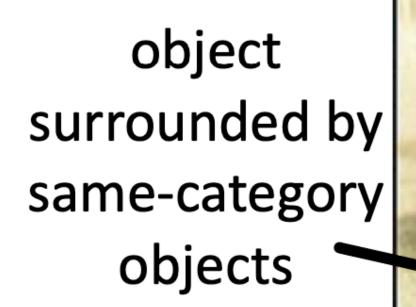
	AP	AP_{50}	AP ₇₅
softmax	24.8	44.1	25.1
sigmoid	30.3	51.2	31.5



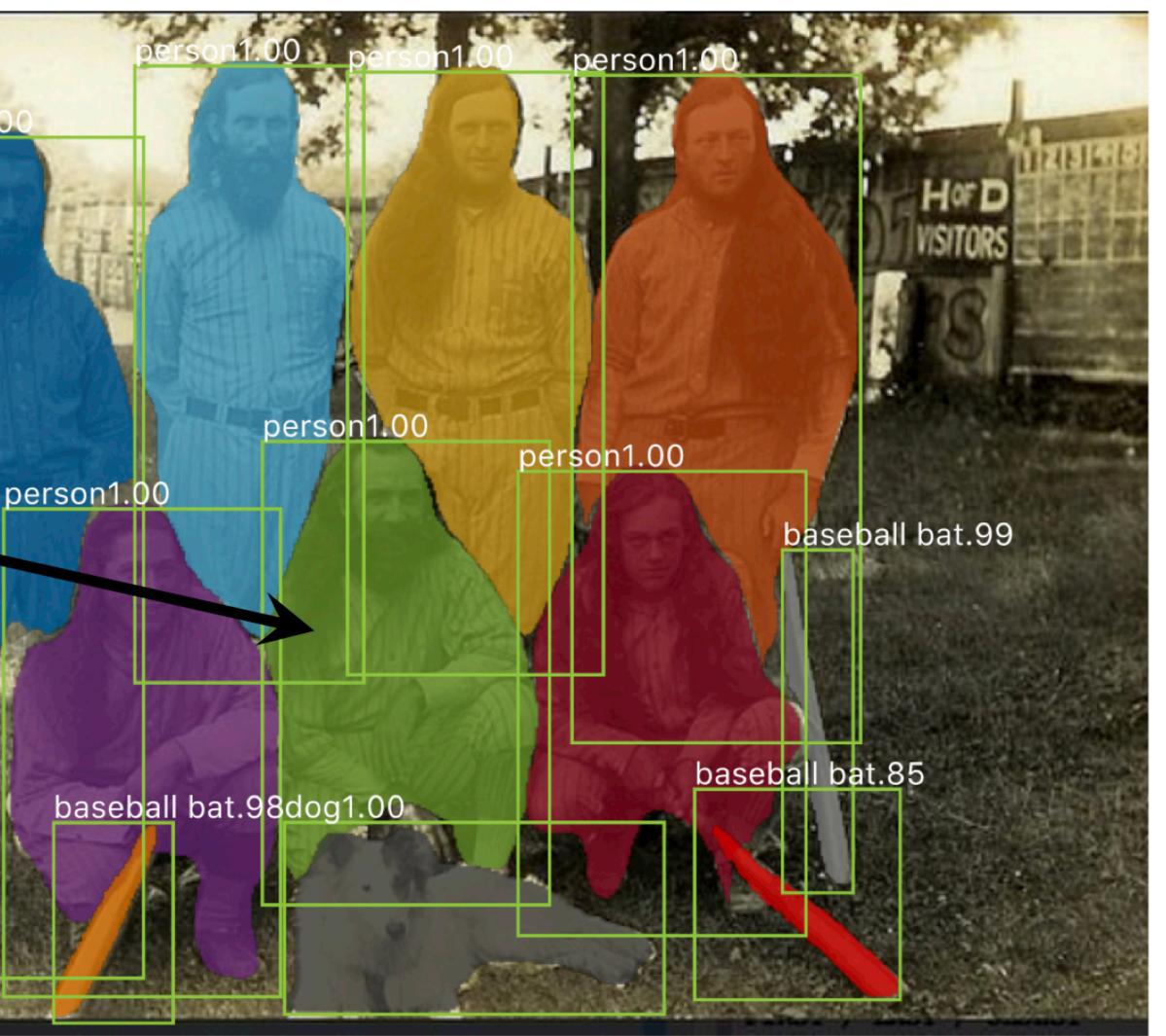
Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Mask R-CNN: Very Good Results!

rson1.0



Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



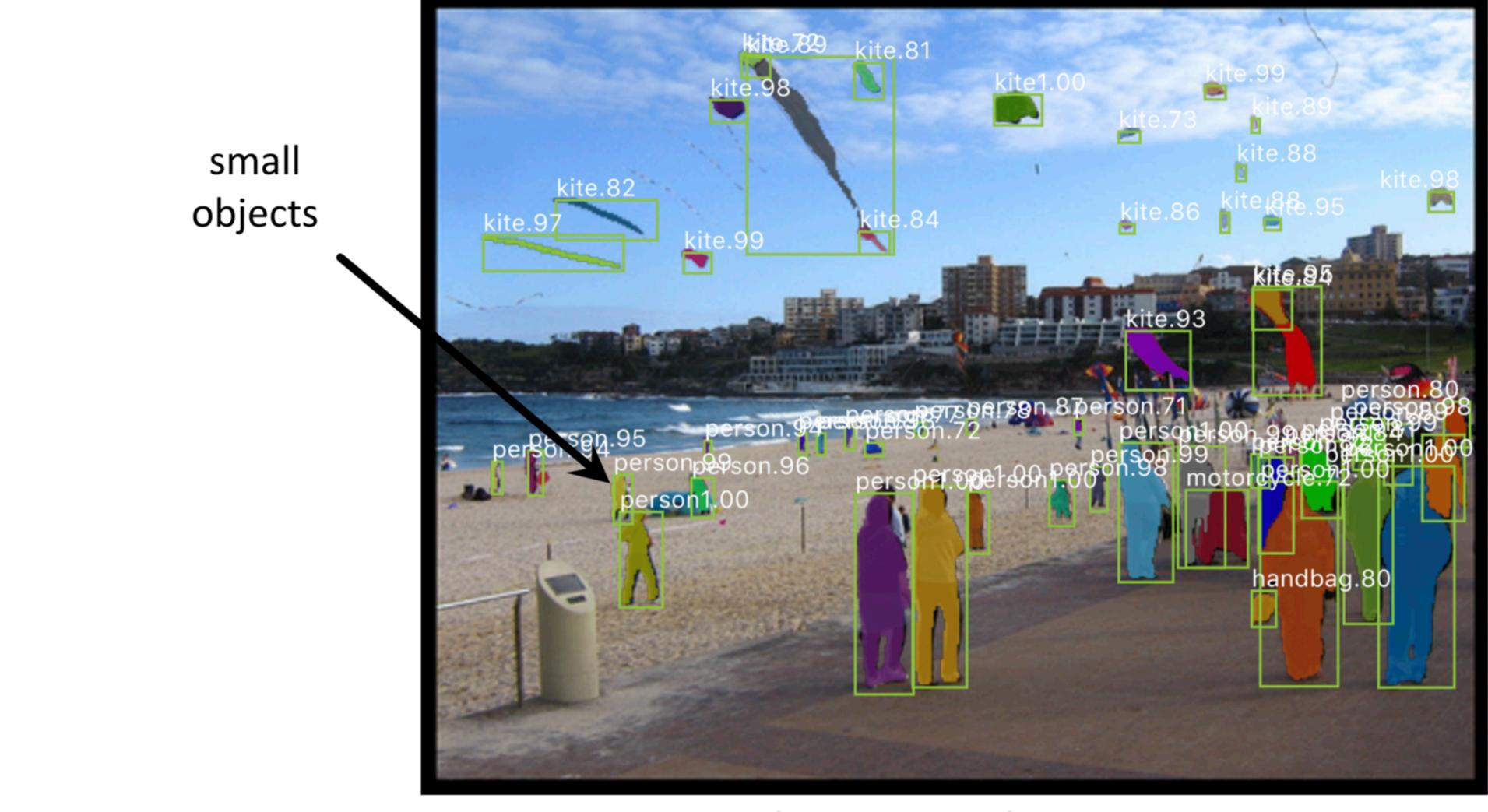
Mask R-CNN results on COCO

Mask R-CNN: Very Good Results!

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Mask R-CNN results on COCO

Mask R-CNN: Very Good Results!



Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Mask R-CNN results on COCO

Lecture 13 - 21

Mask R-CNN: Failure Case

Mask R-CNN results on COCO

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

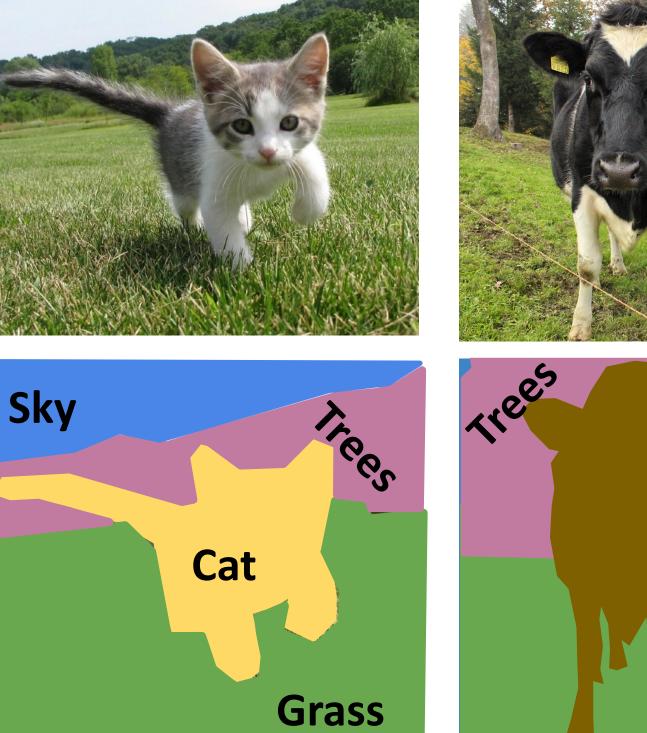
Lecture 13 - 22

Semantic Segmentation

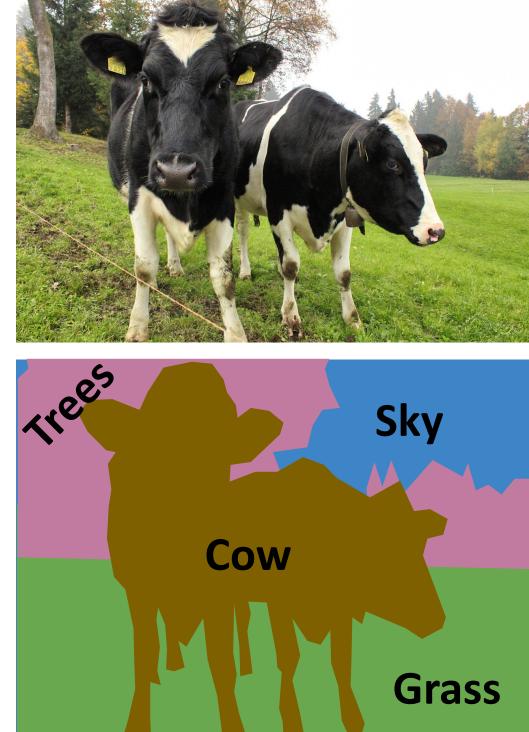
Label each pixel in the image with a category label

Don't differentiate instances, only care about pixels

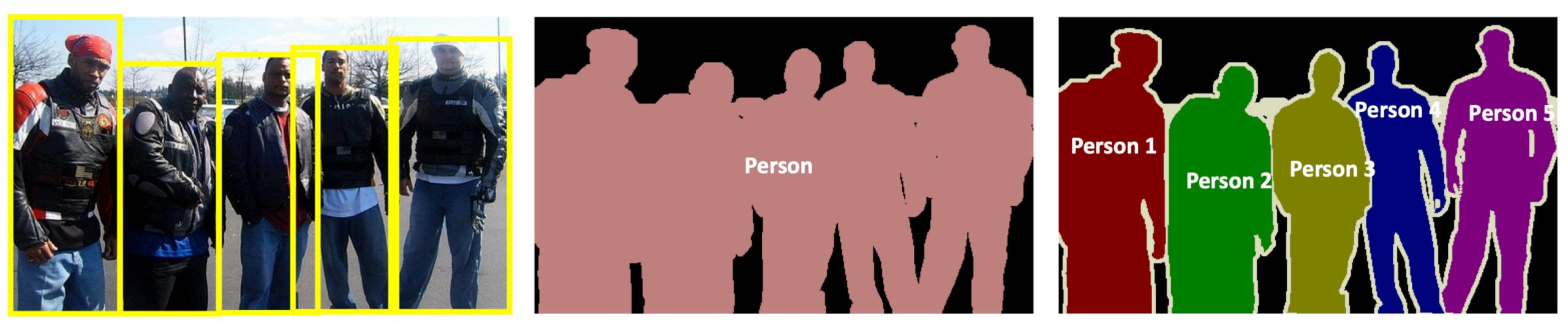
Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



This image is CC0 public domain



Semantic vs Instance Segmentation



Object Detection

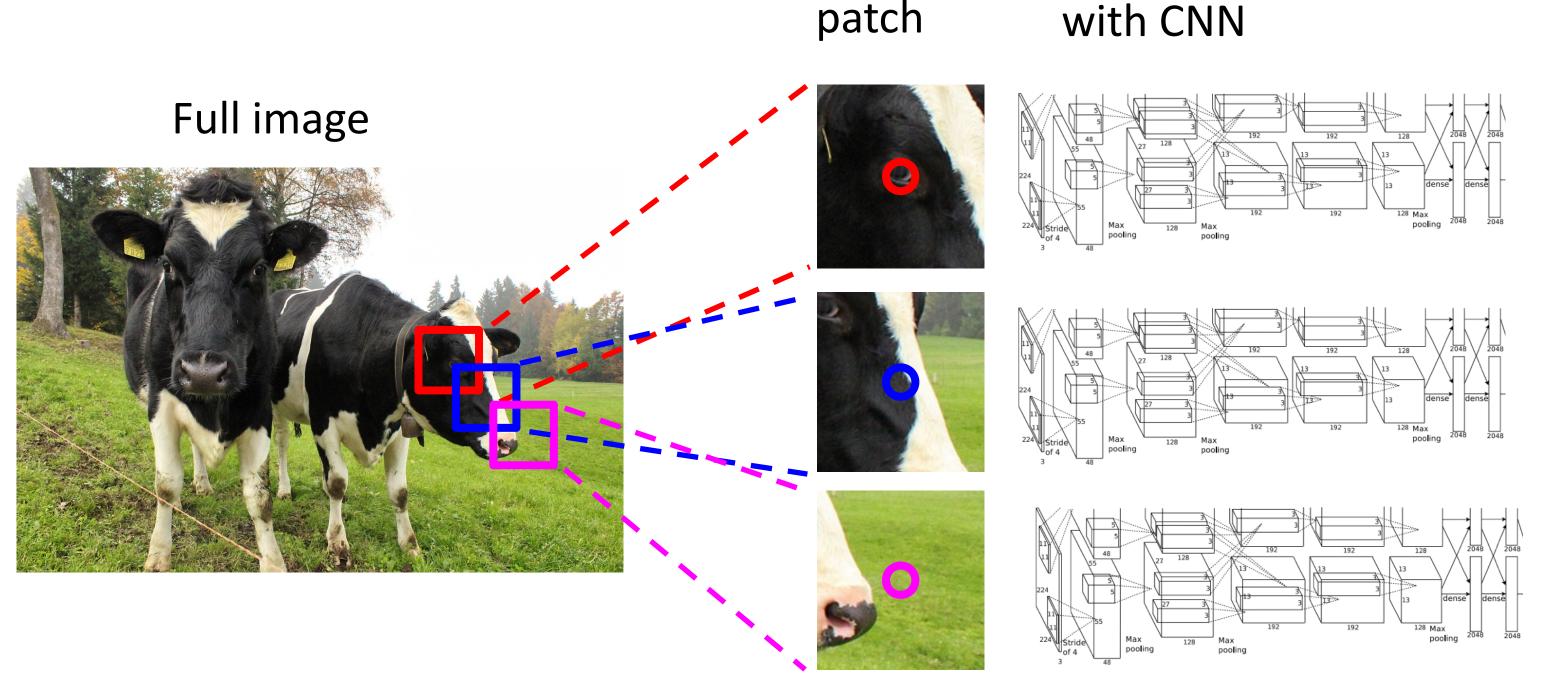
Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Semantic Segmentation

Instance Segmentation

Oct. 24, 2023 Lecture 13 - 24

Segmentation: Sliding Window



Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013 Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Extract

Classify center pixel

Cow

Grass

Lecture 13 - 25

Segmentation: Sliding Window

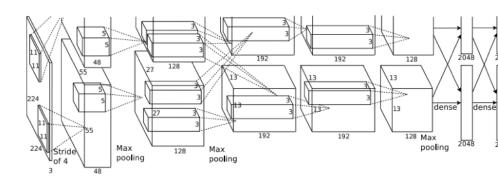
Full image

Problem: Very inefficient! Not reusing shared features between overlapping patches

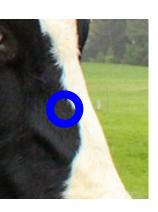
Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Extract patch

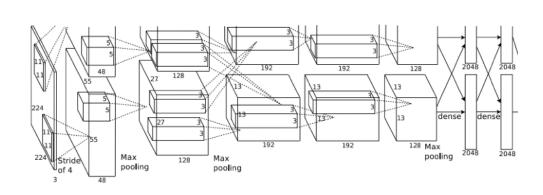
Classify center pixel with CNN



Cow

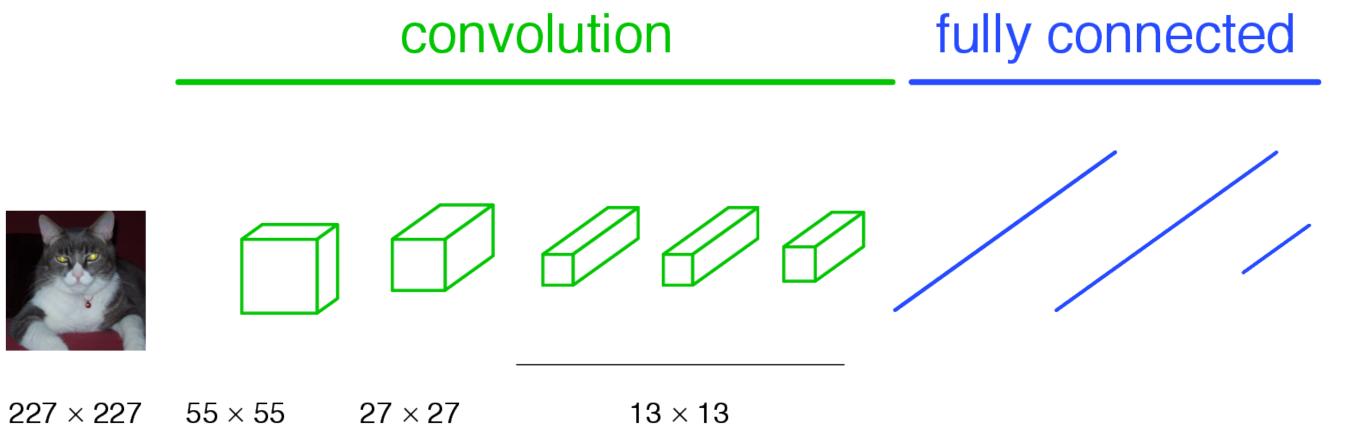






Grass

A Classification Network

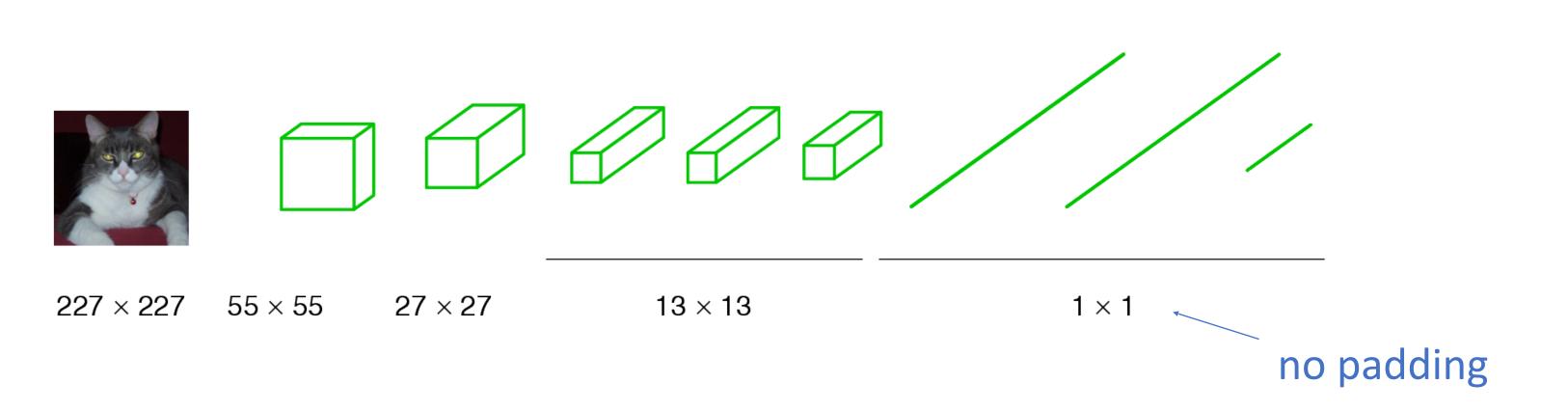


Fully Convolutional Networks for Semantic Segmentation. Jon Long, Evan Shelhamer, Trevor Darrell. CVPR 2015

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller "tabby cat"

Becoming Fully Convolutional

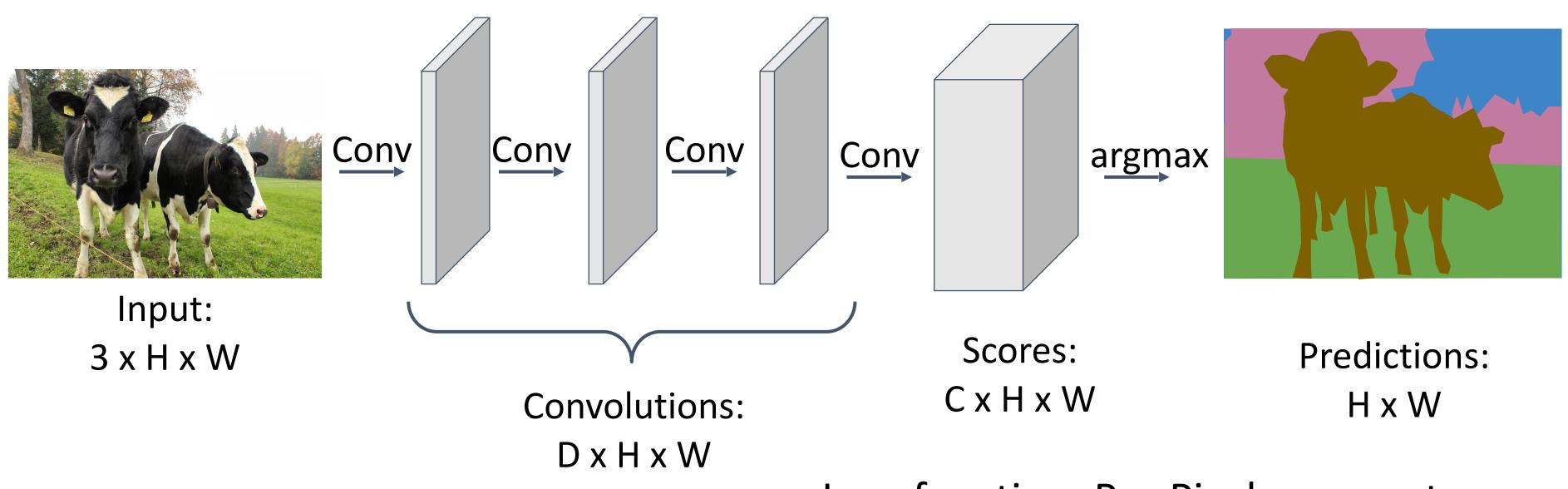
convolution



A fully-connected layer is equivalent to a convolution layer.

Note: "Fully Convolutional" and "Fully Connected" aren't the same thing. They're almost opposites, in fact.

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

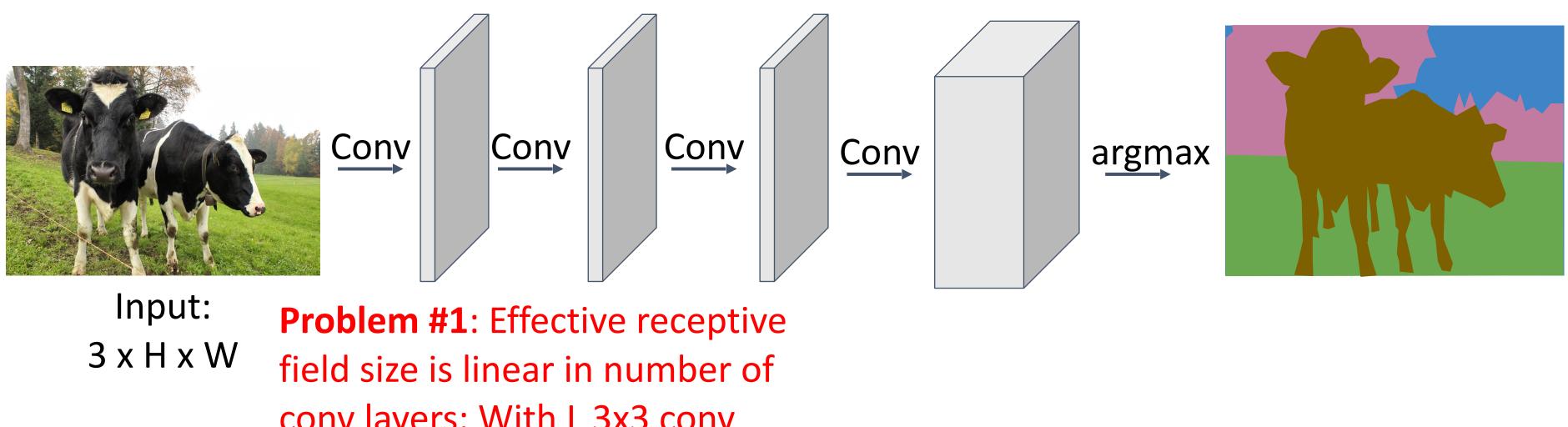


Long et al, "Fully convolutional networks for semantic segmentation", CVPR 2015

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Loss function: Per-Pixel cross-entropy



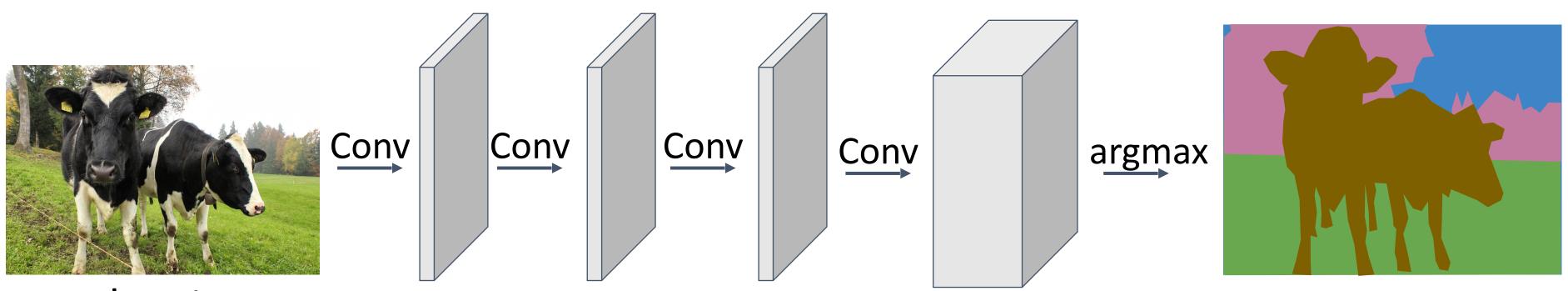
conv layers: With L 3x3 conv layers, receptive field is 1+2L

Subhransu Maji, Chuang Gan and TAS Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Lecture 13 -

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

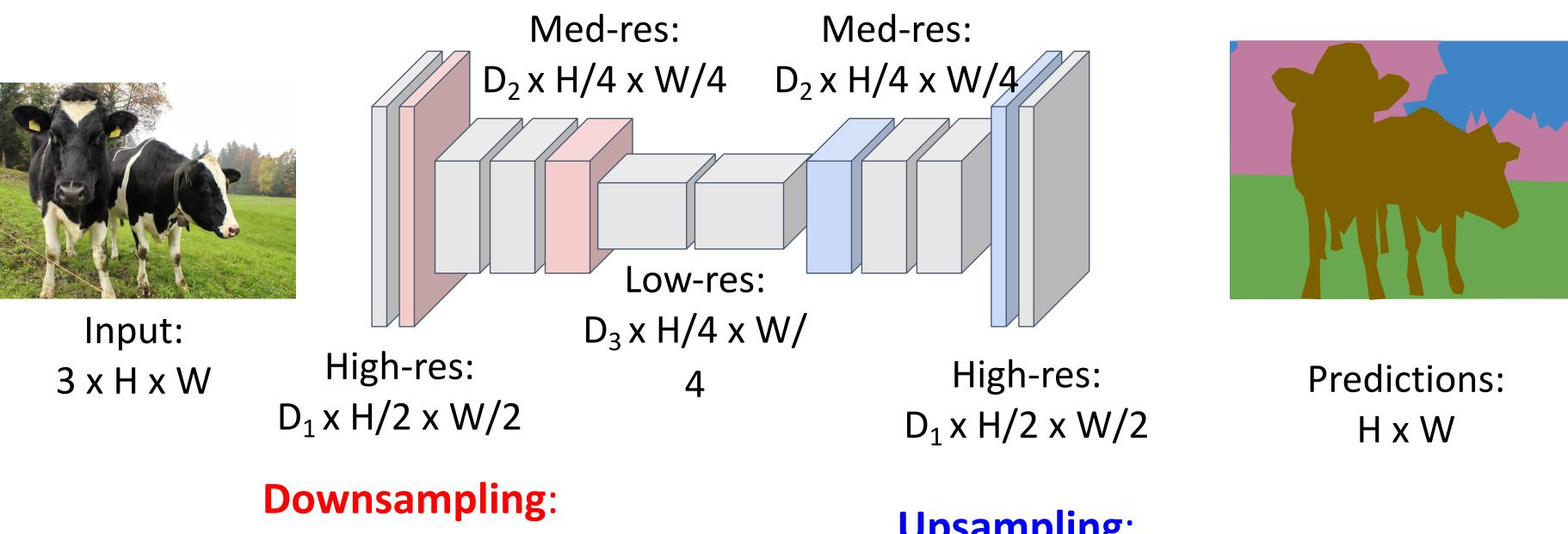


Input: 3 x H x W

Problem #1: Effective receptive field size is linear in number of conv layers: With L 3x3 conv layers, receptive field is 1+2L

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Problem #2:** Convolution on high res images is expensive!

downsampling and **upsampling** inside the network!



Pooling, strided convolution

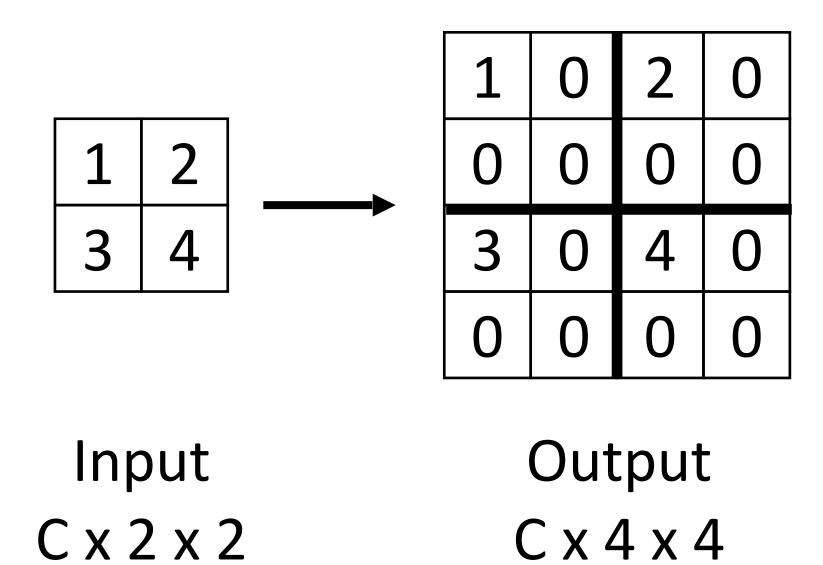
Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Design network as a bunch of convolutional layers, with

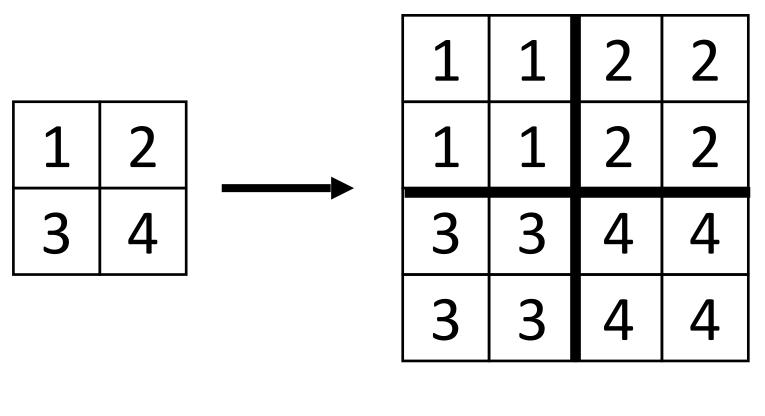
Upsampling: ???

In-Network Upsampling: "Unpooling"



Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

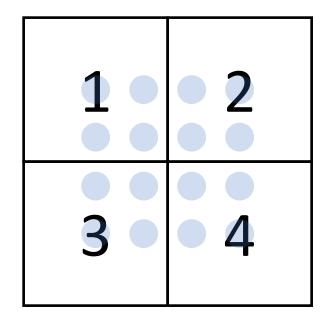
Nearest Neighbor



Input C x 2 x 2

Output C x 4 x 4

Upsampling: Bilinear Interpolation



Input: C x 2 x 2

$$f_{x,y} = \sum_{i,j} f_{i,j} \max(0, 1 - |x - i|) \max(0, 1 - |y - j|) \quad i \in \{\lfloor x \rfloor - 1, \dots, \lceil x \rceil + 1\}$$
$$j \in \{\lfloor y \rfloor - 1, \dots, \lceil y \rceil + 1\}$$

Use two closest neighbors in x and y to construct linear approximations

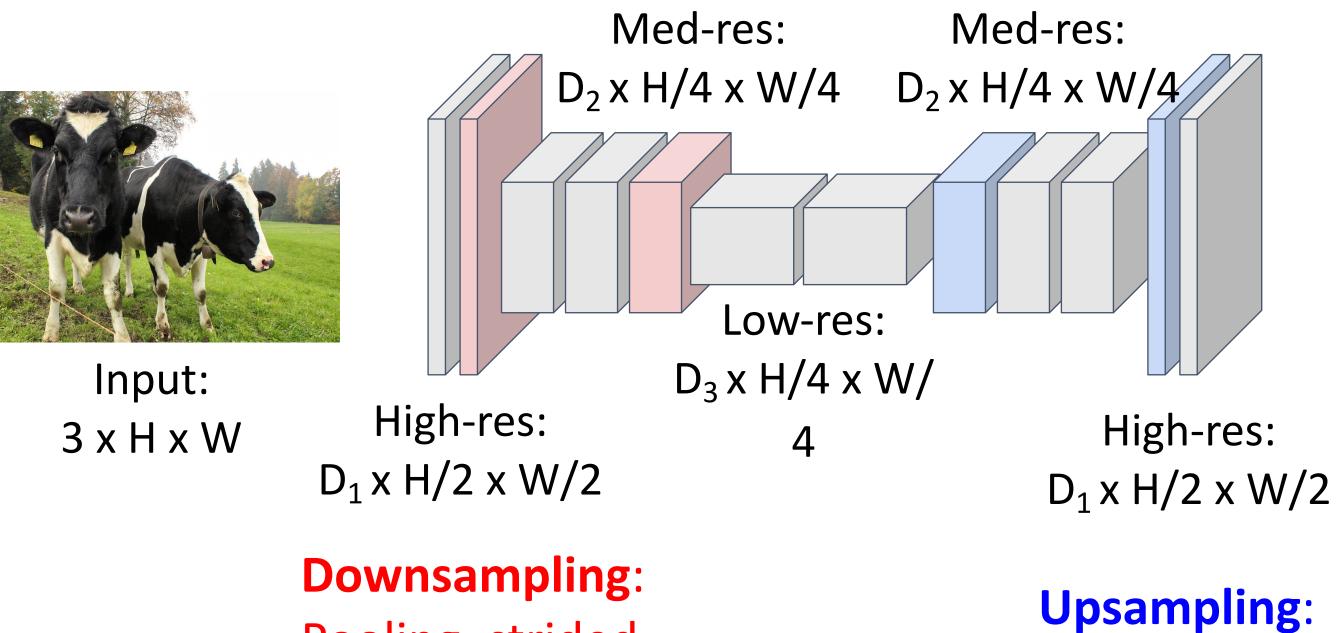
Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

1.00	1.25	1.75	2.00
1.50	1.75	2.25	2.50
2.50	2.75	3.25	3.50
3.00	3.25	3.75	4.00

Output: C x 4 x 4

Lecture 13 - 34 (

downsampling and **upsampling** inside the network!



Pooling, strided convolution

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Design network as a bunch of convolutional layers, with

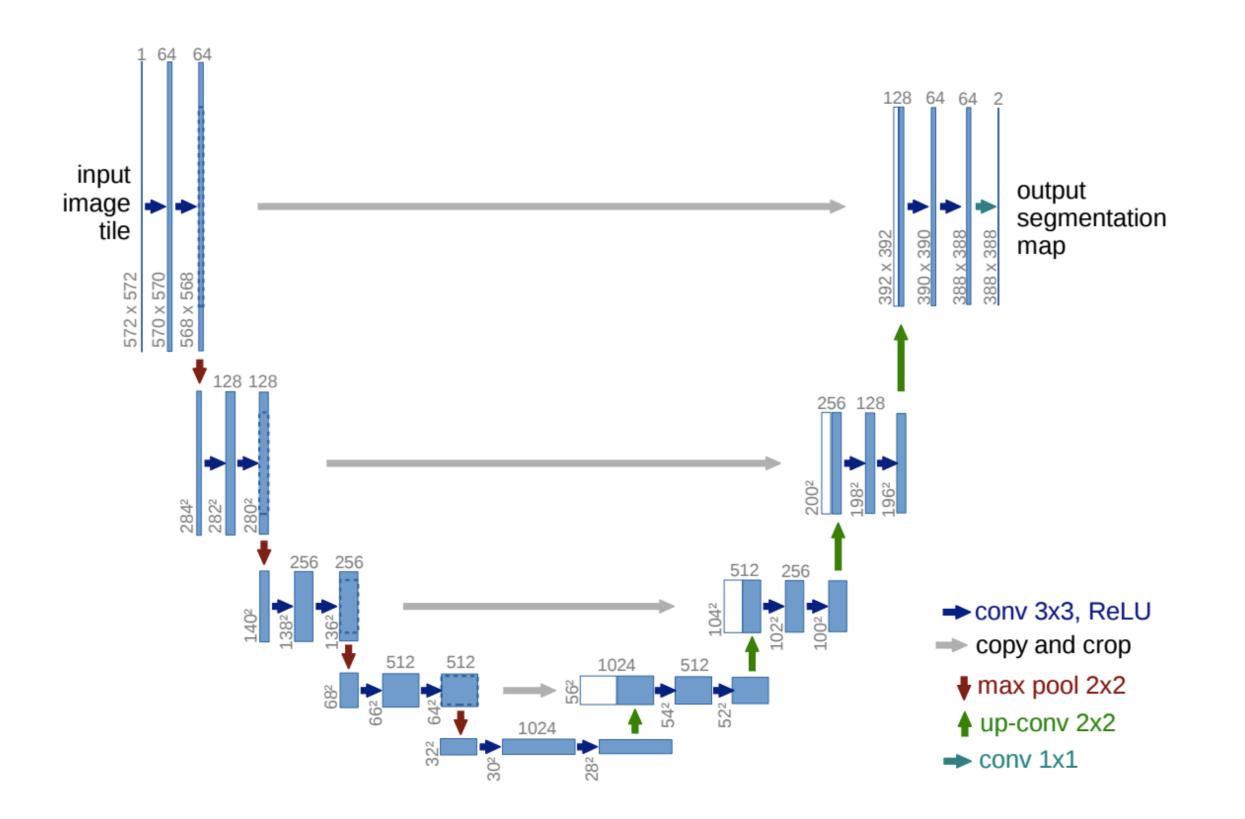
Predictions: H x W

???

U-Net

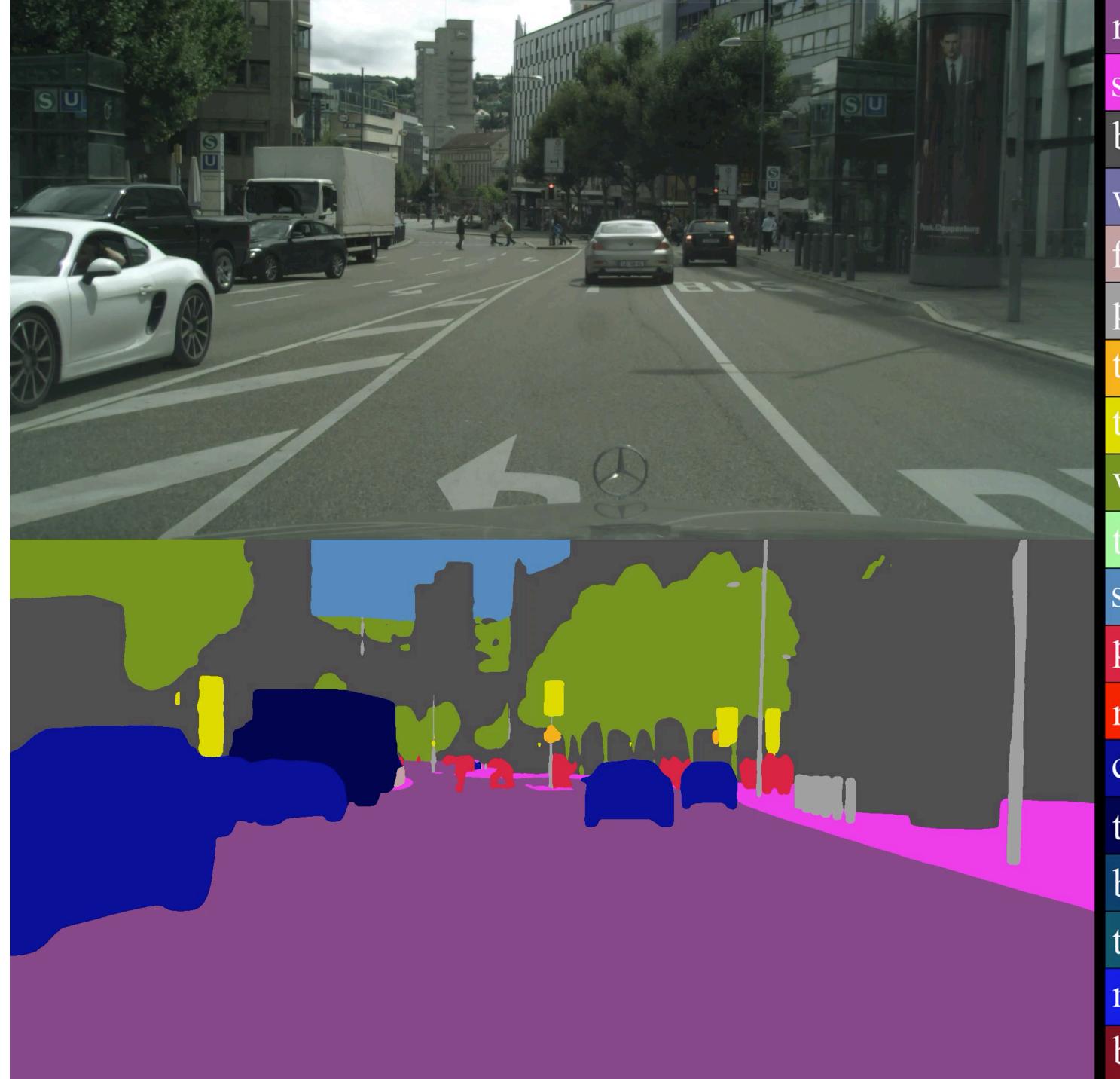
O. Ronneberger, P. Fischer, T. Brox, <u>U-Net: Convolutional Networks</u> for Biomedical Image Segmentation, MICCAI 2015

- \bullet res, lower-level feature maps
- Unlike FCN, fuse by concatenation, predict at the end



Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Like FCN, fuse upsampled higher-level feature maps with higher-



road sidewalk building

wall

fence

pole

traffic light

traffic sign

vegetation

sky

person

rider

car

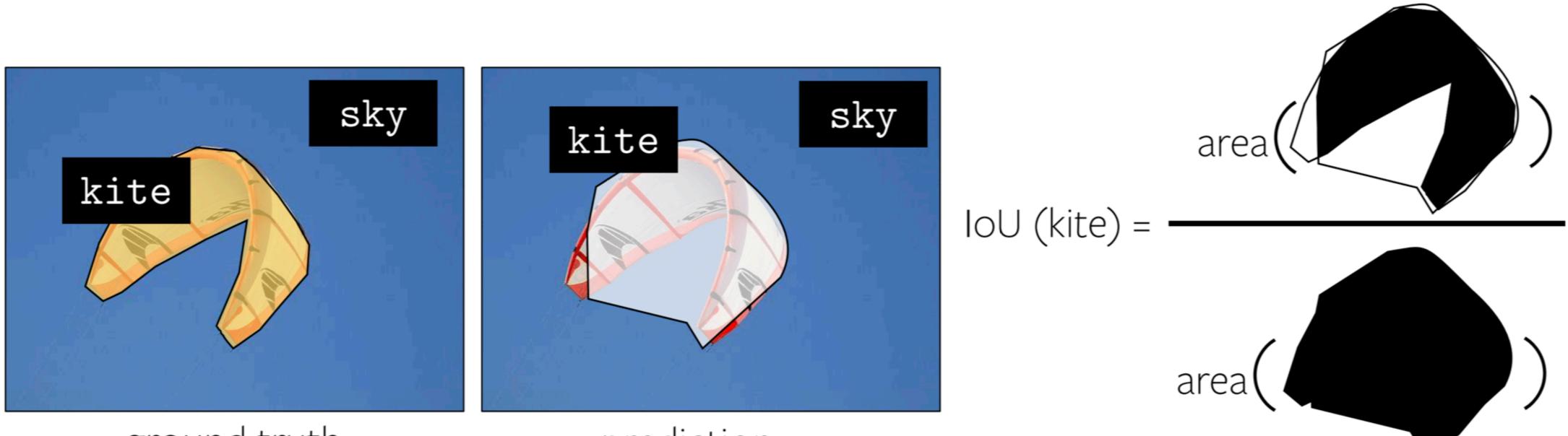
truck

bus

train

motorcycle bicycle

Evaluation of Semantic Segmentation



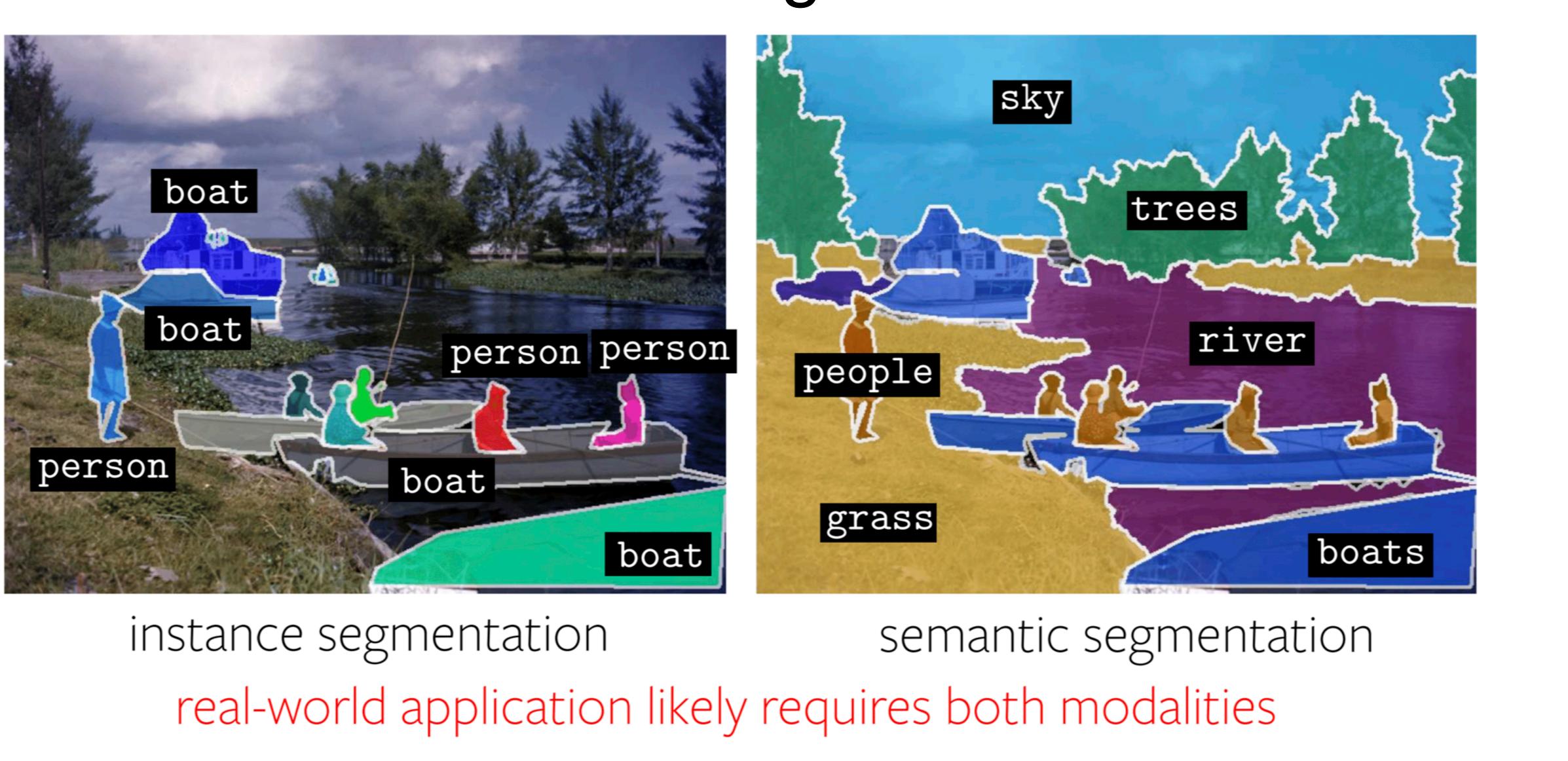
ground truth

prediction

mloU (mean loU) per class

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

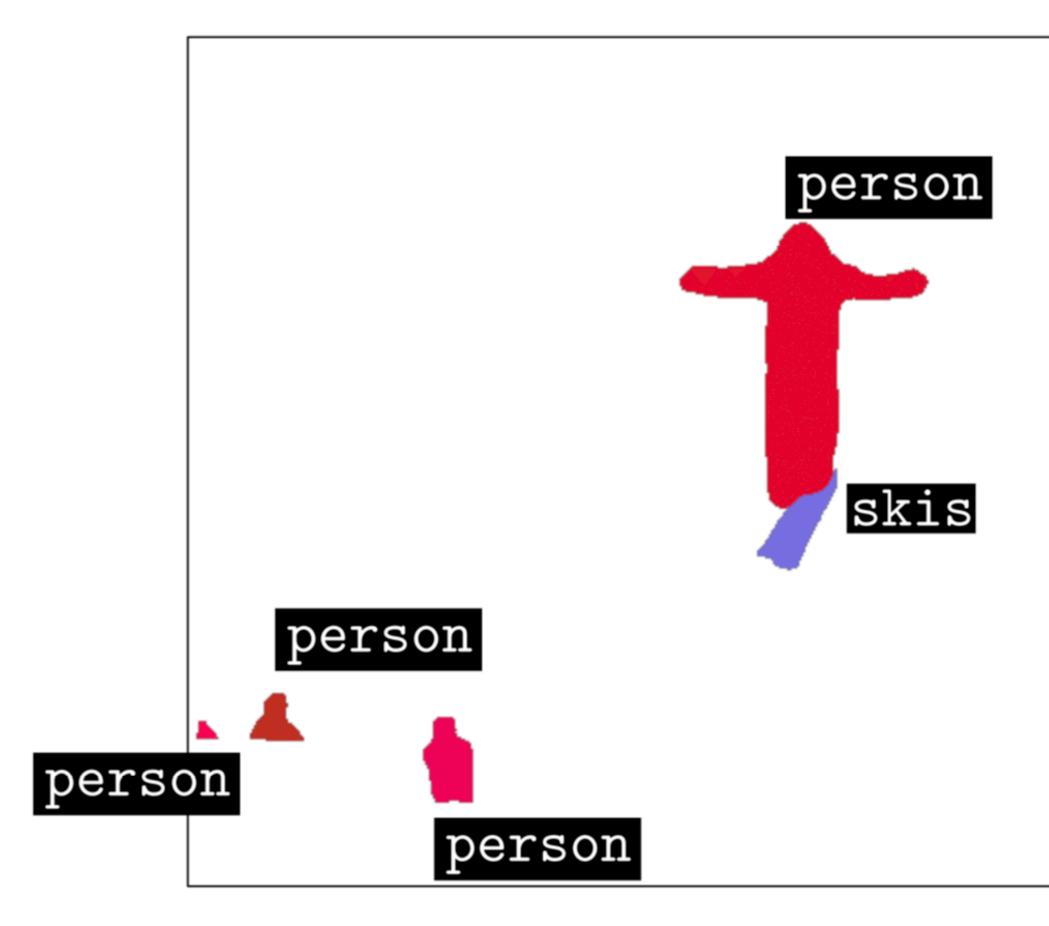
Instance and Semantic Segmentation



Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Oct. 24, 2023 Lecture 13 - 39

What do instance segmentation models see?



Subhransu Maji, Chuang Gan and TAs

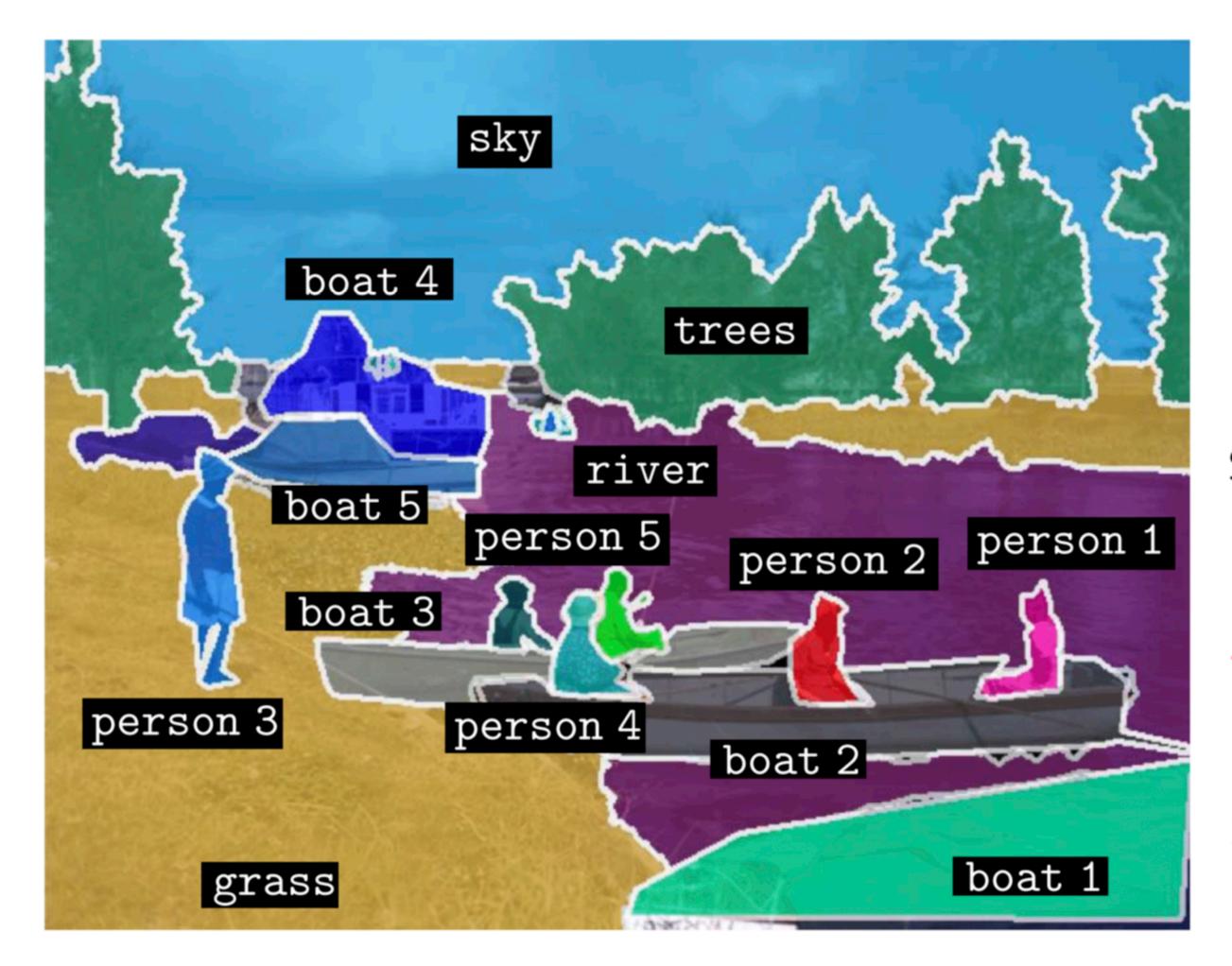
no understanding of the general scene layout

What do semantic segmentation models see?

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Does not differentiate different instances

Panoptic Segmentation: Unified Segmentation



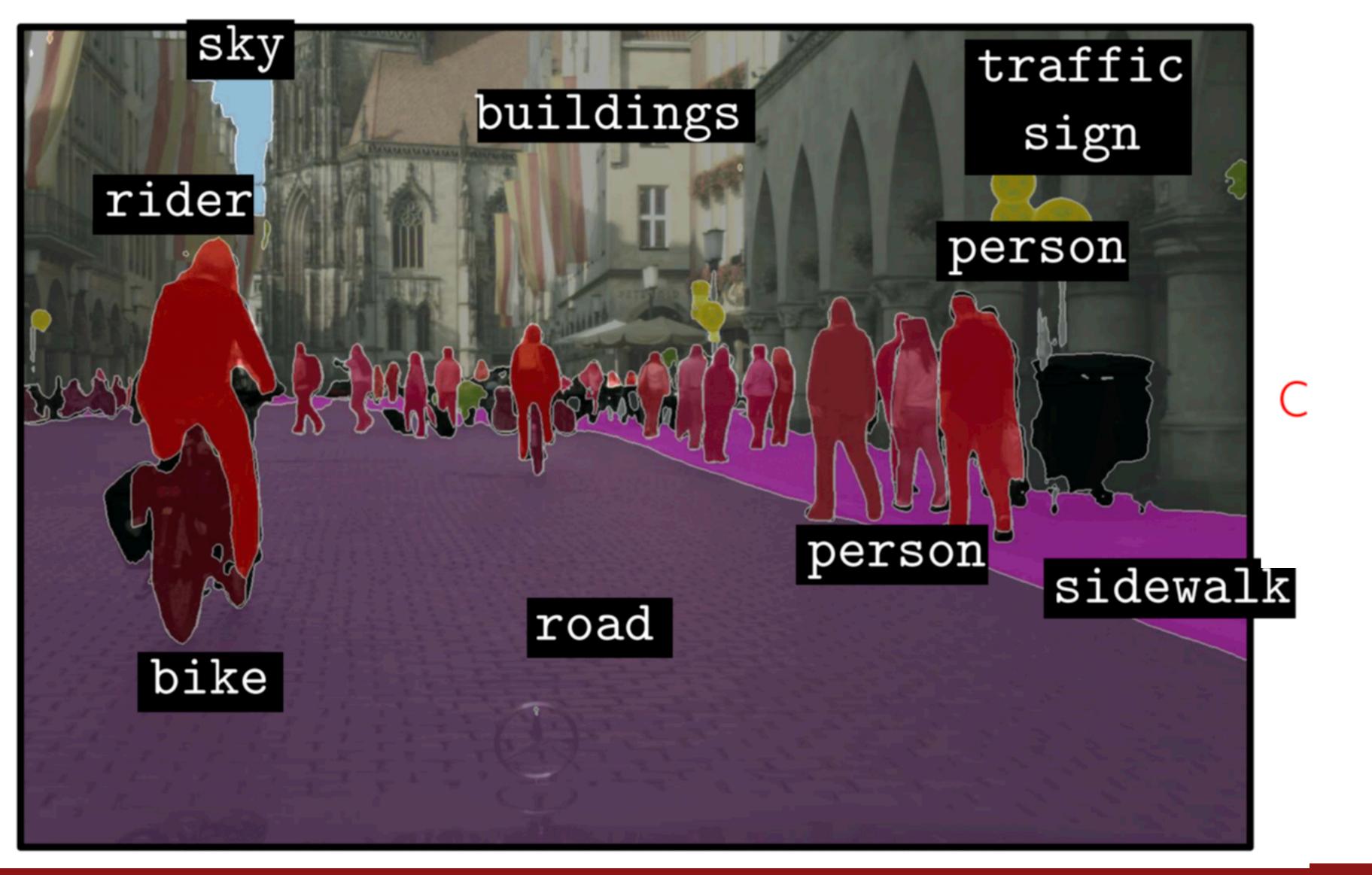
Panoptic: see everything at once TAs Lecture 13 - 42

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

single task that combines semantic and instance segmentation

things: categories with instancelevel annotation (person, boat) stuff: categories without the notion of instances (sky, road)

Panoptic Segmentation



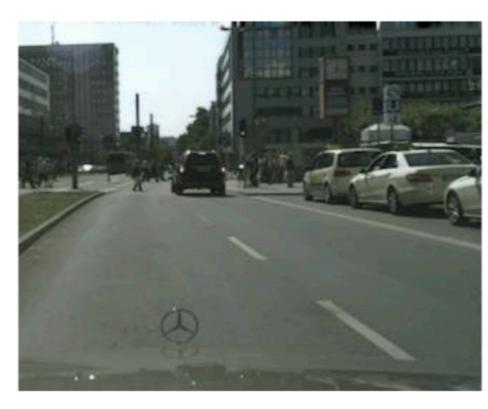
Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

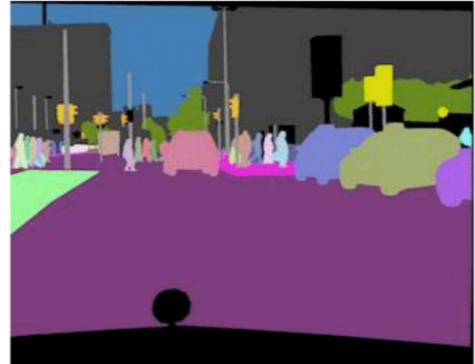
Available Panoptic Segmentation Datasets

CO (2014) + COCO-stuff (2017) COCO-panoptic challenges: ECCV`18, **ICCV`19**

Mapillary Vistas (2017) Vistas-panoptic challenges: ECCV`18, **ICCV`19**

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller





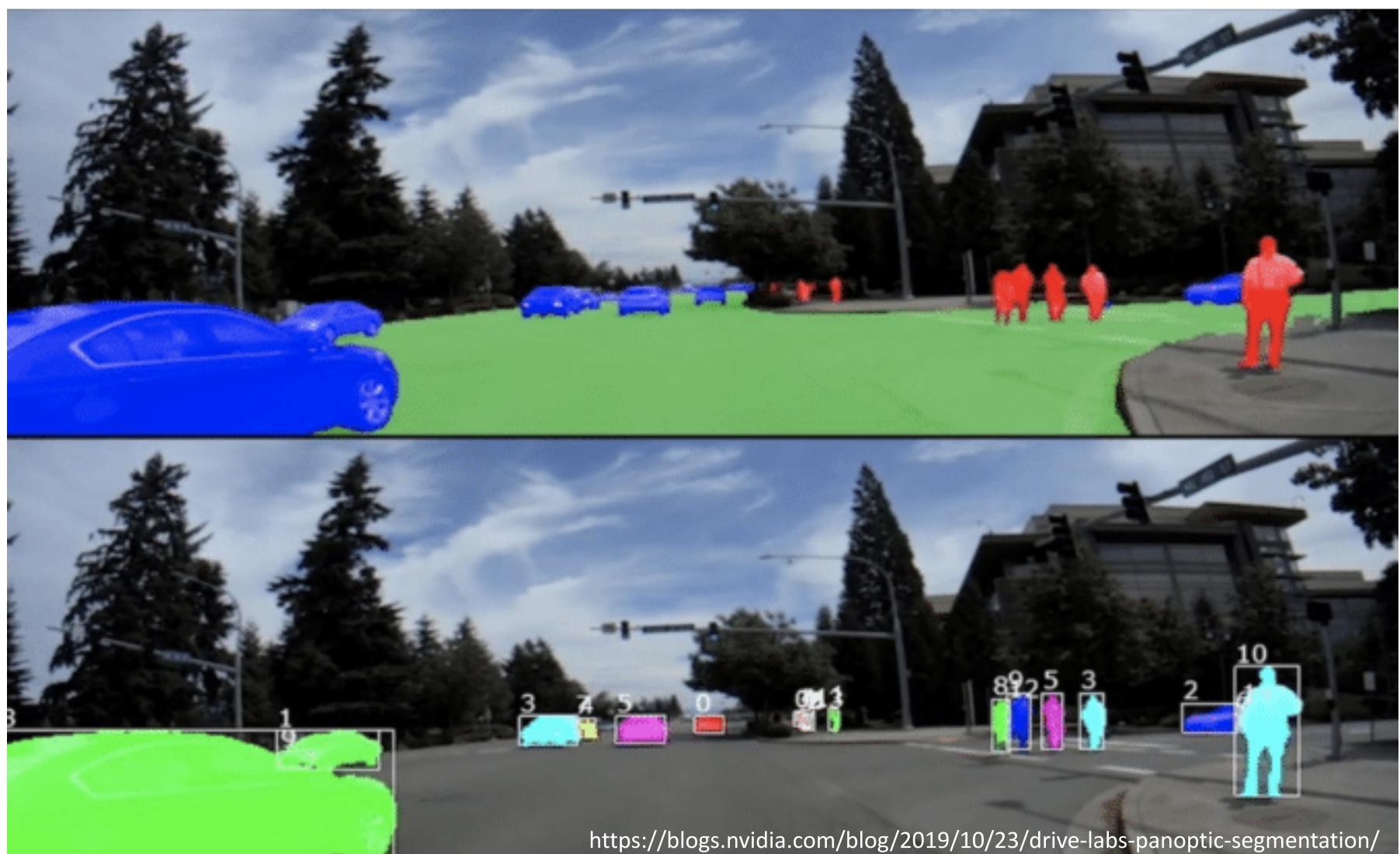
Cityscapes (2015) panoptic test set leaderboard (2019)

ADE20k (2016) >22k images, 150 categories

Lecture 13 - 44

Oct. 24, 2023

Panoptic Segmentation for Autonomous Driving

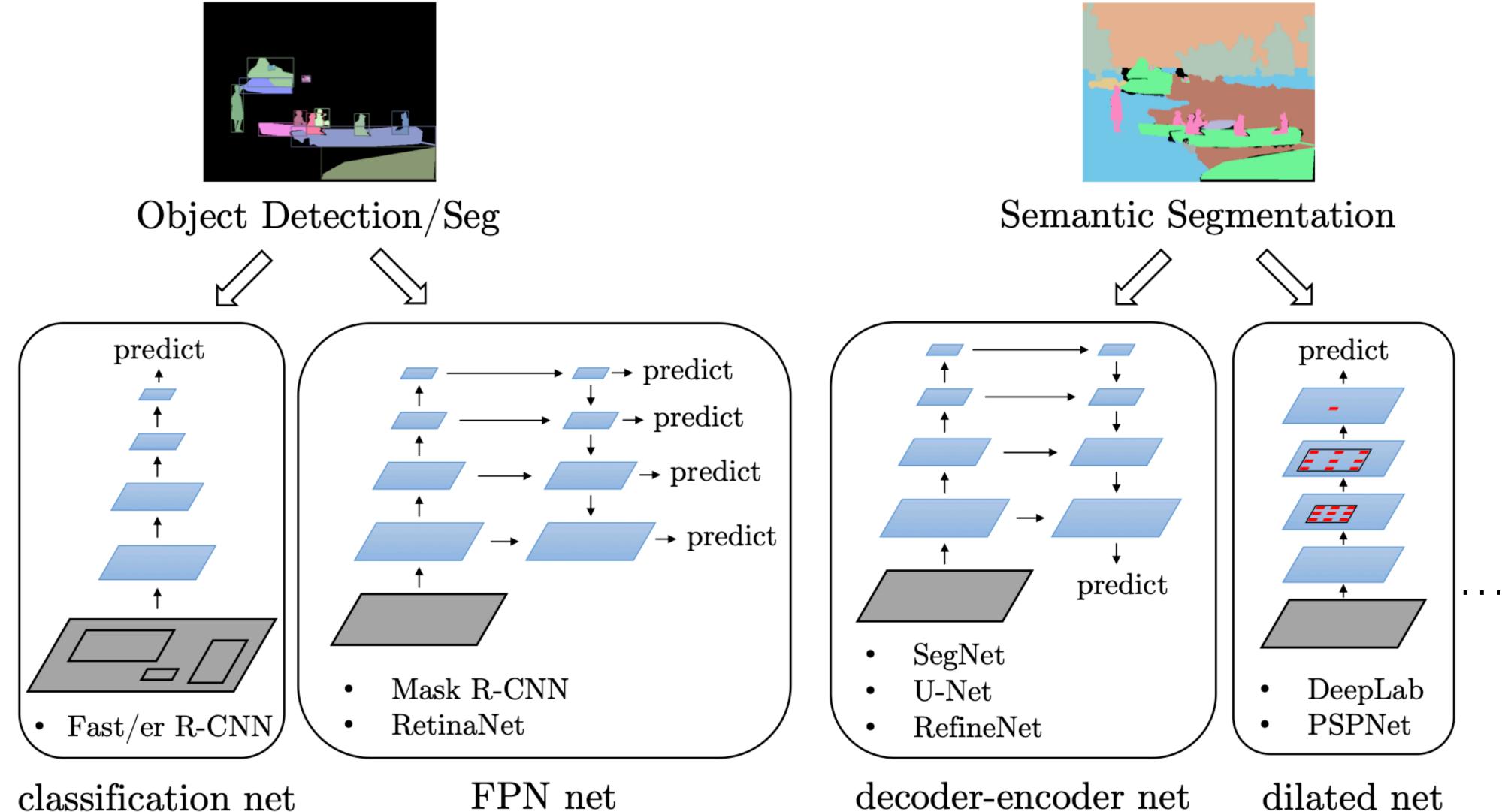


Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 13 - 45

Oct. 24, 2023

Deep Networks for Segmentation Tasks

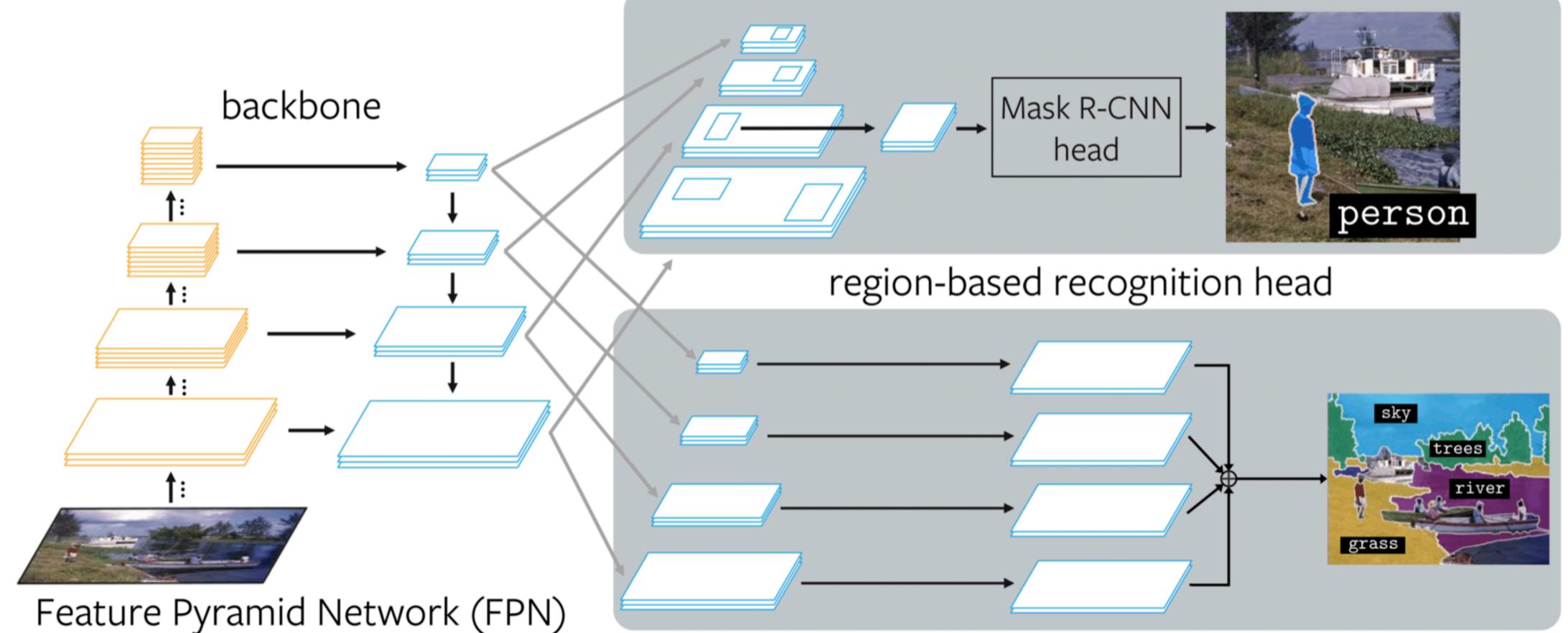


Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

decoder-encoder net

dilated net

Panoptic FPN



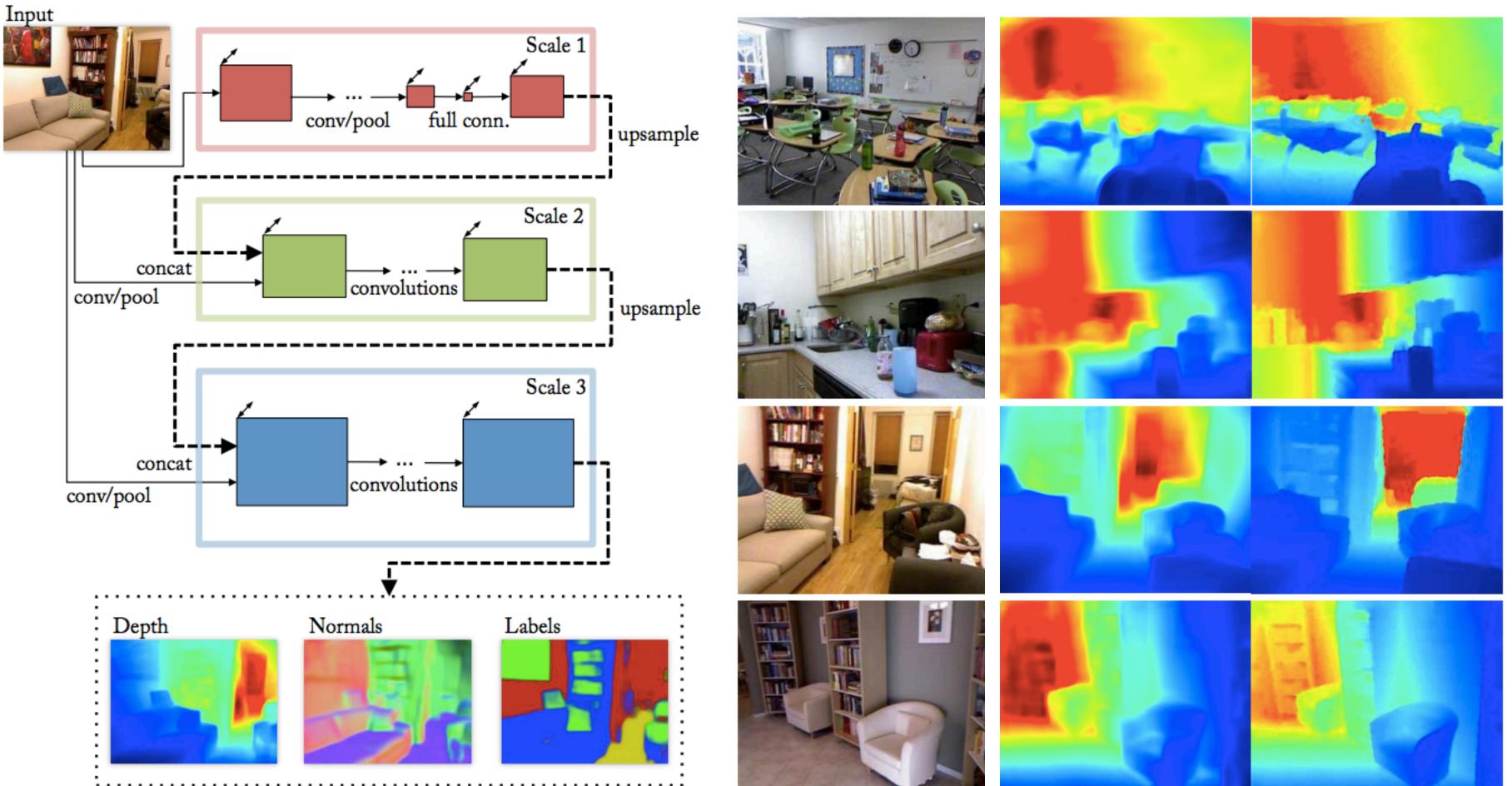
et al. Feature Pyramid Networks for Object Detection, CVPR`17

Figure Credit: Alexander Kirillov

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

pixel-level recognition head

Dense Prediction: Depth and normal estimation



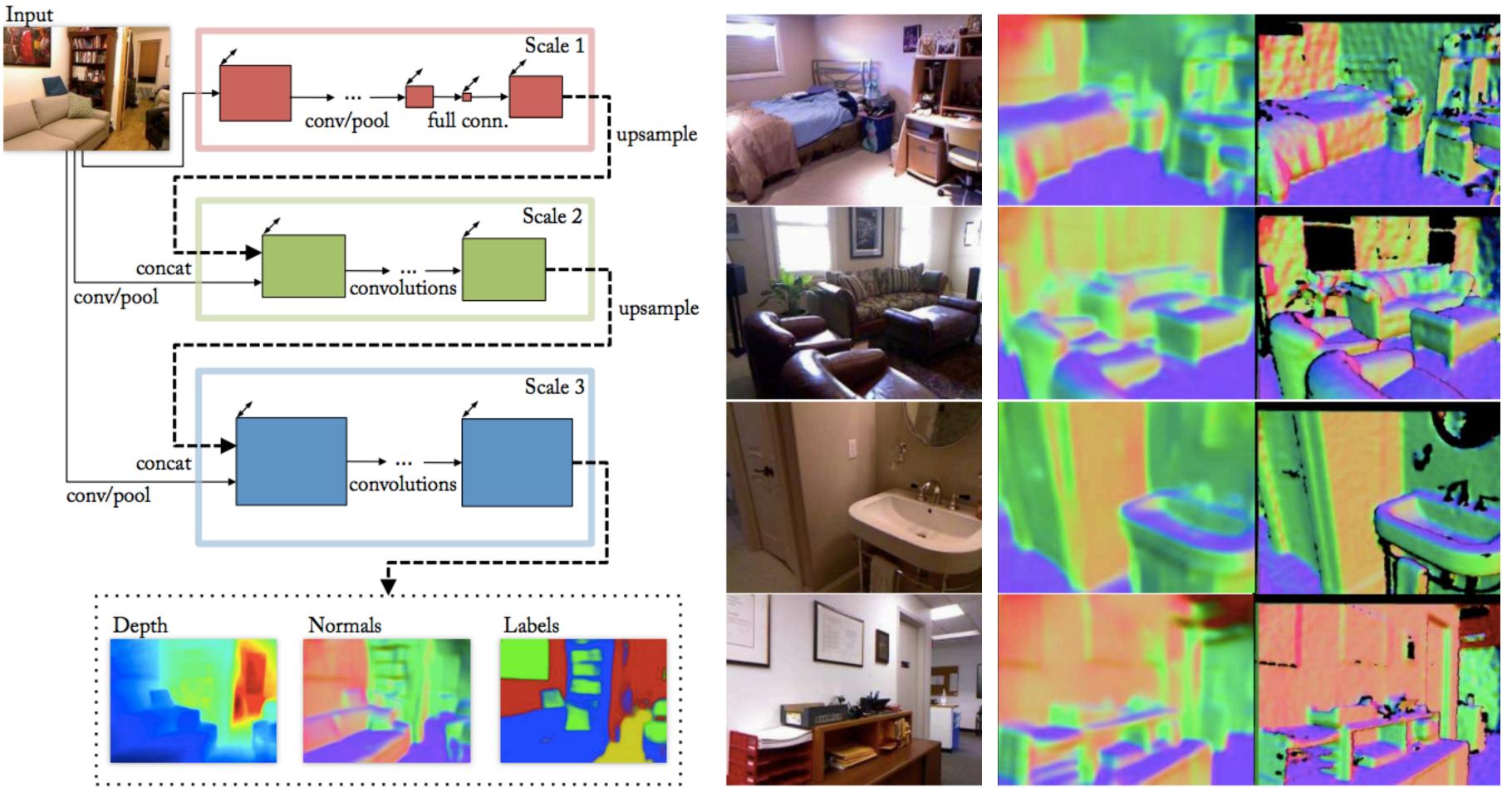
D. Eigen and R. Fergus, <u>Predicting Depth, Surface Normals and Semantic Labels with a</u> <u>Common Multi-Scale Convolutional Architecture</u>, ICCV 2015

Slide credit: S. Lazebnik

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Predicted depth

Ground truth

Dense Prediction: Depth and normal estimation

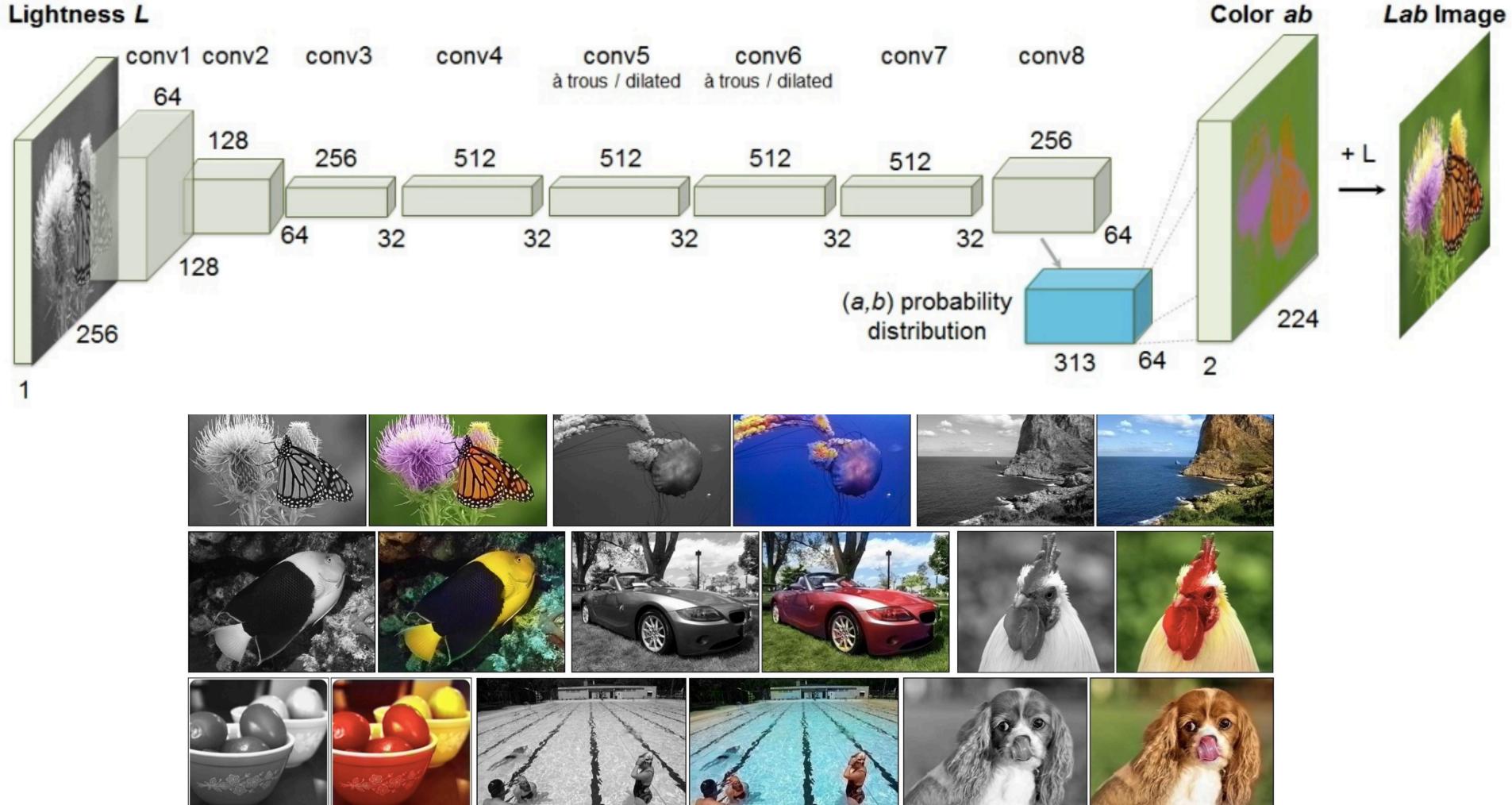


D. Eigen and R. Fergus, <u>Predicting Depth, Surface Normals and Semantic Labels with a</u> <u>Common Multi-Scale Convolutional Architecture</u>, ICCV 2015

Slide credit: S. Lazebnik

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Predicted normals Ground truth

Dense Prediction: Colorization



Slide credit: S. Lazebnik

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

R. Zhang, P. Isola, and A. Efros, Colorful Image Colorization, ECCV 2016

