Neuro-Symbolic Embodied Al

Chuang Gan

My 15-Month-Old Daughter (Carolyn)

Recognize objects and substances

Reason from abstract knowledge

Use world models for inference and planning

Try to put the →plate into the correct hole

How About Machine Intelligence Today?

Machine

Does machine have the intelligence at the the level of Carolyn?

Most Visual Intelligence Now

Related Work: Symbolic Al

[1] Minsky, M., & Winston, P. H. (1990). Logical vs. Analogical or Symbolic vs. Connectionist or Neat vs. Scruffy" and "Excerpts from the Society of Mind. In Artificial Intelligence at MIT, Expanding Frontiers (Vol. 1).
[2] Johnson J, Hariharan B, Van Der Maaten L, et al. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. Proceedings of the IEEE conference on computer vision and pattern recognition.

Related Work: Physics Engines

PyBullet

NVIDIA-Flex

Taichi Programming Language

PyBullet: https://www.youtube.com/watch?v=8e-KjBUakqY NVIDIA-Flex: https://youtu.be/1o0Nuq71gl4 Taichi: https://github.com/taichi-dev/quantaichi

How to Integrate Them to Advance Visual Intelligence?

How to Integrate Them to Advance Visual Intelligence?

My Research: Neuro-Symbolic Al for Visual Intelligence

Task: Visual Reasoning

Q: What color is the fire hydrant?

A: Yellow

Q: Are there an equal number of large things and metal spheres?

A: Yes

Prior Work: End-to-End Visual Reasoning

Visual Question Answering

Q: Are there an equal number of large things and metal spheres?

Agrawal et al. VQA, 2015. Johnson et al. CLEVR 2017. Johnson et al. CLEVR 2017, Andreas et al. NMN, 2016. Johnson et al. IEP, 2017. Perez et al. FiLM, 2018. Hudson & Manning. MAC, 2018. Hu et al. Stack-NMN, 2018. Mascharka et al. TbD, 2018.

How do human reason from a visual scene?

Visual Perception

Question Understanding

Incorporate Concepts and Symbolic Programs

Neural networks parse images in s	D Size	Shape		Color	x 45	y -1.10	z 0.35
	3 Large	Cube	Metal	Green	1.58	-1.60	0.35
I. <i>Neural</i> Scene Par	rsing						
I. <i>Neural</i> Scene Par II. <i>Neural</i> Question Parsing	rsing	III. S	Symbolic	Progra	m Exe	ecution	
I. Neural Scene Participation Parsing \rightarrow 1. filter_shape(scene, cylinder)	1. fil 2. re	III. S ter_cylinde late_behir	Symbolic er	Progra 3. filter_ 4. filter_l	m Exe cube large	ecution	5. count

VQS: Linking Segmentations to Questions and Answers for VQA. **Gan** et al. ICCV'17 Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding. Yi, Wu, **Gan**, et al. NeurIPS'18

Neural Scene Parsing

I. Neural Scene Parsing

III. Symbolic Program Execution

1. 2.	relate_	behind	3. III 4. fil	ter_large		5. count
ID	Size	Shape	 ID	Size		
1	Small	Cube	 3	Large		Answer: 1
2	Small	Cylinder				
3	Large	Cube				

Neural Scene Parsing

I. Neural Scene Parsing

III. Symbolic Program Execution

1. 2.	filter_c	ylinder behind	3. fi 4. fi	ter_cube ter_large	5. count
ID	Size	Shape	 ID	Size	
1	Small	Cube	 3	Large	 Answer: 1
2	Small	Cylinder			
3	Large	Cube			

Neural Scene Parsing

I. Neural Scene Parsing

III. Symbolic Program Execution1. filter_cylinder
2. relate_behind3. filter_cube
4. filter_large5. countIDSizeShape...
310Size...
31. arge2SmallCube...
1.3Large...
1.Answer: 13LargeCube...1. arge...

Neural Question Parsing

I. Neural Scene Parsing

II. Neural Question Parsing

	III. Symbolic Program Execution							
1. 2.	filter_cy relate_	ylinder behind		3. fil 4. fil	ter_cube ter_large			5. count
ID	Size	Shape		ID	Size			
1	Small	Cube		3	Large			Answer: 1
2	Small	Cylinder						
3	Large	Cube						

I. Neural Scene Parsing

II. Neural Question Parsing

III. Symbolic Program Execution

II. Neural Question Parsing

III. Symbolic Program Execution

1. filter_cylinder

I. Neural Scene Parsing

II. Neural Question Parsing

III. Symbolic Program Execution

I. Neural Scene Parsing

II. Neural Question Parsing

III. Symbolic Program Execution

filter_cylinder
 relate behind

Size

Small

Large

ID

1

3

Shape

Cube

Cube

...

...

. . .

3. filter_cube

I. Neural Scene Parsing

II. Neural Question Parsing

III. Symbolic Program Execution

	1. 2.	filter_cy relate_t	linder behind	3. filter_cube 4. filter_large			
	ID	Size	Shape	 ID	Size		
,	1	Small	Cube	 3	Large		
\rightarrow	3	Large	Cube	 			

I. Neural Scene Parsing

II. Neural Question Parsing

III. Symbolic Program Execution

	1. 2.	filter_cy relate_t	linder Dehind	3. fil 4. fil	ter_cube ter_large	5. count	
	ID	Size	Shape	 ID	Size		
	1	Small	Cube	 3	Large		Answer: 1
\rightarrow	3	Large	Cube				

Method	Accuracy (%)
Human	92.6
RN	95.5
IEP	96.9
FiLM	97.6
MAC	98.9
NS-VQA (Ours)	99.8

[Johnson et al. ICCV 2017, Santoro et al. NIPS 2017, Perez et al. AAAI 2018, Hudson et al. ICLR 2018, Mascharka et al. CVPR 2018]

Part I: Summary

Part I: Incorporate Symbolic Programs

Limitation: Strong Requirement for Labeled Images

I. Neural Scene Parsing

VQS: Linking Segmentations to Questions and Answers for VQA. **Gan** et al. ICCV'17 Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding. Yi, Wu, **Gan**, et al. NeurIPS'18

How About Images Without Concept Labels?

Our Idea: Learning Concepts From Weak Supervisions

Neuro-Symbolic Concepts Learner

The neuro-symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision. Mao, Gan, et al. ICLR'19
Object Embeddings

Q: What's the **color** of the **frisbee**?

Concept Embeddings

class

the **frisbee**?

->

color

Neuro-symbolic Reasoning

the **frisbee**?

Filter

class

O–

Query

<u>color</u>

Q: What's the <u>color</u> of the **frisbee**?

Q: What's the **color** of the **frisbee**?

Q: What's the **color** of the **frisbee**?

Concept Grounding (Color)

Q: What's the <u>color</u> of the **frisbee**?

Q: What's the **color** of the **frisbee**?

Neuro-symbolic Reasoning

the **frisbee**?

Evaluation Results

Concept: Horse

Concept: Person

Concept: Person On a Skateboard

Extracting structured representations from data

Representing and reasoning from abstract knowledge

Existing Visual Reasoning Datasets

Q: What is the mustache made of?

A: Banana

VQA [Antol et al. ICCV 2015]

Q: Are there an equal number of large things and metal spheres?

A: Yes

CLEVR [Johnson et al. CVPR 2017]

Q: What does the cat do three times?

A: Put head down

TGIF-QA [Jang et al. CVPR 2017]

We Also Need to Understand Dynamics

- Describe what has happened
- Explain why it has happened
- Predict what is about to happen

CLEVRER Dataset: From Static Scene to Dynamic Scene

- 20,000 Synthetic videos
- 300,000+ questions
- Controlled biases
- Diagnostic annotations
- Dynamics visual reasoning
 - Descriptive
 - Explanatory
 - Predictive
 - Counterfactual

Question Types

Descriptive

Explanatory

Predictive

Counterfactual

Q: What is the material of the last object to collide with the cyan cylinder?A: Metal

Question Types Descriptive Explanatory Predictive Counterfactual

Q: What is responsible for the collision between the cyan and gray cylinder?A: The collision between the cyan cylinder and the red rubber sphere.

Question Types

Descriptive

Explanatory

Predictive

Counterfactual

- Q: What will happen next?
- A: The red rubber sphere collides with the metal sphere.

Question Types

Descriptive

Explanatory

Predictive

Counterfactual

Q: What would happen without the cyan cylinder?

A: The red rubber sphere and the gray object collide.

Prior Work: End-to-End Video Reasoning

Video Question Answering Question: What will happen without the cyan cylinder? End-to-End Yes/No Neural Network Candidate Answer: The red rubber sphere and the gray object collide.

Evaluation of End-to-End Video Reasoning

Physical reasoning requires to understand object dynamics.

Shi et al. LSTM, 2015. Lei et al. TVQA, 2018. Hudson & Manning. MAC, 2018.

Neuro-symbolic Dynamics Reasoning

Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language. Ding, Chen, Du, Luo, Tenenbaum, Gan. NeurIPS'21

Parameters Estimation from Collision Events

Which object is heavier, the gray sphere or the green sphere?

°•••°

Forward Simulation of Sphere Collisions

	Shape	Location (x)	Velocity (v)	
Obj1	Sphere	(-1.0,0.0)	(1.0, 0.0)	
Obj2	Sphere	(1.5, 1.5)	(-0.1, -0.1)	

$$x_{1}^{t} = x_{1}^{t-1} + v_{1}dt$$
$$x_{2}^{t} = x_{2}^{t-1} + v_{2}dt$$

Physical parameters to be optimized: m, e

v_2'

	Shape	Location (x)	Velocity (v)	
Obj1	Sphere	(0.0,0.0)	(0.5, -0.5)	
Obj2	Sphere	(1.4, 1.4)	(0.6, 0.6)	

$$m_1v_1 + m_2v_2 = m_1v'_1 + m_2v'_2$$

Coefficient of Restitution: $e = \frac{v'_2 - v'_1}{v_2 - v_1}$

	Mass (m)	Restitution (<i>e</i>)	
Obj1	0.94	0.78	
Obj2	0.76	0.95	

	Shape	Location (x)	Velocity (v)	
Obj1	Sphere	(0.5, -0.5)	(0.5, -0.5)	
Obj2	Sphere	(2.0, 2.0)	(0.6, 0.6)	
Obj2	Sphere	(2.0, 2.0)	(0.6, 0.6)	

$$x_1^{t+1} = x_1^t + v_1'dt$$
$$x_2^{t+1} = x_2^t + v_2'dt$$

Forward Simulations Using Differentiable Physics

• Forward simulation

Physical parameters *θ*: e.g., mass and restitution of rigid bodies
 State s: e.g., positions and velocities of rigid bodies

Parameters Estimation with Differentiable Physics

Loss computation

- Physical parameters *θ*: e.g., mass and restitution of rigid bodies
 State s: e.g., positions and velocities of rigid bodies
- Observation s': e.g., raw observations (positions) of rigid bodies
- Loss L: the distance between the state and the visual observation

Parameters Estimation with Differentiable Physics

• Minimize the loss by inferring physical paramter $oldsymbol{ heta}$

Physical parameters θ: e.g., mass and restitution of rigid bodies
State s: e.g., positions and velocities of rigid bodies
Observation s': e.g., raw observations (positions) of rigid bodies
Loss L: the errors between the state and the visual observation

Parameters Estimation with Differentiable Physics

Physical parameters θ: e.g., mass and restitution of rigid bodies
State s: e.g., positions and velocities of rigid bodies
Observation s': e.g., raw observations (positions) of rigid bodies
Loss L: the error between the state and the visual observation

Neuro-symbolic Dynamics Reasoning with physics

Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language. Ding, Chen, Du, Luo, Tenenbaum, Gan. NeurIPS'21

Neuro-symbolic Dynamics Reasoning with physics

Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language. Ding, Chen, Du, Luo, Tenenbaum, Gan. NeurIPS'21

Visualization of the Rconstructed Physics Model

• Results: Fitting the optimized simulation to video observations

Video observations

Random initialization

Reconstructed scene

Why Not Learned dynamics Models?

- Input:
 - Nodes: object patches and positions over a time window
 - Edges: collision labels between two objects
- Output:
 - Object positions at the next step
 - Collision labels between two objects

Shi et al. Interaction networks, 2015. Mrowca, et al. HRN, 2018. Li. DPI, 2019.

Counterfactual Dynamics Rollout

- Remove the green sphere
 - Q: Would the green cylinder collide with the cyan object if the green sphere is removed?
 - A: True

CLEVRER Test Accuracy

Shi et al. LSTM, 2015. Lei et al. TVQA, 2018. Hudson & Manning. MAC, 2018. Yi et al. NS-GNN, 2020. Ding et al. NS-Physics, 2021.

Dynamics Visual Reasoning on Real-Billiard

• Estimate the physics models of billiards from a single video.

Real world video observations

Predictive Simulation

Application: Invert Physics for Real-world Quadrotor

• Imitate the trajectory in a real-world video clip where the **underlying physics** are unknown.

RISP: Rendering-Invariant State Predictor with Differentiable Simulation and Rendering for Cross-Domain Parameter Estimation, Ma*, Du*, Matusik, Tenenbaum, **Gan**. ICLR'22

Differentiable Physics for Planning

• Forward simulation with action

Differentiable Physics for Planning

• Reward

Differentiable Physics for Planning

• Maximize total reward R by choosing a_1, a_2, \dots, a_{T-1}

Differentiable Physics for Planning

Backward

Applications: Soft-body Manipulation

PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable Physics. Huang ,Hu, Du, Zhou, Su, Tenenbaum, Gan. ICLR'21

Example: Rope Task

Initial State

Deform

• Gradient-based optimization is much efficient than RL.

Adam Episode 200

PPO Episode 10K

Abstract Skills Using Neural Networks

DiffSkill: Skill Abstraction from Differentiable Physics for Deformable Object Manipulations with Tools. Li, Huang, Li, Tenenbaum, Gan. ICLR'22

79

My Vision: Neuro-Symbolic Embodied AI

Extracting complex pattens from raw sensory

Representing and reasoning from abstract knowledge

Physical inference and planning

My Vision: Neuro-Symbolic Al

Scene Understanding

Dynamics Reasoning

Physical Interaction

