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Recap: Supervised vs Unsupervised Learning

Supervised Learning Unsupervised Learning

Data: (X, y) Data: X

X = Input/feature/image/... Just X, no labels

y = label/target Learn about the structure of the data,

.e. P(X)




So let’'s always use Supervised Learning?

Supervised Learning “Standard” Supervised Learning:

Data: (X, y) 1. Collect a large set of data (images..) as
the “training set”

X = input/teature/image/... 2. Label each one as cat/ dog / monkey /

y = label/target

3. Train a model mapping image to label

f: X =y

4. Go forth and classify the world with f |




Data Annotation

Supervised Learning first requires labeling a very large amount of data

Scooter a

Data
Annotation Fruits

Slides from Andreas Geiger, MP| Tubingen


https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/autonomous-vision/lectures/computer-vision/

Labeling Image Categories - "Easy” Until ....

Blenheim Spaniel
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e Over 120 dog breeds in
ImageNet dataset for image
classification

e Non-expert labelers may not be
aware of these fine-grained
differences, leading to labeling
errors

e E.g., the Caltech UCSD birds

dataset has 4% labeling error
(NABIrds, Van horn et al. CVPR15)

Slides from Andreas Geiger, MP| Tubingen


https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/autonomous-vision/lectures/computer-vision/

Dense Semantic and Instance Labels

-l
|

‘Cityscape” dataset: Labeling every pixel as person/road/sidewalk ...

Annotation time 60-90 minutes per image
Slides from Andreas Geiger, MPI Tubingen


https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/autonomous-vision/lectures/computer-vision/

Annotate Everything — Expensive, doesn’'t Scale!
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Slides from Andreas Geiger, MP| Tubingen


https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/autonomous-vision/lectures/computer-vision/

Motivation - Humans learn with little supervision

Provided with very few “labeled” examples (someone pointing something out to us
explicitly), we can generalize quite well.

Slides from Andreas Geiger, MPI Tubingen


https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/autonomous-vision/lectures/computer-vision/

Today's Class

e Recap

o Supervised vs Unsupervised Learning
o Why not always label data?

e Semi-supervised Learning

o Concepts
o Example: pseudo-labels / self-training
o Example: Distillation, Student/Teacher

e Self-supervised Learning

o Concepts
o Pretext tasks
o Contrastive Learning




Semi-supervised Learning

e Given a small amount of labeled data /YL
e Given (usually) large amount of unlabeled data XU
o Can X% help usin getting a better model?

What Is a good decision
boundary for these points?
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Semi-supervised Learning

e Given a small amount of labeled data XL Which one Is
e (Given (usually) large amount of unlabeled data XU your |
e Can A%; help us in getting a better model? favourite”
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Semi-supervised Learning

Now we see
e Given a small amount of labeled data XL some Uﬂ|abe|ed
e Given (usually) large amount of unlabeled data XU data points ....

o Can X% help usin getting a better model?




Semi-supervised Learning - intuitions

e Unlabeled samples tell us about P(X), which is useful in the predictive
posterior P(y | X)




Semi-supervised Learning - definitions

e Smoothness assumption: if x4, X2 are close, labels y1, y2 are also “close”

e Low-density separation: x1, X2 are separated by low-density region then
labels are not “close”

e Cluster assumption: points in same cluster likely to have same label




Semi-supervised Learning Approaches

e We will look at a simple approach to semi-supervised learning

e Self-training or pseudo-labeling

o Age-old method
o Surprisingly good with modern deep learning methods
o But many variations ...



Self-training

e Assume: one’s own high confidence predictions are correct!

o Trainmodel fon Xy :={x,yr}
e Use f to predict “pseudo-labels” on Xy 1= {xu}
e Add {x,, f(x,)} tolabeled data

o Repeat

Based off Joelle Pineau’s COMP-551


https://www.cs.mcgill.ca/~jpineau/comp551/schedule.html

Self-training - variations

e Assume: one’s own high confidence predictions are correct!

e [rain model fon X = {mL,yL}
e Use f to predict “pseudo-labels” on Xy := {:Eu}

o Add {33u7 f(xu)} to labeled data 1) Add only a few most confident

predictions on Xu

2) Add all predictions on Xu

3) Add all predictions, weighted by
the confidence of the prediction

o Repeat

Based off Joelle Pineau’s COMP-551


https://www.cs.mcgill.ca/~jpineau/comp551/schedule.html

Self-training advantages

e The simplest semi-supervised method!

e |t's a“wrapper’ - the classifiers or models can be arbitrarily complex, we do
not need to delve into those details to apply self-training

e Often quite good in practice, e.g. in natural language tasks

e Also some vision tasks ...

Based off Joelle Pineau’s COMP-551


https://www.cs.mcgill.ca/~jpineau/comp551/schedule.html
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Data Distillation: Towards Omni-Supervised Learning

Ilija Radosavovic

Piotr Dollar Ross Girshick  Georgia Gkioxari

Kaiming He

Facebook Al Research (FAIR)

Abstract

We investigate omni-supervised learning, a special
regime of semi-supervised learning in which the learner ex-
ploits all available labeled data plus internet-scale sources
of unlabeled data. Omni-supervised learning is lower-
bounded by performance on existing labeled datasets, of-
fering the potential to surpass state-of-the-art fully super-
vised methods. To exploit the omni-supervised setting, we
propose data distillation, a method that ensembles predic-
tions from multiple transformations of unlabeled data, us-
ing a single model, to automatically generate new training
annotations. We argue that visual recognition models have
recently become accurate enough that it is now possible to
apply classic ideas about self-training to challenging real-
world data. Our experimental results show that in the cases
of human keypoint detection and general object detection,
state-of-the-art models trained with data distillation sur-
pass the performance of using labeled data from the COCO
dataset alone.

1. Introduction

model A

image > model B > ensemble

S .

model C

v
predict

student model | >

Model Distillation

transform A —» model A

transform B — model A -

image > ensemble

transform C — model A

v
predict

student model >

Data Distillation

Figure 1. Model Distillation [158] vs. Data Distillation. In data

distillation, ensembled predictions from a single model applied to
multiple transformations of an unlabeled image are used as auto-

matically annotated data for training a student model.



~ ) B -

transform A transform B transform C ensemble

Figure 2. Ensembling keypoint predictions from multiple data transformations can yield a single superior (automatic) annotation
For visualization purposes all images and keypoint predictions are transformed back to their original coordinate frame.

backbone DD | AP AP:y AP-z APa; APy
ResNet-50 65.1 866 709 5990 736
ResNet-50 /| 666 873 726 616 75.0
ResNet-101 ' 66.1 877 717 605 75.0
ResNet-101 /Y | 675 879 739 624 759
ResNeXt-101-32 x4 668 875 730 616 752
ResNeXt-101-32x4| v | 680 88.1 742 63.1 762
ResNeXt-101-64 x4 | 67.3 880 733 622 756
ResNeXt-101-64x4| v | 685 888 749 637 765

(c) Large-scale, dissimilar-distribution data. Data distillation (DD) is
performed on co-115 with labels and s 1m-180 without labels, compar-
ing with the supervised counterparts trained on co-115.

Table 1. Data distillation for COCO keypoint detection. Keypoint
AP is reported on COCO val2017.



Disadvantages of self-training?

Any guesses”?



Disadvantages of self-training?

e Early mistakes can reinforce themselves

o We have heuristic solutions, like discarding samples if the confidence of prediction
falls below some threshold

e (Convergence
o Hard to say if these steps of self-train and repeat will converge



Domain shifts can have a large impact

III

“Small” domain shifts can impact performance data sources

e resolution, size/pose/class, novel classes

“in domain” “out of domain”

Self/semi-supervised learning is brittle in fine-
grained domains

e difficult task, long-tailed data

When Does Contrastive Visual Representation Learning Work?

Elijah Cole! Xuan Yang®? Kimberly Wilber?
!Caltech  ?Google

Oisin Mac Aodha*  Serge Belongie®
3University of Edinburgh  *Alan Turing Institute  °University of Copenhagen

Need “guardrails” against biased data

When Does Self-supervision Improve
Few-shot Learning?

Jong-Chyi Su! Subhransu Majit Bharath Hariharan?

27
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How robust Is semi-supervised learning?
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A Realistic Evaluation of Semi-Supervised Learning for FGVC, Su & Maji, CVPR 21



More pointers on semi-supervised learning

e \/ast literature both in terms of theory and applications

e Other methods:

o Entropy minimization: adds a loss that encourages the neural network model to
make high confidence predictions (minimize “entropy”) on all unlabeled samples
Mean Teacher, FixMatch, NoisyStudent, ...

o Combine with methods to detect “out of domain” data



https://arxiv.org/pdf/1703.01780.pdf

Today's Class

e Recap
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Self-supervised learning: Outline

» Data prediction
* (Colorization

* Transformation prediction
« Context prediction, jigsaw puzzle solving, rotation prediction
* "Slamese” methods
» Contrastive methods
* Non-contrastive methods

» Self-supervision beyond still images
« 3D, audio, video, language



Self-supervision as data prediction

 (Colorization

* |npainting
* Future prediction

Source: A. Efros



Colorization

R. Zhang, P. Isola, and A. Efros, Colorful Image Colorization, ECCV 2016


http://richzhang.github.io/colorization/

Colorization: Architecture

convl conv2z conv3 conv4 convb convé conv’/ conv8

lightness 64 dilated dilated ab color
128
256 256
512 512 512 512
56 28 28 28 28
112
294 313

-110

At each spatial location, predict probability
distribution over 313 quantized (a,b) values

R. Zhang, P. Isola, and A. Efros, Colorful Image Colorization, ECCV 2016


http://richzhang.github.io/colorization/

Self-supervised learning: Outline

» Data prediction
Colorization

* Transformation prediction



Self-supervision by transformation prediction

M

* Context prediction
» Jigsaw puzzle solving
» Rotation prediction

Source: A. Efros



Context prediction

* Pretext task: randomly sample  Example:
a patch and one of 8 neighbors

» Guess the spatial relationship
between the patches

Question 1:

A: Bottom right A: Top center

C. Doersch, A. Gupta, A. Efros. Unsupervised Visual Representation Learning by Context Prediction. ICCV 2015



https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Doersch_Unsupervised_Visual_Representation_ICCV_2015_paper.pdf

Context prediction: Semantics from a non-semantic task

Source: A. Efros



Context prediction: Detalils

AlexNet-like architecture

softmax
s :-\;"E'h.-l..-
St o F-
o U T e
-, -,
3 _
Prevent "cheating™: sample patches
-
with gaps, pre-process to overcome

chromatic aberration —y

C. Doersch, A. Gupta, A. Efros. Unsupervised Visual Representation Learning by Context Prediction. ICCV 2015


https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Doersch_Unsupervised_Visual_Representation_ICCV_2015_paper.pdf

Jigsaw puzzle solving

Crop out tiles

Pretext task: reassemble

Claim: jigsaw solving is easier than context prediction, trains faster, transfers better

M. Noroozi and P. Favaro. Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles. ECCV 2016



https://arxiv.org/pdf/1603.09246.pdf

Jigsaw puzzle solving: Detalils

Context free network (CFN)

Shcre-:!

=t ey Lo

b - / fc7 fc8 softmax
Permutation Set
index permutation Reorder patches accordingto
the selected permutation o—# -/—
o —

64 9.4,68.325,1,7

./_

Predeterm|ned Set Of 11x11x96  5x5x256 3x3x384 3x3x384 3x3x256

1000 permutations

(out of 362,880
possible)

M. Noroozi and P. Favaro. Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles. ECCV 2016



https://arxiv.org/pdf/1603.09246.pdf

Rotation prediction

* Pretext task: recognize image rotation (0, 90, 180, 270 degrees)

S. Gidaris, P. Singh, and N. Komodakis. Unsupervised representation learning by predicting image rotations. ICLR 2018


https://arxiv.org/pdf/1803.07728.pdf

Rotation prediction

Rotate 0 degrees

Rotate 90 degreeé

Image X Rotate 180 degrees

Rotate 270 degrees

—» g(X, y=0) }—V

—p o(X,y=2) }—P 4

Rotated image: X !

Rotated image: X'

Rotated image: X’

L]

Rotated image: X~

— g(X,y=1) — R

ConvNet |
model F(.)

ConvN—c—e{ B ‘

Objectives:

Maximize prob.

F'(X°)

Predict 0 degrees rotation (y=0)

Maximize prob.

model F(.) |

ConvNeg - ’

- F(x)
Predict 90 degrees rotation (y=1)

Maximize prob.

model F(.)_ - ‘

ConvNe_t_ - \

F*(X?)

Predict 180 degrees rotation (y=2)

Maximize prob.

model F(.) |

F(X°)

Predict 270 degrees rotation (y=3)

During training, feed in all four rotated versions of an image in the same mini-batch

S. Gidaris, P. Singh, and N. Komodakis. Unsupervised representation learning by predicting image rotation

S

. ICLR 2018


https://arxiv.org/pdf/1803.07728.pdf

PASCAL VOC Transfer Results

m Classification Detection (MAP) Segmentation (mloU)

Supervised (ImageNet) 79.9 56.8 48.0
Colorization 65.6 46.9 35.6
Context 65.3 51.1

Jigsaw 67.6 53.2 37.6

Rotation 73.0 54 4 39.1



Self-supervised learning: Outline

» Data prediction
* Colorization

* Transformation prediction
» Context prediction, jigsaw puzzle solving, rotation prediction

“Siamese” methods



‘Siamese” methods

» Extract representations from two transformed versions of
a data point, encourage these representations to be similar (or
to have other desirable properties)

» Contrastive methods: train using both positive (similar) and negative
(dissimilar) pairs

 Non-contrastive methods: train with only positive examples

Data 7 |e—
| Datan | Similarity
score
Data

Source: A. Efros



Contrastive methods

* Encourage representations of transformed versions of the
same image to be the same and different images to be
different

make
T -~ dissimilar

~—— Original _ﬂ “~ely

Image N
. 3 .
still A e similar s Negative Image
a Y -
IIC tll - ?
a Transformed > .

Image _-~"" make
N 4" dissimilar

Figure
source


https://amitness.com/2020/03/illustrated-pirl/
https://amitness.com/2020/03/illustrated-pirl/
https://amitness.com/2020/03/illustrated-pirl/

Contrastive loss formulation

* (Given:
* Query point X

* Positive sample x T version of x subjected to a random transformation
or augmentation (cropping, rotation, color change, etc.)

* Negative samples X




Contrastive loss formulation

. Given: query X, positive sample x ™, negative samples x~

* Measure similarity by dot product of L2-normalized feature
representations:
J(x) f(y)

el o,

sim(x, y)

. Contrastive loss: make x similar to x ™, dissimilar from x

exp(sim(x, x™)/7)

l(x, x+) = — log . ~ .
exp(snn(x, x+)/r) + ijl exp(snn(x, xj—)/r)

* Intuitively, this is the loss of a softmax classifier that tries to
classify x as x ™



Mechanisms for obtaining negative samples

60
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Figure 3. Comparison of three contrastive loss mechanisms un-
der the ImageNet linear classification protocol. We adopt the same
pretext task (Sec. 3.3) and only vary the contrastive loss mecha-
nism (Figure 2). The number of negatives 1s K 1n memory bank
and MoCo, and 1s K —1 1n end-to-end (offset by one because the
positive key 1s in the same mini-batch). The network 1s ResNet-50.

K. He et al. Momentum Contrast for Unsupervised Visual Representation Learning

. CVPR 2020


https://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf

MoCo results

Comparison on linear ImageNet classification
(supervised accuracy above 75%)
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K. He et al. Momentum Contrast for Unsupervised Visual Representation Learning. CVPR 2020


https://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf

SIMCLR

Maximize agreement

2 < - 2, * |nstead of memory bank
g(.)‘ ‘g(.) or queue, use large mini-
| batch size (on cloud TPU)
hi ¢ Representation — — h, + Introduce nonlinear
£0) ) projection () between

representation (») and
feature used for
computing contrastive loss

(=)

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A Simple Framework for Contrastive Learning of Visual
Representations. ICML 2020



https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

SIMCLR

* Performed extensive ablation study of data augmentations

* Found that composing multiple augmentations gives the
best results

Crop

-50

Cutout

Color

Sobel

Noise

1st transformation

Blur

Rotate

\9 A\ .ce < e (2
ST LS o Q\o@‘ \,e(og

2nd transformation

Figure 5. Linear evaluation (ImageNet top-1 accuracy) under in-
dividual or composition of data augmentations, applied only to

(f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering one branch. For all columns but the last, diagonal entries corre-
Figure 4. Illustrations of the studied data augmentation operators. Each augmentation can transform data stochastically with some internal spond to single transformation, and off-diagonals correspond to
parameters (e.g. rotation degree, noise level). Note that we only test these operators in ablation, the augmentation policy used to train our composition of two transformations (applied sequentially). The
models only includes random crop (with flip and resize), color distortion, and Gaussian blur. (Original image cc-by: Von.grzanka) last column reflects the average over the row.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A Simple Framework for Contrastive Learning of Visual
Representations. ICML 2020


https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

SImMCLR: Evaluation
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No detection evaluation

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A Simple Framework for Contrastive Learning of Visual
Representations. ICML 2020



https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

Non-contrastive methods

» Extract representations from two transformed versions of
a data point, encourage these representations to be similar (or
to have other desirable properties)

» Contrastive methods: train using both positive (similar) and negative
(dissimilar) pairs
« Key challenge: sampling of negative pairs
 Non-contrastive methods: train with only positive examples

 Key challenge: avoiding degenerate solutions (all representations collapsing
to constant output value)

Data 7 |e—
- Similarity
score
Data

Source: A. Efros



BYOL

Use momentum encoder, but without the queue of negative examples

Use projection head like SImCLR, add prediction head to online
network

view representation projection prediction
4 ) S R i B
. fg s ) ge 4 N qe 4 ™
mput
image L Yo 20 > q9(20) } online
e \
/ " y " y . J
g \
\
T loss |
\. )\ ,’
(" N [ ) 4 N /
> N /
¢ ' > Y > 2 A—> sg(z;) ¥ target
. J ff . J ge . J Sg
\ J U J \ J

Figure 2: BYOL’s architecture. BYOL minimizes a similarity loss between gy (z9) and sg(z;), where ¢ are the trained

weights, £ are an exponential moving average of # and sg means stop-gradient. At the end of training, everything
but fy is discarded, and yy is used as the image representation.

J.-B. Grill et al. Bootstrap Your Own Latent A New Approach to Self-Supervised Learning. NeurlPS
2020



https://papers.nips.cc/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf

BYOL: Evaluation
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Figure 1: Performance of BYOL on ImageNet (linear eval-
uation) using ResNet-50 and our best architecture ResNet-

200 (2x), compared to other unsupervised and supervised
(Sup.) baselines [3].



But remember ...

III

“Small” domain shifts can impact performance data sources

e resolution, size/pose/class, novel classes

“in domain” “out of domain”

Self/semi-supervised learning is brittle in fine-
grained domains

e difficult task, long-tailed data

When Does Contrastive Visual Representation Learning Work?

Elijah Cole! Xuan Yang®? Kimberly Wilber?
!Caltech  ?Google

Oisin Mac Aodha*  Serge Belongie®
3University of Edinburgh  *Alan Turing Institute  °University of Copenhagen

Far from working on non-curated data!

When Does Self-supervision Improve
Few-shot Learning?

Jong-Chyi Su! Subhransu Majit Bharath Hariharan?

58



Self-supervised learning: Outline

» Data prediction
* Colorization

* Transformation prediction
» Context prediction, jigsaw puzzle solving, rotation prediction

“Siamese” methods

e (Contrastive methods
* Non-contrastive methods

» Self-supervision beyond still images
* Video, audio, language



Learning from audio

. 31 Audio cluster
— /\ prediction
| ‘. -
iy | hRS

s

=7
=7

CNN

Freq. channel — |

(a) Images grouped by audio cluster (b) Clustered audio stats. (c) CNN model

A. Owens et al. Ambient Sound Provides Supervision for Visual Learning. ECCV 2016



https://arxiv.org/pdf/1608.07017.pdf

Video correspondence features

@ negatives

© query O target

Object Propagation 1-4 Objects

A. Jabri, A. Owens, and A. Efros. Space-time correspondence as a contrastive random walk. NeurlPS
2020



https://proceedings.neurips.cc/paper/2020/file/e2ef524fbf3d9fe611d5a8e90fefdc9c-Paper.pdf

Future prediction

Prediction 1

Prediction 2

J. Walker et al. An Uncertain Future: Forecasting from Static Images Using Variational Autoencoders. ECCV 2016



http://arxiv.org/pdf/1606.07873.pdf
http://arxiv.org/pdf/1606.07873.pdf
http://arxiv.org/pdf/1606.07873.pdf
http://arxiv.org/pdf/1606.07873.pdf

3D shapes and convexity

e Final Task: separate 3D objects (chairs, tables..) into parts (legs, back, handles...)

Input

Semantic
Segmentatior



More on the pretext task - approx convexity

e Pretext Task: off-the-shelf package for "approximate convex

decomposition”

Get a large number of unlabeled 3D shapes
Run off-the-shelf “ACD” software to get decompositions
o Train your favorite 3D neural network on this, and then apply on final task



http://www.cs.tau.ac.il/~noafish/wcseg/

[ECCV 2020]

10-Shot Segmentation Results

Baseline

-
O
<

Gadelha and RoyChowdhury, et al., ECCV 2020



https://arxiv.org/pdf/2003.13834.pdf

Large Language Models

pore-train transformers on text

.

-

Next-token-prediction

The model is given a
sequence of words with
the goal of predicting
the next word.

Example:
Hannah is a

Hannah is a sister
Hannah is a friend
Hannah is a marketer
Hannah is a comedian

N

/

https://twitter.com/thealexbanks/status/1624400398114234370

-

Masked-language-
modeling

The model is given a
sequence of words with
the goal of predicting a
‘masked’ word in the
middle.

Example
Jacob [mask] reading

Jacob fears reading
Jacob Joves reading
Jacob enjoys reading
Jacob hates reading

/

Human examples

Human preferences
RLHF

Finetuning

ChatGPT



Summary of self-supervision via pretext-tasks

Pretext Tasks:

» Pretext tasks focus on “visual common sense’, e.g., rearrangement, predicting
rotations, inpainting, colorization, etc.

» The models are forced learn good features about natural images, e.g., semantic
representation of an object category, in order to solve the pretext tasks

» \We don't care about pretext task performance, but rather about the utility of the
learned features for downstream tasks (classification, detection, segmentation)

Problems:

» Designing good pretext tasks is tedious and some kind of “art”

» The learned representations may not be general

Slides from Andreas Geiger, MPI Tubingen


https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/autonomous-vision/lectures/computer-vision/

