Lecture 2:
Nearest Neighbor and
Linear Classification
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Course web page

e https://cvl-umass.qgithub.io/compsci682-fall-2023

UMassAmherst Home Lectures Notes Assignments Project Office Hours

COMPSCI 682 Neural Networks: A Modern Introduction

Note

« This is a tentative class outline and is subject to change throughout the semester.
« Slides will be finalized after each lecture.

Event Type Date Description Course Materials
Lecture Tuesday, Sep 5 Intro to Deep Learning, historical context. [lecture recording]
[slides]

[python/numpy tutorial)
[software setup for assignments]

Lecture Thursday, Sep 7 Image classification and the data-driven approach [image classification notes]
k-nearest neighbor [linear classification notes)
Linear classification

Lecture Tuesday, Sep 12 Loss Functions
Optimization
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https://cvl-umass.github.io/compsci682-fall-2023

Optional Discussion Sections

e Friday: 9:00-10:00 am, CS142
o No discussion section this Friday
o First one on Sept. 15 (Time & Location TBD)
e Will cover background topics such as:
o Python techniques
m slicing and broadcasting
m Other parallelization techniques
o Math techniques
m Derivatives of vectors, matrices, etc.
m Complex chain rule examples
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Plazza

e Everyone needs to sign up for Piazza. This is how you get messages

for the class.
e Please post most questions there, rather than sending email to me or

the TAs.
e The TAs and | will answer questions posted to Piazza.
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Python: Up and running

e We’re using Python 3.6+, not 2.7.

e If you have not installed Python and tried a simple program yet,
please do so as soon as possible.

e Tryloading up the first Python Notebook for Homework 1. Even if you
don’t have time to do the assignment yet, at least make sure the
Python Notebook is working properly. This will make sure you don’t
incur a major delay later.

e PYTHON Tutorial! See “Notes” tab of course web page.

(Show Notes page).
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Readings and Lecture Recordings

On Lectures tab of course webpage

UMassAmbherst Home Lectures Notes Assignments Project

COMPSCI 682 Neural Networks: A Modern Introduction ]
Echo360
Note

« This is a tentative class outline and is subject to change throughout the semester.

- Slides will be finalized after each lecture.

Event Type Date Description Course Materials

]
Lecture Tuesday, Sep 5 Intro to Deep Learning, historical context. [lecture recording| A / Read | ngS
[slides]

[python/numpy tutorial]
[software setup for assignments] A

Lecture Thursday, Sep 7 Image classification and the data-driven approach [image classification notes]
k-nearest neighbor [linear classification notes;
Linear classification

Lecture Tuesday, Sep 12 Loss Functions
Optimization
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Back to classification...
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Data-driven approach:

1.Collect a dataset of images and labels

2.Use Machine Learning to train an image classifier
3.Evaluate the classifier on a withheld set of test images

Example training set

def train(train_images, train_labels): dog mug hat
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# build a model for images -> labels...

return model

def predict(model, test_images):

# predict test_labels using the model...

y ; -l .
return test_labels m !& iﬁB é E"
umn NAm <~ B
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k-Nearest Neighbor

find the k nearest images, have them vote on the label

the data NN classifier 5-NN classifier
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http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
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Example dataset: CIFAR-10
10 labels

50,000 training images
10,000 test images.
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For every test image (first column),
examples of nearest neighbors in rows
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the data NN classifier 5-NN classifier
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Q: what is the accuracy of the nearest
neighbor classifier on the training data,
when using the Euclidean distance?
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the data NN classifier 5-NN classifier
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Q2: what is the accuracy of the k-nearest
neighbor classifier on the training data?
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What is the best distance to use?
What is the best value of k to use?

l.e. how do we set the hyperparameters?
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What is the best distance to use?
What is the best value of k to use?

l.e. how do we set the hyperparameters?

Very problem-dependent.
Must try them all out and see what works best.
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Trying out what hyperparameters work best on test set.

v

train data test data
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Trying out what hyperparameters work best on test set:
Very bad idea. The test set is a proxy for the generalization performance!
Use only VERY SPARINGLY, at the end.

v

train data test data
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train data test data

v
fold 1 fold 2 fold 3 fold 4 fold 5 test data

use to tune hyperparameters
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train data test data

v
fold 1 fold 2 fold 3 fold 4 fold 5 test data

\ \ ‘
Cross-validation

cycle through the choice of which fold
is the validation fold, average results.
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032 Cro§s-valldat|on on k

Example of
5-fold cross-validation
for the value of k.
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k-Nearest Neighbor on raw images is never used.

- terrible performance at test time
- distance metrics on level of whole images can be
very unintuitive

original shifted messed up darkened

(aII 3 |mages ha.ve same L2 distance to the one on the Ieft)
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Before moving on

- K-NN: the Rodney Dangerfield of classifiers

- Convergence of K-NN to the Bayes error rate.
- Universality of K-NN.
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Linear Classification
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Example dataset: CIFAR-10

10 labels

50,000 training images
each image is 32x32x3

10,000 test images.
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Parametric approach

Image parameters

f(x,W)

10 numbers,

iIndicating class
- scores

[32x32x3]

array of numbers 0...1

(3072 numbers total)
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Parametric approach: Linear classifier
flz, W) =Wz

10 numbers,

iIndicating class
- scores

[32x32x3]

array of numbers 0...1
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Parametric approach: Linear classifier

f(a:, W) _ WE' 3072x1

10x1 10x3072
\ 10 numbers,

iIndicating class
- scores

[32x32x3]

array of numbers 0...1

parameters, or “weights”
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Parametric approach: Linear classifier

f(z, W)|=[Wg 39721 |(+b)|10x1

10x1 10x3072
\ 10 numbers,

iIndicating class
- scores

[32x32x3]

array of numbers 0...1

parameters, or “weights”

Subhransu Maji, Chuang Gan and TAs Lecture 2 -27 Sept. 7, 2023

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

stretch pixels into single column

02 |-05| 01| 20 56 5 -96.8 | cat score

ISR ROS NOON| | 231 | 4. [B2M . EGTGN . o

— 0 (1025 | 0.2 11-0.3 -1.2 :
input image 24 61.95 ship score
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Interpreting a Linear Classifier

airplane ﬁ.y y..-=.§=
z;, W,b) =Wzx; +b
automobile E.'.Eﬂh.-‘ f( )
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ca E%, 3 Q: what does the

wor N A~ linear classifier
=;2ﬁ do, in English?
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Interpreting a Linear Classifier (poll)

e |- | e
automobile ﬂh‘ f(CEz, W, b) — sz + b
AP -
.& g%a Example trained weights
of a linear classifier
il S trained on CIFAR-10:
ek REESEED
S I ERNEENES
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Interpreting a Linear Classifier
NI f(zi,W,b) = Wz; +b

LN

car classifier

[32x32x3]
array of numbers 0O...1
(3072 numbers total)

airplane classifier &

deer classifier
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Interpreting a Linear Classifier
airplane ?-a—-‘--y o .-nz-ﬂz f(xz, W, b) _ -M/a_:2 +b

automobile \_‘ .EH..‘

bird iu ﬂ v l“

- \«H Q2: what would be
- ~ @‘g a very hard set of
og i . ) | .

six B class_e_s for a linear
horse .m m CIaSSIfler tO

o ARG LS B« distinguish?

truck dﬂhl!éilll
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So far: We defined a (linear) score function: f(z:,w,b) = Wa; +b

really affine

Example class
scores for 3
Images, with a
random W:

Subhransu Maji, Chuang Gan and TAs

/

airplane

automobile

0.09
2.9
4.48
8.02
3.78
1.06

bird
cat
deer
dog
frog

horse

-0.36
-0.72

ship

truck

-3.45
-8.87

-0.51
6.04
5.31

-4.22

-4.19
3.58
4.49

-4 .37

-2.09

-2.93
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| flx,W) =Wz
Coming up:

_ LOSS fUnCtiOn E}c;ti/aen;iﬁ}gr;%(\j/\:hv?/t)it means to

- Opt| m|Zat|On (start with random W and find a
W

that minimizes the loss)

- Neu ral netS! (tweak the functional form of f)

Subhransu Maji, Chuang Gan and TAs Lecture 2 -34 Sept. 7, 2023

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



Summary so far ... Linear classifier

Image parameters 10 numbers, indicating

f(x,W) class scores

[32x32x3]
array of numbers 0...1
(3072 numbers total)

stretch pixels into single column [ d

car classifier

02 | -05]| 0.1 2.0 56 1.1 -96.8 cat score airplane classifie/ &
15 [ 13 | 21 | 00 | [231| 4|32 | | 437.9 | gogscore
Inpifimsge 0 025| 0.2 | -0.3 24 -1.2 61.95 ship score deer classifier
W 2 b f (mi; W, b) plane aF bird at o dog frog horse ship uck
o ESENNEENEDS
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Loss function/Optimization

airplane -3.45 -0.51
automobile -8.87 6.04
bird 0.09 5.31
cat 2.9 -4.22
deer 4.48 -4.19
8.02 3.58

dog
3.78 4.49

frog
1.06 -4 .37

horse
_ -0.36 -2.09
e ~0.72 -2.93

truck
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3.42
4.64
2.65

2.64

5.55
-4.34

-1.5
-4.79

TODO:

1.

Lecture 2 -36

Define a loss function
that quantifies our
unhappiness with the
scores across the training
data.

Come up with a way of
efficiently finding the
parameters that minimize
the loss function.
(optimization)
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) = Wax are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog '17 20 '3.1
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) = Wax are:
Given an example (mi, yz)
where I; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s; = f(x;, W)

the SVM loss has the form:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog '17 20 '3.1

Li =3, max(0,s; — sy, + 1)|
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) = Wax are:
Given an example (Z;,¥;)
where g, is the image ana
where Y; is the (integer) label,

and using the shorthand for the
scores vector: s; = f(x;, W)

3 2 2 2 the SVM loss has the form:
cat . :
Li =3, max(0,s; — sy, + 1)|
car 5.1 2.5 - max(0, 5.1-32 + 1)
+max(0, -1.7-3.2+ 1)
frog -1.7 -3.1 = max(0, 2.9) + max(0, -3.9)
=29+0
Losses: 2.9 =29
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) = Wax are:
Given an example (Z;,¥;)
where g, is the image ana
where Y; is the (integer) label,

and using the shorthand for the
scores vector: s; = f(x;, W)

the SVM loss has the form:
cat 3.2 2.2 Li =, max(0,8; — sy, + 1)
car 5.1 2.5 = max(0, 1.3-4.9 + 1)
frog -1.7 -3.1 : :nrgiz(cgozzc?) -|-4r.r£19a:<((1')? 1.9)
Losses: 2.9 :8+0
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) = Wax are:

Given an example (Z;,¥;)
where g, is the image ana
where Y; is the (integer) label,

and using the shorthand for the
scores vector: s; = f(x;, W)

2 2 the SVM loss has the form:
' Li =3, max(0,s; — sy, + 1)|
25 = max(0, 2.2 - (-3.1) + 1)
+max(0, 2.5 - (-3.1) + 1)
-3.1 = max(0, 6.3) + max(0, 6.6)
=6.3+6.6
1 2.9 =12.9
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) = Wax are:

Given an example (Z;,¥;)
where g, is the image ana
where Y; is the (integer) label,

and using the shorthand for the
scores vector: s; = f(x;, W)

the SVM loss has the form:

2 2 B = Zj#yi max(0, s; — sy, + 1)
) and the full training loss is the mean
2 5 over all examples in the training data:
e, ) N :

3.1 L=(2.9+0+12.9)/3
= +0+
129 |"I% )
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) = Wax are:
Given an example (Z;,¥;)
where g, is the image ana
where Y; is the (integer) label,

and using the shorthand for the
scores vector: s; = f(x;, W)

the SVM loss has the form:

29 Li =}, max(0,s; — sy, +1)
Q: what if the sum
2.5 was instead over all
-3.1 classes?

(including j =y i)

12.9
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) = Wax are:

Given an example (Z;,¥;)
where g, is the image ana
where Y; is the (integer) label,

and using the shorthand for the
scores vector: s; = f(x;, W)

the SVM loss has the form:

2 2 B = Zj#yi max(0, s; — sy, + 1)
2.5 Q2: what if we used a
-3.1 mean instead of a
sum here?

12.9
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) = Wax are:

Given an example (Z;,¥;)
where g, is the image ana
where Y; is the (integer) label,

and using the shorthand for the
scores vector: s; = f(x;, W)

the SVM loss has the form:
2 2 B = Zj#yi max(0, s; — sy, + 1)

2.5 Q3: what if we used
-3.1

12.9
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) = Wax are:

Given an example (Z;,¥;)
where g, is the image ana
where Y; is the (integer) label,

and using the shorthand for the
scores vector: s; = f(x;, W)

the SVM loss has the form:

2.2 Li = 3 4y, m2x(0, 85 — sy, +1)

2.5 Q4: what is the min/
-3.1 max possible loss?
12.9
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) = Wax are:

Given an example (:I:i, yz)
where z; is the image ana
where g; is the (integer) label,

and using the shorthand for the scores
vector: si = f(z;, W)

the SVM loss has the form:
B = Zj#yi max(0, s; — sy, + 1)

cat
Q5: usually at
car initialization W are small
frog -1.7 2.0 -3.1 numbers, so all s ~= 0.
What is the loss?
Losses: 2.9 0 12.9
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