Lecture 16:;

Recurrent Neural Networks

Erik Learned-Miller and TAsS Lecture 16 - 1 Nov 4, 2021

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
! P ! b1 Ll
! ! P+ P+ o
\ Vanilla Neural Networks

Erik Learned-Miller and TAsS Lecture 16 - 2 Nov 4, 2021

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
! Pt 1 f Pt Pt
! f Pt bt N

\ e.g. Image Captioning
image -> sequence of words

Erik Learned-Miller and TAsS Lecture 16 - 3 Nov 4, 2021

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
! Pt 1 f Pt Pt
! f Pt bt N

\ e.g. Sentiment Classification
sequence of words -> sentiment

Erik Learned-Miller and TAsS Lecture 16 - 4 Nov 4, 2021

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
! Pt 1 f Pt Pt
! f Pt bt N

\ e.g. Machine Translation
seq of words -> seq of words

Erik Learned-Miller and TAsS Lecture 16 - 5 Nov 4, 2021

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
! Pt 1 f Pt Pt
! f Pt bt N

/

e.g. Video classification on frame level

Erik Learned-Miller and TAsS Lecture 16 - 6 Nov 4, 2021

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

Recurrent Neural Network

Erik Learned-Miller and TAsS Lecture 16 - 7 Nov 4, 2021

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

Recurrent Neural Network

Erik Learned-Miller and TAS

usually want to
predict a vector at
some time steps

Lecture 16 - 8

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

Nov 4, 2021

Recurrent Neural Network

We can process a sequence of vectors x by

applying a recurrence formula at every time step: y
he|=fw (ht—b wt)
new state / old state input vector at T
| some time step
some function X

with parameters W

Erik Learned-Miller and TAsS Lecture 16 - 9 Nov 4, 2021

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

hy = fW(ht—la wt)

Notice: the same function and the same set X
of parameters are used at every time step.

Erik Learned-Miller and TAsS Lecture 16 - 10 Nov 4, 2021

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

y hy = fW(ht—17 CUt)

l

h; = tanh(Wyphi 1 + Wynzy)

X Yt = Whyht

Erik Learned-Miller and TAsS Lecture 16 - 11 Nov 4, 2021

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

Character-level y
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

Erik Learned-Miller and TAsS Lecture 16 - 12 Nov 4, 2021

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

Character-level
language model

example

Vocabulary:

[h,e,l,0]

Example training 1 0 0 0

Sequence: input layer 8 (1) (1) (1)

13 L) 0 0 0 0
he"o input chars: “h” e i I

Erik Learned-Miller and TAsS Lecture 16 - 13 Nov 4, 2021

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

Character-level —
language model ht = tanh(Winht 1 + Wanat)

example
Vocabulary: y 0.3 1.0 0.1 |w hn|-03
idden layer | -0.1 ~ 0.3 > 0.5 ~ 0.9
[h,e,l,0] 0.9 0.1 0.3 0.7

i L fw

Example training 1 0 0 0
Seq uence: input layer 8 (1) (1) (1)
13 L) 0 0 0 0
hel IO input chars: “p” “@” I i

Erik Learned-Miller and TAsS Lecture 16 - 14 Nov 4, 2021

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

target chars: ‘e’ & o “o”

Character-level 10 05 0.1 02
language model output ayer | % 7 - o
example 4.1 1.2 i 2.2
R A
Vocabulary: | 0.3 1.0 0.1 |w hn|-03
hidden layer | -0.1 ~ 0.3 ~ -05 ~ 0.9
[h,e,l,0] 0.9 0.1 0.3 0.7
i o e
Example training 1 0 0 0
Seq uence: input layer 8 (1) (1) (1)
13 L) 0 0 0 0
hel IO input chars: “h” “e” e 1

Erik Learned-Miller and TAsS Lecture 16 - 15 Nov 4, 2021

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

min-char-rnn.py gist: 112 lines of Python

def sample(n, seed_ix, n):
BSD License
sample a seguence of integers from the model
h is memory state, seed_ix is seed letter for first time step

Minimal character-level vanilla RNN model. Written by Andrej Karpathy (@karpathy)

import numpy as np
x = np.zeros((vocab_size, 1))

x[seed_ix] = 1

data = open('input.txt’, 'r').read()
chars = list(set(data)) ixes = []
data_size, vocab_size = len(data), len(chars) for t in xrange(n):
' % (data_size, vocab_size) h = np.tanh(np.dot(wxh, x) + np.doc(whh, h) + bh)
y = np.dot(why, h) + by

print 'data has %d characters, % unique.
char_to_ix = { ch:i for i,ch in enumerate(chars) }
ix_to_char = { iich for i,ch in enunerate(chars) } p = np.exp(y) / np.sun(np.exp(y))
ix = np.random.choice(range (vocab_size),
x = np.zeros((vocab_size, 1))

p=p.ravel())

nhidden_size = 160 # si i f Alix] = 1
seq_length = 25 t 1l the R ixes.append(ix)

learning rate = 1e-1 return ixes

nop=9 8

maixh, mwhh, mahy = np.zeros_like(wxh),
mbh, mby = np.zeros_like(bh), np.zeros_like(by)

np.zeros_like(whh), np.zeros_like(why)

wxh = np.random. randn(hidden_size, vocab_size)*s.e1

Whh = np.random.randn(hidden_size, hidden_size)*0.81 i i

why = np.random. randn(vocab_size, hidden size)®8.01 # hi ¢ smooth_loss = -np.log(1.6/vocab_size)*seq_length
L while True:

bh = np.zeros((hidden_size, 1))
by = np.zeros((vocab_size, 1))

if peseq_length+l >= len(data) or n
np.zeros((hidden_size, 1))

sFun(inputs, targets, hprev): hprev = R
p=0 tart
inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]

targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

def

inputs, targets are both list of integers

hprev is Hxl array of initial hidden state

returns the loss, gradients on model parameters, and last hidden state
if n % 168

xs, hs, ys, ps = {}, {}L {1, T
hs[-1] = np.copy(hprev) sample_ix = sample(hprev, inputs[e], 280)
txt = '*.join(ix_to_char[ix] for ix in sample_ix)
print '----\n %s \n----' % (txr,)

loss = 6

for t in xrange{len(inputs)):
xs[t] = np.zeros((vocab_size, 1))

xs[t][inputs[t]] = 1

hs[t] = no.tanh(np.dot(wxh, xs[t]) = np.dot(whh, hs[t-1]) = bh) # hi ‘ smooth_loss = smooth_loss * 8.999 + loss * .601

ys[t] = np.dot(why, hs[t]) + by ! log print 'iter %d, loss: %f' % (n, smooth_loss)

np.exp(ys[t]) / np.sum(np.exp(ys[t]))

loss, dwxh, owhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)

if n % 100

ps[t]
loss += -np.log(ps[t][targets[t],6]) -ent L ith A
2 : ts gol wards . for param, dparam, mem in zip([wxh, whh, why, bh, by],
duxh, dwhh, dwhy = np.zeros_like{wxh), np.zeros_like(whh), np.zeros_like{why) [dwxh, dwnh, deny, dbh, dby]
dbh, dby = np.zeros_like(bh), np.zeros_like(by) [mexh, mehh, mhy, mbh, mby]):
men += dparam " dparam

dhnext = np.zeros_like(hs[e])
param += -learning_rate * dparam / np.sqrr(mem + le-8)

for © in reversed(xrange(len(inputs))):

dy = np.copy(ps[t])
::;;ar?e::F:lz(;i;,lns[t],n . p += seq length
dby += dy n 4= 1 # iterati
dh = np.dot(why.T, dy) + dhnext k t
(1 - hs[t] * hs[t]) * dh t 1i it
dhraw . .
(https://qgist.github.com/karpathy/d4dee

np.dot(dhraw, xs[t].T)

st v o 566867f8291f086)

for dparam in [duxh, dwhh, dwhy, dbh, dby]:
np.clip(dparam, -5, 5, out=dparam)

return loss, dwxh, dwhh, dwhy, dbh, dby, hs[len(inputs)-1]

Lecture 16 - 16 Nov 4, 2021

Erik Learned-Miller and TAS

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086

min_Char_rnn_py gist def lossFun(inputs, targets, hprev):

mmn

Mininal character-level Vanilla RIN model. Written by Andrej Karpathy (gkarpathy)

inputs, targets are both list of integers.
hprev is Hx1 array of initial hidden state
returns the loss, gradients on model parameters, and last hidden state

mmon

xs, hs, ys, ps = {}, {}, {}, {J
hs[-1] = np.copy(hprev)

loss = 0

forward pass

for t in xrange(len(inputs)):
xs[t] = np.zeros((vocab_size,1)) # encode in 1-of-k representation
xs[t][inputs[t]] = 1

hs[t] np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh, hs[t-1]) + bh) # hidden state

| ys[t] np.dot(Why, hs[t]) + by # unnormalized log probabilities for next chars
ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # probabilities fTor next chars
loss += -np.log(ps[t][targets[t],@]) # softmax (cross-entropy loss)

/
h, = tanh(Wyphe_1 + Wy, xy)
Y = Whyht
Softmax classifier

https://gist.github.com/karpathy/d4dee566867f8291f086

Derivative ot Softmax and
Categorical Cross-Entropy Loss

https://towardsdatascience.com/derivative-of-the-softmax-function-and-the-categorical-cross-entropy-loss-ffceefc081d1

some network

®
. "\\-’ No output layer s
—® T ?*,"O 0 g » < W P +b > g L(S, y)
e e\ ®]
@ @\ \. x
o o aL
(Image by author) az
In order to kick off the backpropagation process, as described in this post,
we have to calculate the derivative of the loss w.r.t to weighted input z of the

output layer, see figure above:

[

([c
oL a d Y 9s
6_2} - _EZ-\[-log(s;) = _Z“’r 'a_z}rog{-s‘) = _Zs_ 0z,

=1 i=1 i=1 ' 7

18

https://towardsdatascience.com/derivative-of-the-softmax-function-and-the-categorical-cross-entropy-loss-ffceefc081d1

Image Captioning

“straw” “hat” END

START “straw” “hat”

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Erik Learned-Miller and TAsS Lecture 16 - 19 Nov 4, 2021

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

Recurrent Neural Network
“straw” “hat” END

START “straw” “hat”

Convolutional Neural Network

Erik Learned-Miller and TAsS Lecture 16 - 20 Nov 4, 2021

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

test image

0 <
dE <

conv-64

~ conv-64
' maxpool

test image

" conv-128

conv-128

maxpool

{' conv-256
. conv-256
- maxpool
 conv-512
conv-512
~_maxpool
. conv-512
 conv-512
" maxpool
 FC-4096
 FC-4096
FC-1000

~ softmax

0 <
dE <

conv-64

~ conv-64
' maxpool

test image

" conv-128

conv-128

maxpool

conv-256

_ conv-256
. conv-256
- maxpool
. conv-512

conv-512
~_maxpool
. conv-512
 conv-512
" maxpool
 FC-4096
 FC-4096

FG10p0
sofgNax

.
conv-64

~ conv-64
 maxpool

test image

" conv-128

. conv-128 _
" maxpool
ir conv-256
. conv-256
__maxpool
 conv-512
~ conv-512
~_maxpool
. conv-512
1 conv-512 ’
{*maxpioolﬁ

e X0

<STA
. FC-4096 ST/

<START>

0 <
= <«

conv-64

test image

~conv-64
 maxpool

" conv-128

- conv-128
~maxpool

~ conv-256

. conv-256

_ maxpool f before:
Lgony 312, h = tanh(Wxh * x + Whh * h)

~ conv-512
~_maxpool

" conv-512 WI h —
s now:

ff.‘;:_' h = tanh(Wxh * x + Whh * h + Wih * v)

[<STA
_ FC-4096 ST

<START>

. conv-64

conv-64

 maxpool

" conv-128

- conv-128

L

|

~ maxpool
conv-256

. conv-256
maxpool

 conv-512

~conv-512

~_maxpool

conv-512

|
|

.~ maxpool

FC-4096

FC-4096

<
<«

yO

X0
<STA
RT>

Straw

<START>

sample!

test image

0 <
dE <

conv-64

~ conv-64
 maxpool
 conv-128
. conv-128 _
" maxpool

yO

 conv-256

ir conv-256
i
i

maxpool

~ conv-512
~ conv-512

~_maxpool

. conv-512

\ 4

1 conv-512 ’
{*maxpioolﬁ

e X0

<STA
~ FC-4096 ST/

Straw

<START>

test image

. conv-64

conv-64

 maxpool

" conv-128

- conv-128

L

|

~ maxpool

conv-256

. conv-256

maxpool

 conv-512

~conv-512

~_maxpool

" conv-512

.~ maxpool

|
|

FC-4096

FC-4096

<
<«

yO

\ 4

X0
<STA
RT>

Straw

hat

<START>

test image

sample!

.
conv-64

~ conv-64
 maxpool

test image

" conv-128

. conv-128 _
" maxpool

~ conv-256 y0 yl y2

. conv-256
~_maxpool

~ conv-512
~ conv-512

~_maxpool

. conv-512

>
o
A 4
>
[y
A 4
>
N

1 conv-512 ’

‘ maxpiool*

At X0

’ FC-4096 <STA straw hat
e ——) RT>

<START>

0 <
= <«

conv-64
~conv-64
 maxpool
 conv-128
- conv-128
~maxpool

test image

~ conv-256 yO

. conv-256

~ maxpool

\ sample

<END> token

 conv-512
~ conv-512

~_maxpool

" conv-512

\ 4

=> finish.

X0

~ FC-4096 i

RT>

Straw

hat

<START>

Image Sentence Datasets

a man riding a bike on a dirt path through a forest.
bicyclist raises his fist as he rides on desert dirt trail.

L“Li;’i”,{é‘;zbii:’;;?cfemﬂii?eET,}’;‘ﬁ;'"ﬁ;L“%T?E ice Microsoft COCO

a mountain : "; S “VS :rlfe epration. - .

S [Tsung-Yi Lin et al. 2014]
MSCOCO0.0rg

currently:
~120K images
~5 sentences each

http://mscoco.org

‘man in black shirt is playing “construction worker in orange "two young girls are playing with "boy is doing backflip on
guitar.” safety vest is working on road.” lego toy." wakeboard.”

/ "
)
o (o ,
\ |
7 \ '
7 l \ﬂ\‘\ '
— N "."-'A‘ 2 A
> ' ==
A
> ' ==
Dld d (]
d
‘l
"‘“ 1
5 W 7
4/
V
Y - !
N LN)¢
y <&
y ' E
O d DO 0iading a
a - Dd

RNN:

hl = tanh W' (hi_l)
t hi
t—1

\4
\4
\4
\4
\4
\4

h € R™ Wt [n x 2n]

\4
\4
\4
\4
\4
\4

\4
\4
\4
\4
\4
\4

depth

v

time

Erik Learned-Miller and TAsS Lecture 16 - 34 Nov 4, 2021

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

Recurrent Neural Networks have loops

7
y

b

Figure credit: Understanding LSTM Networks on colah’s blog

Erik Learned-Miller and TAs Lecture 14 - 5 Nov 2019

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

An unrolled recurrent neural network

© & ® ®
| | I

—» A » A

!

s
b > © & - ©

Figure credit: Understanding LSTM Networks on colah’s blog

Erik Learned-Miller and TAs Lecture 14 - 5 Nov 2019

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Problem of Long-Term Dependencies

“the clouds are in the sky”

Figure credit: Understanding LSTM Networks on colah’s blog

Erik Learned-Miller and TAs Lecture 14 - 5 Nov 2019

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Problem of Long-Term Dependencies
‘I grew up in France... | speak fluent French.”

@ () @(h%

@)

I I I

A—»A » A » A — A — A
© 0 6 o o o

Erlk Learned Mlller and TAs Lecture 14 - 5 Nov 2019

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN:
g I hz—l A A A A A
hi = tanh W* ['}
hful — X
h € R™ Wt [n x2n]

) sigm

Il = [siem W**(h?_l) I A A A
0 sigm hi

g tanh

c=fOc 1+i0Og depth

hl = 0 ® tanh(c})

v

time

Erik Learned-Miller and TAs | ecture 16 - 39

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

Nov 4, 2021

END

Erik Learned-Miller and TAs L ecture 14 - 5 Nov 2019

Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Derivative of Softmax and Categorical Cross-Entropy Loss
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Recurrent Neural Networks have loops
	Slide 36: An unrolled recurrent neural network
	Slide 37: Problem of Long-Term Dependencies
	Slide 38: Problem of Long-Term Dependencies
	Slide 39
	Slide 40: END

