Lecture 17:
 Attention and Transformers

Last Time: Recurrent Neural Networks

one to many
many to one

many to many

Last Time: Variable length computation graph with

 shared weights

Sequence to Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Output: Sequence y_{1}, \ldots, y_{T},

Encoder: $h_{t}=f_{w}\left(x_{t}, h_{t-1}\right)$

Sequence to Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Output: Sequence y_{1}, \ldots, y_{T},
From final hidden state predict:
Encoder: $h_{t}=f_{w}\left(x_{t}, h_{t-1}\right)$ Initial decoder state s_{0} Context vector c (often $\mathrm{c}=\mathrm{h}_{\mathrm{T}}$)

Sequence to Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Decoder: $s_{t}=g_{U}\left(y_{t-1}, s_{t-1}, c\right)$
Output: Sequence $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{T}}$
estamos

Sequence to Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Decoder: $s_{t}=g_{u}\left(y_{t-1}, s_{t-1}, c\right)$
Output: Sequence $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{T}}$
estamos comiendo

Sequence to Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Decoder: $s_{t}=g_{U}\left(y_{t-1}, s_{t-1}, c\right)$
Output: Sequence $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{T}}$
estamos comiendo pan [STOP]

Sequence to Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Decoder: $s_{t}=g_{U}\left(y_{t-1}, s_{t-1}, c\right)$
Output: Sequence $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{T}}$
estamos comiendo pan [STOP]

Sequence to Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Output: Sequence y_{1}, \ldots, y_{T}
Decoder: $s_{t}=g_{u}\left(y_{t-1}, s_{t-1}, c\right)$
estamos comiendo pan [STOP]

Sequence to Sequence with RNNs and Attention

Input: Sequence $x_{1}, \ldots x_{T}$
Output: Sequence y_{1}, \ldots, y_{T},

Encoder: $h_{t}=f_{w}\left(x_{t}, h_{t-1}\right) \quad \begin{aligned} & \text { From final hidden state: } \\ & \text { Initial decoder state } s_{0}\end{aligned}$

Sequence to Sequence with RNNs and Attention

Compute (scalar) alignment scores

$$
\mathrm{e}_{\mathrm{t}, \mathrm{i}}=\mathrm{f}_{\mathrm{att}}\left(\mathrm{~s}_{\mathrm{t}-1}, \mathrm{~h}_{\mathrm{i}}\right) \quad\left(\mathrm{f}_{\mathrm{att}}\right. \text { is an MLP) }
$$

Sequence to Sequence with RNNs and Attention

Compute (scalar) alignment scores

$$
e_{t, i}=f_{a t t}\left(s_{t-1}, h_{i}\right) \quad\left(f_{a t t} \text { is an MLP }\right)
$$

Normalize alignment scores to get attention weights

$$
0<a_{t, i}<1 \quad \sum_{i} a_{\mathrm{t}, \mathrm{i}}=1
$$

Sequence to Sequence with RNNs and Attention

Compute (scalar) alignment scores $\mathrm{e}_{\mathrm{t}, \mathrm{i}}=\mathrm{f}_{\mathrm{att}}\left(\mathrm{s}_{\mathrm{t}-1}, \mathrm{~h}_{\mathrm{i}}\right) \quad$ ($\mathrm{f}_{\mathrm{att}}$ is an MLP)

Normalize alignment scores to get attention weights

$$
0<a_{\mathrm{t}, \mathrm{i}}<1 \quad \sum_{\mathrm{i}} \mathrm{a}_{\mathrm{t}, \mathrm{i}}=1
$$

Compute context vector as linear combination of hidden states
$c_{t}=\sum_{i} a_{t, i} h_{i}$

Sequence to Sequence with RNNs and Attention

$$
\mathrm{e}_{\mathrm{t}, \mathrm{i}}=\mathrm{f}_{\mathrm{att}}\left(\mathrm{~s}_{\mathrm{t}-1}, \mathrm{~h}_{\mathrm{i}}\right) \quad\left(\mathrm{f}_{\mathrm{att}}\right. \text { is an MLP) }
$$

Normalize alignment scores to get attention weights

$$
0<a_{t, i}<1 \quad \sum_{i} a_{t, i}=1
$$

Compute context vector as linear combination of hidden states
$c_{t}=\sum_{i} a_{t, i} h_{i}$
Use context vector in decoder: $\mathrm{s}_{\mathrm{t}}=\mathrm{g}_{\mathrm{u}}\left(\mathrm{y}_{\mathrm{t}-1}, \mathrm{~s}_{\mathrm{t}-1}, \mathrm{c}_{\mathrm{t}}\right)$

Sequence to Sequence with RNNs and Attention

$$
\mathrm{e}_{\mathrm{t}, \mathrm{i}}=\mathrm{f}_{\mathrm{att}}\left(\mathrm{~s}_{\mathrm{t}-1}, h_{\mathrm{i}}\right) \quad\left(\mathrm{f}_{\mathrm{att}}\right. \text { is an MLP) }
$$

[START]

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Sequence to Sequence with RNNs and Attention

 Use a different context vector in each timestep of decoder- Input sequence not bottlenecked through single vector
- At each timestep of decoder, context vector "looks at" different parts of the input sequence
estamos comiendo pan [STOP]

Sequence to Sequence with RNNs and Attention

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Visualize attention weights $\mathrm{a}_{\mathrm{t}, \mathrm{i}}$

Sequence to Sequence with RNNs and Attention

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Diagonal attention means words correspond in order

Diagonal attention means words correspond in order

Sequence to Sequence with RNNs and Attention

> Example: English to French translation

Input: "The agreement on
Diagonal attention means words correspond in order

Attention figures out different word orders

Visualize attention weights $\mathrm{a}_{\mathrm{t}, \mathrm{i}}$
the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Sequence to Sequence with RNNs and Attention

The decoder doesn't use the fact that h_{i} form an ordered sequence - it just treats them as an unordered set $\left\{\mathrm{h}_{\mathrm{i}}\right\}$

Can use similar architecture given any set of input hidden vectors $\left\{h_{i}\right\}$!

comiendo pan y_{2}
[STOP]

Image Captioning using spatial features

Input: Image I
Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015

Image Captioning using spatial features

Input: Image I
Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

Encoder: $h_{0}=f_{w}(\mathbf{z})$
where \mathbf{z} is spatial CNN features
$f_{w}($.$) is an MLP$

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015

Image Captioning using spatial features

Input: Image I
Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

Decoder: $y_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c\right)$ where context vector c is often $\mathrm{c}=\mathrm{h}_{0}$

Encoder: $h_{0}=f_{w}(z)$ where \mathbf{z} is spatial CNN features $f_{w}(\cdot)$ is an MLP

Image Captioning using spatial features

Input: Image I
Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

Decoder: $y_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c\right)$ where context vector c is often $\mathrm{c}=\mathrm{h}_{0}$

Encoder: $h_{0}=f_{w}(z)$ where \mathbf{z} is spatial CNN features $f_{w}($.$) is an MLP$

Image Captioning using spatial features

Input: Image I
Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$
Decoder: $y_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c\right)$ where context vector c is often $\mathrm{c}=\mathrm{h}_{0}$

Encoder: $h_{0}=f_{w}(z)$
where \mathbf{z} is spatial CNN features $f_{w}($.$) is an MLP$

Image Captioning using spatial features

Input: Image I
Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

Decoder: $y_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c\right)$ where context vector c is often $\mathrm{c}=\mathrm{h}_{0}$

Encoder: $h_{0}=f_{w}(z)$ where \mathbf{z} is spatial CNN features $f_{w}(\cdot)$ is an MLP

Image Captioning using spatial features

Problem: Input is "bottlenecked" through c

- Model needs to encode everything it
wants to say within c
This is a problem if we want to generate really long descriptions? 100s of words long

Image Captioning with RNNs and Attention

Attention idea: New context vector at every time step.
Each context vector will attend to different image regions

Extract spatial features from a

Attention Saccades in humans

Image Captioning with RNNs and Attention

Image Captioning with RNNs and Attention

Image Captioning with RNNs and Attention

Compute alignments scores (scalars):
$e_{t, i, j}=f_{\text {att }}\left(h_{t-1}, z_{i, j}\right)$
$f_{\text {att }}($.$) is an MLP$

Extract spatial features from a pretrained CNN

Alignment scores: Attention: \begin{tabular}{c}
\multicolumn{3}{c}{$H \times W$}

$e_{1,0,0}$	$e_{1,0,1}$	$e_{1,0,2}$				
$e_{1,1,0}$	$e_{1,1,1}$	$e_{1,1,2}$				
$e_{1,2,0}$	$e_{1,2,1}$	$e_{1,2,2}$	\rightarrow	$a_{1,0,0}$	$a_{1,0,1}$	$a_{1,0,2}$
:---	:---	:---				
$a_{1,1,0}$	$a_{1,1,1}$	$a_{1,1,2}$				
$a_{1,2,0}$	$a_{1,2,1}$	$a_{1,2,2}$				

\end{tabular}

Normalize to get attention weights:
$a_{t,:,:}=\operatorname{softmax}\left(e_{t,:,:}\right)$
$0<a_{t, i, j}<1$,
attention values sum to 1

Compute context vector:

$$
c_{t}=\sum_{i, j} a_{t, i, j} z_{t, i, j}
$$

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Image Captioning with RNNs and Attention

Each timestep of decoder uses a

Decoder: $y_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c_{t}\right)$ different context vector that looks at different parts of the input image

$$
\begin{aligned}
e_{t, i, j} & =f_{\text {att }}\left(h_{t-1}, z_{i, j}\right) \\
a_{t,:,:} & =\operatorname{softmax}\left(e_{t,:,:}\right) \\
c_{t} & =\sum_{i, j} a_{t, i, j} z_{t, i, j}
\end{aligned}
$$

Extract spatial features from a pretrained CNN

person

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015

Image Captioning with RNNs and Attention

Image Captioning with RNNs and Attention

Each timestep of decoder uses a

Decoder: $y_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c_{t}\right)$ different context vector that looks at different parts of the input image

$$
\begin{aligned}
e_{t, i, j} & =f_{\text {att }}\left(h_{t-1}, z_{i, j}\right) \\
a_{t,:,:} & =\operatorname{softmax}\left(e_{t,:,:}\right) \\
c_{t} & =\sum_{i, j} a_{t, i, j} z_{t, i, j}
\end{aligned}
$$

Extract spatial features from a pretrained CNN

Image Captioning with RNNs and Attention

Each timestep of decoder uses a

Decoder: $y_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c_{t}\right)$ different context vector that looks at different parts of the input image

$$
\begin{aligned}
e_{t, i, j} & =f_{\text {att }}\left(h_{t-1}, z_{i, j}\right) \\
a_{t,:,:} & =\operatorname{softmax}\left(e_{t,,:,}\right) \\
c_{t} & =\sum_{i, j} a_{t, i, j} z_{t, i, j}
\end{aligned}
$$

Image Captioning with RNNs and Attention

Each timestep of decoder uses a

Decoder: $y_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c_{t}\right)$ different context vector that looks at different parts of the input image
$e_{t, i, j}=f_{\text {att }}\left(h_{t-1}, z_{i, j}\right)$
$a_{t,-}=\operatorname{softmax}\left(e_{t, .}\right)$

$$
c_{t}=\sum_{i, j} a_{t, i, j} z_{t, i, j}
$$

Image Captioning with RNNs and

This entire process is differentiable.

- model chooses its own attention weights. No attention supervision is required

[START]
person

Image Captioning with Attention

Image Captioning with Attention

A woman is throwing a frisbee in a park.

A little girl sitting on a bed with
a teddy bear.

A dog is standing on a hardwood floor.

A group of people sitting on a boat in the water.

A stop sign is on a road with a mountain in the background.

A giraffe standing in a forest with trees in the background.

Image Captioning with RNNs and Attention

Attention we just saw in image captioning

Inputs:
h
Features: z (shape: H x W x D)
Query: h (shape: D)

Attention we just saw in image captioning

Operations:

Alignment: $e_{i, j}=f_{a t t}\left(h, z_{i, j}\right)$

Inputs:

Features: z (shape: H x W x D)
Query: h (shape: D)

Attention we just saw in image captioning

Attention we just saw in image captioning

Outputs:
context vector: c (shape: D)

Operations:
Alignment: $e_{i, j}=f_{a t t}\left(h, z_{i, j}\right)$
Attention: $\mathbf{a}=\operatorname{softmax}(\mathbf{e})$
Output: $\mathbf{c}=\sum_{i, j} \mathrm{a}_{\mathrm{i}, \mathrm{j}} \mathrm{z}_{\mathrm{i}, \mathrm{j}}$

Inputs:

Features: z (shape: H x W x D)
Query: h (shape: D)

General attention layer

Outputs:
context vector: c (shape: D)

Operations:

Alignment: $\mathrm{e}_{\mathrm{i}}=\mathrm{f}_{\text {att }}\left(\mathrm{h}, \mathrm{x}_{\mathrm{i}}\right)$
Attention: $\mathbf{a}=\operatorname{softmax}(\mathbf{e})$
Output: $\mathbf{c}=\sum_{i} a_{i} x_{i}$

General attention layer

Change $\mathrm{f}_{\text {att }}($.$) to a simple dot product$

- only works well with key \& value transformation trick (will mention in a few slides)

General attention layer

Outputs:

context vector: c (shape: D)
Change $f_{\text {att }}($.$) to a scaled simple dot product$

- Larger dimensions means more terms in the dot product sum.
- So, the variance of the logits is higher. Large magnitude vectors will produce much higher logits.
- So, the post-softmax distribution has lower-entropy, assuming logits are IID.
- Ultimately, these large magnitude vectors will cause softmax to peak and assign very little weight to all others
- Divide by $\sqrt{ } D$ to reduce effect of large magnitude vectors

Inputs:

Input vectors: \mathbf{x} (shape: Nx ㅁ)
Query: h (shape: D)

General attention layer

Outputs:

context vectors: y (shape: D)
Multiple query vectors

- each query creates a new output context vector

Operations:
Alignment: $e_{i, j}=q_{j} \cdot x_{i} / \sqrt{ } D$ Attention: $\mathbf{a}=\operatorname{softmax}(\mathrm{e})$ Output: $\mathrm{y}_{\mathrm{j}}=\sum_{\mathrm{i}} \mathrm{a}_{\mathrm{i}, \mathrm{j}} \mathrm{x}_{\mathrm{i}}$

Inputs:

Input vectors: x (shape: $N \times D$) Queries: \mathbf{q} (shape: $\mathrm{M} \times \mathrm{D}$)

General attention layer

Outputs:

context vectors: y (shape: D)

Operations:

Alignment: $\mathrm{e}_{\mathrm{i}, \mathrm{j}}=\mathrm{q}_{\mathrm{j}} \cdot \mathrm{x}_{\mathrm{i}} / \sqrt{ } \mathrm{D}$
Attention: $\mathbf{a}=\operatorname{softmax}(\mathbf{e})$
Output: $\mathrm{y}_{\mathrm{j}}=\sum_{\mathrm{i}} \mathrm{a}_{\mathrm{i}, \mathrm{j}} \mathrm{x}_{\mathrm{i}}$
Notice that the input vectors are used for both the alignment as well as the attention calculations.

- We can add more expressivity to the layer by adding a different FC layer before each of the two steps.

Inputs:

Input vectors: \mathbf{x} (shape: $\mathrm{N} \times \mathrm{D}$)
Queries: q (shape: M x D)

General attention layer

Operations:

Key vectors: $k=\mathbf{x} W_{k}$ Value vectors: $v=x W_{v}$

Inputs:

Input vectors: \mathbf{x} (shape: Nx ㅁ)
Queries: q (shape: $M * D_{k}$)

Notice that the input vectors are used for both the alignment as well as the attention calculations.

- We can add more expressivity to the layer by adding a different FC layer before each of the two steps.

General attention layer

Outputs:

context vectors: y (shape: D_{v})
The input and output dimensions can now change depending on the key and value FC layers

Notice that the input vectors are used for both the alignment as well as the attention calculations.

- We can add more expressivity to the layer by adding a different FC layer before each of the two steps.

General attention layer

Outputs:

context vectors: y (shape: D_{v})

Recall that the query vector was a function of the input vectors

Encoder: $h_{0}=f_{w}(z)$
where \mathbf{z} is spatial CNN features $f_{w}($.$) is an MLP$

Inputs:

Input vectors: \mathbf{x} (shape: Nx D)
Queries: \mathbf{q} (shape: $M \times D_{k}$)

Self attention layer

Operations:

Key vectors: $k=\mathbf{x W} W_{k}$
Value vectors: $v=\mathbf{x} W$
Query vectors: $q=\mathbf{x} W_{q}$
Alignment: $e_{i j}=q_{i} \cdot k_{i} / \sqrt{ } D$
Attention: $\mathbf{a}=\operatorname{softmax}(\mathbf{e})$
Output: $y_{j}=\sum_{i} a_{i, j} v_{i}$

We can calculate the query vectors from the input vectors, therefore, defining a "self-attention" layer.

Instead, query vectors are calculated using a FC layer.

No input query vectors anymore

Self attention layer

Self attention layer - attends over sets of inputs

Outputs:

context vectors: y (shape: D_{v})

Operations:

Key vectors: $\mathrm{k}=\mathbf{x W} \mathrm{W}_{\mathrm{k}}$
Value vectors: $\mathrm{v}=\mathbf{x} \mathrm{W}$
Query vectors: $q=\mathbf{x W}$
Alignment: $\mathrm{e}_{\mathrm{i}, \mathrm{j}}=\mathrm{q}_{\mathrm{j}} \cdot \mathrm{k}_{\mathrm{i}} / \sqrt{\mathrm{D}}$
self-attention

Attention: $\mathbf{a}=\operatorname{softmax}(\mathrm{e})$
Output: $y_{j}=\sum_{i} a_{i, j} v_{i}$

Inputs:

Input vectors: \mathbf{x} (shape: Nx D)

Self attention layer - attends over sets of inputs

Permutation equivariant
Self-attention layer doesn't care about the orders of the inputs!

Problem: How can we encode ordered sequences like language or spatially ordered image features?

Positional encoding

position encoding

Concatenate/add special positional encoding p_{j} to each input vector x_{j}

We use a function pos: $\mathrm{N} \rightarrow \mathrm{R}^{\mathrm{d}}$ to process the position j of the vector into a d-dimensional vector
So, $\mathrm{p}_{\mathrm{j}}=\operatorname{pos}(\mathrm{j})$

Positional encoding

self-attention

position encoding

Concatenate special positional encoding p_{j} to each input vector X_{j}

We use a function pos: $\mathrm{N} \rightarrow \mathrm{R}^{\mathrm{d}}$ to process the position j of the vector into a d-dimensional vector
So, $\mathrm{p}_{\mathrm{j}}=\operatorname{pos}(\mathrm{j})$

Options for pos(.)

1. Learn a lookup table:

- Learn parameters to use for $\operatorname{pos}(\mathrm{t})$ for $\mathrm{t} \varepsilon[0, \mathrm{~T})$
- Lookup table contains T x d parameters.

Desiderata of $\operatorname{pos}($.$) :$

1. It should output a unique encoding for each time-step (word's position in a sentence)
2. Distance between any two time-steps should be consistent across sentences with different lengths.
3. Our model should generalize to longer sentences without any efforts. Its values should be bounded.
4. It must be deterministic.

Positional encoding

self-attention

position encoding

Concatenate special positional encoding p_{j} to each input vector x_{j}

We use a function pos: $N \rightarrow R^{d}$ to process the position j of the vector into a d-dimensional vector
So, $\mathrm{p}_{\mathrm{j}}=\operatorname{pos}(\mathrm{j})$

Options for pos(.)

1. Learn a lookup table:

- Learn parameters to use for $\operatorname{pos}(\mathrm{t})$ for $\mathrm{t} \varepsilon[0, \mathrm{~T})$
- Lookup table contains T x d parameters.

2. Design a fixed function with the desiderata

Vaswani et al, "Attention is all you need", NeurIPS 2017
21 Nov 2023

Positional encoding

self-attention

position encoding

Concatenate special positional encoding p_{j} to each input vector X_{j}

We use a function pos: $\mathrm{N} \rightarrow \mathrm{R}^{\mathrm{d}}$ to process the position j of the vector into a d-dimensional vector
So, $\mathrm{p}_{\mathrm{i}}=\operatorname{pos}(\mathrm{j})$

Options for pos(.)

1. Learn a lookup table:

- Learn parameters to use for $\operatorname{pos}(\mathrm{t})$ for $\mathrm{t} \varepsilon[0, \mathrm{~T})$
- Lookup table contains Tx d parameters.

2. Design a fixed function with the desiderata

Intuition:

image source
Vaswani et al, "Attention is all you need", NeurIPS 2017

Masked self-attention layer

Outputs:

context vectors: y (shape: D_{v})

Operations:

Key vectors: $\mathrm{k}=\mathbf{x W}$ k
Value vectors: $\mathrm{v}=\mathbf{x} \mathrm{W}$
Query vectors: $q=\mathbf{x} W_{q}$
Alignment: $\mathrm{e}_{\mathrm{i}, \mathrm{j}}=\mathrm{q}_{\mathrm{j}} \cdot \mathrm{k}_{\mathrm{i}} / \sqrt{ } \mathrm{D}$ Attention: $\mathbf{a}=\operatorname{softmax}(\mathrm{e})$
Output: $y_{j}=\sum_{i} a_{i, j} v_{i}$

- Prevent vectors from looking at future vectors.
- Manually set alignment scores to -infinity

Multi-head self-attention layer

- Multiple self-attention heads in parallel

General attention versus self-attention

Example: CNN with Self-Attention

Input Image

Example: CNN with Self-Attention

Self-Attention Module

Comparing RNNs to Transformer

RNNs

(+) LSTMs work reasonably well for long sequences.
(-) Expects an ordered sequences of inputs
(-) Sequential computation: subsequent hidden states can only be computed after the previous ones are done.

Transformer:

(+) Good at long sequences. Each attention calculation looks at all inputs.
$(+)$ Can operate over unordered sets or ordered sequences with positional encodings.
(+) Parallel computation: All alignment and attention scores for all inputs can be done in parallel.
(-) Requires a lot of memory: $\mathrm{N} \times \mathrm{M}$ alignment and attention scalers need to be calculated and stored for a single self-attention head. (but GPUs are getting bigger and better)

Attention Is All You Need

Ashish Vaswani *
Google Brain
avaswani@google.com

Noam Shazeer*
Google Brain noam@google.com

Jakob Uszkoreit* Google Research usz@google.com
"ImageNet Moment for Natural Language Processing"

Pretraining:

Download a lot of text from the internet

Train a giant Transformer model for language modeling

Finetuning:

Fine-tune the Transformer on your own NLP task

Illia Polosukhin* \ddagger
illia.polosukhin@gmail.com

Image Captioning using Transformers

Input: Image I
Output: Sequence $\mathbf{y}=\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{T}}$

Image Captioning using Transformers

Input: Image I
Output: Sequence $\mathbf{y}=\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{T}}$

Encoder: $\mathbf{c}=T_{w}(\mathbf{z})$
where \mathbf{z} is spatial CNN features
$T_{w}($.$) is the transformer encoder$

Image Captioning using Transformers

Input: Image I
Output: Sequence $\mathbf{y}=\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{T}}$

Decoder: $y_{t}=T_{D}\left(\mathbf{y}_{0: t-1}, \mathbf{c}\right)$ where $T_{D}($.$) is the transformer decoder$

Encoder: $\mathbf{c}=\mathrm{T}_{\mathrm{w}}(\mathbf{z})$
where \mathbf{z} is spatial CNN features $T_{w}(\cdot)$ is the transformer encoder

The Transformer encoder block

Made up of N encoder blocks.
In vaswani et al. $\mathrm{N}=6, \mathrm{D}_{\mathrm{q}}=512$

The Transformer encoder block

Let's dive into one encoder block

The Transformer encoder block

Positional encoding			
x_{0}	x_{1}	x_{2}	x_{2}

Add positional encoding

Vaswani et al, "Attention is all you need", NeurIPS 2017

The Transformer encoder block

Add positional encoding

Vaswani et al, "Attention is all you need", NeurIPS 2017

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

The Transformer encoder block

Residual connection
Attention attends over all the vectors

Add positional encoding

The Transformer encoder block

LayerNorm over each vector individually
Residual connection
Attention attends over all the vectors

Add positional encoding

The Transformer encoder block

MLP over each vector individually
LayerNorm over each vector individually
Residual connection
Attention attends over all the vectors

Add positional encoding

Vaswani et al, "Attention is all you need", NeurIPS 2017

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

The Transformer encoder block

Residual connection
MLP over each vector individually LayerNorm over each vector individually

Residual connection
Attention attends over all the vectors

Add positional encoding

Vaswani et al, "Attention is all you need", NeurIPS 2017

The Transformer encoder block

Transformer Encoder Block:

Inputs: Set of vectors \mathbf{x} Outputs: Set of vectors \mathbf{y}

Self-attention is the only interaction between vectors.

Layer norm and MLP operate independently per vector.

Highly scalable, highly parallelizable, but high memory usage.

Vaswani et al, "Attention is all you need", NeurIPS 2017

The Transformer decoder block

Made up of N decoder blocks.
In vaswani et al. $\mathrm{N}=6, \mathrm{D}_{\mathrm{q}}=512$

The Transformer decoder block

The Transformer decoder block

The Transformer decoder block

The Transformer decoder block

FC

Transformer Decoder Block:

Inputs: Set of vectors \mathbf{x} and Set of context vectors c. Outputs: Set of vectors \mathbf{y}.

Masked Self-attention only interacts with past inputs.

Multi-head attention block is NOT self-attention. It attends over encoder outputs.

Highly scalable, highly parallelizable, but high memory usage.

Image Captioning using transformers

- No recurrence at all

Image Captioning using transformers

- Perhaps we don't need convolutions at all?

Image Captioning using transformers

- Transformers from pixels to language

Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ArXiv 2020 Colab link to an implementation of vision transformers

- Adding attention to RNNs allows them to "attend" to different parts of the input at every time step
- The general attention layer is a new type of layer that can be used to design new neural network architectures
- Transformers are a type of layer that uses self-attention and layer norm.
- It is highly scalable and highly parallelizable
- Faster training, larger models, better performance across vision and language tasks
- They are quickly replacing RNNs, LSTMs, and may(?) even replace convolutions.

Vision Transformers vs. ResNets

Figure 5: Performance versus cost for different architectures: Vision Transformers, ResNets, and hybrids. Vision Transformers generally outperform ResNets with the same computational budget. Hybrids improve upon pure Transformers for smaller model sizes, but the gap vanishes for larger models.

Vision Transformers

Fan et al, "Multiscale Vision Transformers", ICCV 2021

Liu et al, "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows", CVPR 2021

set of image features
set of box predictions
bipartite matching loss
Carion et al, "End-to-End Object Detection with Transformers",
ECCV 2020

ImageNet-1K Acc.
ConvNets strike back!

