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Recurrent Neural Networks
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Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
! P ! b1 Ll
! ! P+ P+ o
\ Vanilla Neural Networks
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Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
! Pt 1 f Pt Pt
! f Pt bt N

\ e.g. Image Captioning
image -> sequence of words
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Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
! Pt 1 f Pt Pt
! f Pt bt N

\ e.g. Sentiment Classification
sequence of words -> sentiment
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Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
! Pt 1 f Pt Pt
! f Pt bt N

\ e.g. Machine Translation
seq of words -> seq of words
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Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
! Pt 1 f Pt Pt
! f Pt bt N

/

e.g. Video classification on frame level
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Recurrent Neural Network
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Recurrent Neural Network

Erik Learned-Miller and TAS

usually want to
predict a vector at
some time steps
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Recurrent Neural Network

We can process a sequence of vectors x by

applying a recurrence formula at every time step: y
he|=fw (ht—b wt)
new state / old state input vector at T
| some time step
some function X

with parameters W
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Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

hy = fW(ht—la wt)

Notice: the same function and the same set X
of parameters are used at every time step.
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(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

y hy = fW(ht—17 CUt)

l

h; = tanh(Wyphi 1 + Wynzy)

X Yt = Whyht
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Character-level y
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”
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Character-level
language model

example

Vocabulary:

[h,e,l,0]

Example training 1 0 0 0

Sequence: input layer 8 (1) (1) (1)

13 L) 0 0 0 0
he"o input chars:  “h” e i I
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Character-level —
language model ht = tanh(Winht 1 + Wanat)

example
Vocabulary: y 0.3 1.0 0.1 |w hn|-03
idden layer | -0.1 ~ 0.3 > 0.5 ~ 0.9
[h,e,l,0] 0.9 0.1 0.3 0.7

i L fw

Example training 1 0 0 0
Seq uence: input layer 8 (1) (1) (1)
13 L) 0 0 0 0
hel IO input chars:  “p” “@” I i
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target chars: ‘e’ & o “o”

Character-level 10 05 0.1 02
language model output ayer | % 7 - o
example 4.1 1.2 i 2.2
R A
Vocabulary: | 0.3 1.0 0.1 |w hn|-03
hidden layer | -0.1 ~ 0.3 ~ -05 ~ 0.9
[h,e,l,0] 0.9 0.1 0.3 0.7
i o e
Example training 1 0 0 0
Seq uence: input layer 8 (1) (1) (1)
13 L) 0 0 0 0
hel IO input chars: “h” “e” e 1
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min-char-rnn.py gist: 112 lines of Python

def sample(n, seed_ix, n):
BSD License
sample a seguence of integers from the model
h is memory state, seed_ix is seed letter for first time step

Minimal character-level vanilla RNN model. Written by Andrej Karpathy (@karpathy)

import numpy as np
x = np.zeros((vocab_size, 1))

x[seed_ix] = 1

data = open('input.txt’, 'r').read()
chars = list(set(data)) ixes = []
data_size, vocab_size = len(data), len(chars) for t in xrange(n):
' % (data_size, vocab_size) h = np.tanh(np.dot(wxh, x) + np.doc(whh, h) + bh)
y = np.dot(why, h) + by

print 'data has %d characters, % unique.
char_to_ix = { ch:i for i,ch in enumerate(chars) }
ix_to_char = { iich for i,ch in enunerate(chars) } p = np.exp(y) / np.sun(np.exp(y))
ix = np.random.choice(range (vocab_size),
x = np.zeros((vocab_size, 1))

p=p.ravel())

nhidden_size = 160 # si i f Alix] = 1
seq_length = 25 t 1l the R ixes.append(ix)

learning rate = 1e-1 return ixes

nop=9 8

maixh, mwhh, mahy = np.zeros_like(wxh),
mbh, mby = np.zeros_like(bh), np.zeros_like(by)

np.zeros_like(whh), np.zeros_like(why)

wxh = np.random. randn(hidden_size, vocab_size)*s.e1

Whh = np.random.randn(hidden_size, hidden_size)*0.81 i i

why = np.random. randn(vocab_size, hidden size)®8.01 # hi ¢ smooth_loss = -np.log(1.6/vocab_size)*seq_length
L while True:

bh = np.zeros((hidden_size, 1))
by = np.zeros( (vocab_size, 1))

if peseq_length+l >= len(data) or n
np.zeros((hidden_size, 1))

sFun(inputs, targets, hprev): hprev = R
p=0 tart
inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]

targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

def

inputs, targets are both list of integers

hprev is Hxl array of initial hidden state

returns the loss, gradients on model parameters, and last hidden state
if n % 168

xs, hs, ys, ps = {}, {}L {1, T
hs[-1] = np.copy(hprev) sample_ix = sample(hprev, inputs[e], 280)
txt = '*.join(ix_to_char[ix] for ix in sample_ix)
print '----\n %s \n----' % (txr, )

loss = 6

for t in xrange{len(inputs)):
xs[t] = np.zeros((vocab_size, 1))

xs[t][inputs[t]] = 1

hs[t] = no.tanh(np.dot(wxh, xs[t]) = np.dot(whh, hs[t-1]) = bh) # hi ‘ smooth_loss = smooth_loss * 8.999 + loss * .601

ys[t] = np.dot(why, hs[t]) + by ! log print 'iter %d, loss: %f' % (n, smooth_loss)

np.exp(ys[t]) / np.sum(np.exp(ys[t]))

loss, dwxh, owhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)

if n % 100

ps[t]
loss += -np.log(ps[t][targets[t],6]) -ent L ith A
2 : ts gol wards . for param, dparam, mem in zip([wxh, whh, why, bh, by],
duxh, dwhh, dwhy = np.zeros_like{wxh), np.zeros_like(whh), np.zeros_like{why) [dwxh, dwnh, deny, dbh, dby]
dbh, dby = np.zeros_like(bh), np.zeros_like(by) [mexh, mehh, mhy, mbh, mby]):
men += dparam " dparam

dhnext = np.zeros_like(hs[e])
param += -learning_rate * dparam / np.sqrr(mem + le-8)

for © in reversed(xrange(len(inputs))):

dy = np.copy(ps[t])
::;;ar?e::F:lz(;i;,lns[t],n . p += seq length
dby += dy n 4= 1 # iterati
dh = np.dot(why.T, dy) + dhnext k t
(1 - hs[t] * hs[t]) * dh t 1i it
dhraw . .
(https://qgist.github.com/karpathy/d4dee

np.dot(dhraw, xs[t].T)

st v o 566867f8291f086)

for dparam in [duxh, dwhh, dwhy, dbh, dby]:
np.clip(dparam, -5, 5, out=dparam)

return loss, dwxh, dwhh, dwhy, dbh, dby, hs[len(inputs)-1]
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https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086

min_Char_rnn_py gist def lossFun(inputs, targets, hprev):

mmn

Mininal character-level Vanilla RIN model. Written by Andrej Karpathy (gkarpathy)

inputs, targets are both list of integers.
hprev is Hx1 array of initial hidden state
returns the loss, gradients on model parameters, and last hidden state

mmon

xs, hs, ys, ps = {}, {}, {}, {J
hs[-1] = np.copy(hprev)

loss = 0

# forward pass

for t in xrange(len(inputs)):
xs[t] = np.zeros((vocab_size,1)) # encode in 1-of-k representation
xs[t][inputs[t]] = 1

hs[t] np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh, hs[t-1]) + bh) # hidden state

| ys[t] np.dot(Why, hs[t]) + by # unnormalized log probabilities for next chars
ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # probabilities fTor next chars
loss += -np.log(ps[t][targets[t],@]) # softmax (cross-entropy loss)

/
h, = tanh(Wyphe_1 + Wy, xy)
Y = Whyht
Softmax classifier



https://gist.github.com/karpathy/d4dee566867f8291f086

Derivative ot Softmax and
Categorical Cross-Entropy Loss

https://towardsdatascience.com/derivative-of-the-softmax-function-and-the-categorical-cross-entropy-loss-ffceefc081d1

some network
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(Image by author) az
In order to kick off the backpropagation process, as described in this post,
we have to calculate the derivative of the loss w.r.t to weighted input z of the

output layer, see figure above:
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https://towardsdatascience.com/derivative-of-the-softmax-function-and-the-categorical-cross-entropy-loss-ffceefc081d1

Image Captioning

“straw” “hat” END

START “straw” “hat”

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick
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Recurrent Neural Network
“straw” “hat” END

START “straw” “hat”

Convolutional Neural Network
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Image Sentence Datasets

a man riding a bike on a dirt path through a forest.
bicyclist raises his fist as he rides on desert dirt trail.

L“Li;’i”,{é‘;zbii:’;;?cfemﬂii?eET,}’;‘ﬁ;'"ﬁ;L“%T?E ice Microsoft COCO

a mountain : "; S “VS :rlfe epration. - .

S [Tsung-Yi Lin et al. 2014]
MSCOCO0.0rg

currently:
~120K images
~5 sentences each


http://mscoco.org

‘man in black shirt is playing “construction worker in orange "two young girls are playing with "boy is doing backflip on
guitar.” safety vest is working on road.” lego toy." wakeboard.”



/ "
)
o (o ,
\ |
7 \ '
7 l \ﬂ\‘\ '
— N "."-'A‘ 2 A
> ' ==
A
> ' ==
Dld d (]
d
‘l
"‘“ 1
5 W 7
4/
V
Y - !
N LN )¢
y <&
y ' E
O d DO 0iading a
a - Dd




RNN:

hl = tanh W' (hi_l)
t hi
t—1

\4
\4
\4
\4
\4
\4

h € R™ Wt [n x 2n]

\4
\4
\4
\4
\4
\4

\4
\4
\4
\4
\4
\4

depth

v

time
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Recurrent Neural Networks have loops

7
y

b

Figure credit: Understanding LSTM Networks on colah’s blog
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

An unrolled recurrent neural network

© & ® ®
| | I

—» A » A

!

s
b > © & - ©

Figure credit: Understanding LSTM Networks on colah’s blog
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Problem of Long-Term Dependencies

“the clouds are in the sky”

Figure credit: Understanding LSTM Networks on colah’s blog
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Problem of Long-Term Dependencies
‘I grew up in France... | speak fluent French.”

@ () @(h%

@)

I I I

A—»A » A » A — A — A
© 0 6 o o o
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN:
g I hz—l A A A A A
hi = tanh W* [ '}
hful — X
h € R™ Wt [n x2n]

) sigm

Il = [siem W**(h?_l) I A A A
0 sigm hi

g tanh

c=fOc 1+i0Og depth

hl = 0 ® tanh(c})

v

time
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END
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