Lecture 3: Loss functions and Optimization

Homework 1

- Due on 9/28 (Th.) 11:55 pm
- Submit via gradescope
- We will enroll you on gradescope this week

First Optional Discussion Section

- This Friday ??am. Led by TA Max Hamilton.
- Topic: Slicing and broadcasting in Python:
- Example:
- A is a 5×8 array.
- B is a 1×8 array.
- A+B in python will replicate $B 5$ times to make it the same size as A before adding.
- This is "broadcasting".
- Try to read NumPy Tutorial sections on Indexing and Broadcasting before you get there. Try some examples.

Recall from last time ... Linear classifier

10 numbers, indicating class scores
array of numbers $0 . . .1$ (3072 numbers total)

Loss function/Optimization

TODO:

1. Define a loss function that quantifies our unhappiness with the scores across the training data.
2. Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

3.2

 5.1 -1.71.3
4.9
2.0

2.2 2.5 2.5 -3.1
car
frog
cat

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s_{i}=f\left(x_{i}, W\right)$
the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9		

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s_{i}=f\left(x_{i}, W\right)$
the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

$$
=\max (0,5.1-3.2+1)
$$

$$
+\max (0,-1.7-3.2+1)
$$

$$
=\max (0,2.9)+\max (0,-3.9)
$$

$$
=2.9+0
$$

$$
=2.9
$$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:
 3.2 5.1 -1.7
frog
Losses:

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s_{i}=f\left(x_{i}, W\right)$
the SVM loss has the form:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& =\max (0,1.3-4.9+1) \\
& +\max (0,2.0-4.9+1) \\
& =\max (0,-2.6)+\max (0,-1.9) \\
& =0+0 \\
& =0
\end{aligned}
$$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

3.2 5.1 -1.7
frog
Losses:

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

3.2

$$
5.1
$$

1.3
4.9
2.5
car
frog

$$
-1.7
$$

Losses: 2.9

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s_{i}=f\left(x_{i}, W\right)$
the SVM loss has the form:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$ and the full training loss is the mean over all examples in the training data:

$$
L=\frac{1}{N} \sum_{i=1}^{N} L_{i}
$$

$L=(2.9+0+12.9) / 3$
$=5.3$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

3.2

$$
5.1
$$

1.3
4.9
2.0

Losses: 2.9
cat
car
frog

$$
-1.7
$$

-3.1

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

3.2

5.1

-1.7
2.9

1.3
4.9
2.0
-3.1
2.2
2.5
car
frog
Losses:

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

3.2

5.1

-1.7
2.0
-3.1
$1.3 \quad 2.2$
2.5
frog
Losses:
2.9

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

3.2

5.1

-1.7
2.9

1.3
2.2
car
frog
Losses:

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

3.2

$$
5.1
$$

1.3
4.9

Losses: 2.9
cat
car
2.0
frog

$$
-1.7
$$

-3.1
2.2
2.5

Example numpy code:

$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$

```
def L_i_vectorized(x, y, W):
    scores = W.dot(x)
    margins = np.maximum(0, scores - scores[y] + 1)
    margins[y] = 0
    loss_i = np.sum(margins)
    return loss_i
```


Coding tip: Keep track of dimensions:

```
N = X.shape[0]
D = X.shape[1]
C = W.shape[1]
scores=X.dot(W)
# (N,D)*(D,C)=(N,C)
```

There is a "bug" with the loss:

$$
\begin{aligned}
& f(x, W)=W x \\
& L=\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, f\left(x_{i} ; W\right)_{j}-f\left(x_{i} ; W\right)_{y_{i}}+1\right)
\end{aligned}
$$

E.g. Suppose that we found a W such that $L=0$.

 Is this W unique?Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

3.2 5.1 -1.7

1.3
4.9
2.0
0

$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$

Before:

$$
\begin{aligned}
& =\max (0,1.3-4.9+1) \\
& \quad+\max (0,2.0-4.9+1) \\
& =\max (0,-2.6)+\max (0,-1.9) \\
& =0+0 \\
& =0
\end{aligned}
$$

With W twice as large:
$=\max (0,2.6-9.8+1)$

$$
+\max (0,4.0-9.8+1)
$$

$$
=\max (0,-6.2)+\max (0,-4.8)
$$

$$
=0+0
$$

$$
=0
$$

$$
f(x, W)=W x
$$

An example:
What is the loss? (POLL)

cat
 car
 Loss:

1.3
2.5
2.0

$$
f(x, W)=W x
$$

An example:
What is the loss?
1.3

cat

2.5
car
frog
2.0

Loss:
0.5

$$
f(x, W)=W x
$$

An example:
What is the loss?

How could we change W to eliminate the loss? (POLL)

$$
f(x, W)=W x
$$

An example:

What is the loss?

How could we change W to eliminate the loss? (POLL)

Multiply W (and b) by 2!
-

$$
f(x, W)=W x
$$

cat

1.32 .6
$2.5 \quad 5.0$ 2.04 .0
0.50

An example:
What is the loss?

How could we change W to eliminate the loss? (POLL)

Multiply W (and b) by 2 !

Wait a minute! Have we done anything useful???

$$
f(x, W)=W x
$$

An example:

What is the loss?

How could we change W to eliminate the loss? (POLL)

Multiply W (and b) by 2!

Wait a minute! Have we done anything useful???

No! Any example that used to be wrong is still wrong (on the wrong side of the boundary). Any example that is right is still right (on the correct side of the boundary).

Regularization

λ = regularization strength (hyperparameter)

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from having too much flexibility.

Simple examples

L2 regularization: $R(W)=\sum_{k} \sum_{l} W_{k, l}^{2}$
L1 regularization: $R(W)=\sum_{k} \sum_{l}\left|W_{k, l}\right|$ Elastic net (L1 + L2): $R(W)=\sum_{k} \sum_{l} \beta W_{k, l}^{2}+\left|W_{k, l}\right|$ Stochastic depth, fractional pooling, etc

Regularization

$\lambda=$ regularization strength (hyperparameter)

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from having too much flexibility.

Why regularize?

- Express preferences over weights
- Make the model simple so it works on test data
- Improve optimization by adding curvature

Regularization: Expressing Preferences

$$
\begin{aligned}
x= & {[1,1,1,1] } \\
w_{1}= & {[1,0,0,0] } \\
w_{2}= & {[0.25,0.25,0.25,0.25] } \\
& w_{1}^{T} x=w_{2}^{T} x=1
\end{aligned}
$$

Regularization: Expressing Preferences

$$
\begin{array}{rlrl}
x= & {[1,1,1,1]} & & \text { L2 Regularization } \\
w_{1}= & {[1,0,0,0]} & & \\
w_{2}= & {[0.25,0.25,0.25,0.25]} & & \begin{array}{l}
\text { L2 regularization likes to } \\
\text { "spread out" the weights }
\end{array} \\
& w_{1}^{T} x=w_{2}^{T} x=1 &
\end{array}
$$

Regularization: Prefer Simpler Models

Regularization: Prefer Simpler Models

Regularization: Prefer Simpler Models

Regularization pushes against fitting the data with too much flexibility. If you are going to use a complex function to fit the data, you should be doing based on a lot of data!

Regularization

$\lambda=$ regularization strength (hyperparameter)

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from having too much flexibility.

Why not force W to have a FIXED MAGNITUDE?
For example: $|W|=1$.

Regularization

$\lambda=$ regularization strength (hyperparameter)

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from having too much flexibility.

Why not force W to have a FIXED MAGNITUDE?
For example: $|W|=1$.
Could be OK, but makes the optimization process more challenging. Will say more about later.

Softmax Classifier (Multinomial Logistic Regression)

cat 3.2
car 5.1

$$
\text { frog } \quad-1.7
$$

Softmax Classifier (Multinomial Logistic Regression)

scores $=$ unnormalized log probabilities of the classes.

$$
s=f\left(x_{i} ; W\right)
$$

cat 3.2
car 5.1

$$
\text { frog } \quad-1.7
$$

Softmax Classifier (Multinomial Logistic Regression)

scores $=$ unnormalized log probabilities of the classes.

$$
P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \text { where } \quad s=f\left(x_{i} ; W\right)
$$

cat 3.2
car 5.1

$$
\text { frog } \quad-1.7
$$

Softmax Classifier (Multinomial Logistic Regression)

cat 3.2
scores $=$ unnormalized log probabilities of the classes.

$$
P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \text { where } \quad s=f\left(x_{i} ; W\right)
$$

Softmax function

5.1
-1.7

Softmax Classifier (Multinomial Logistic Regression)

scores $=$ unnormalized log probabilities of the classes.

$$
P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \text { where } \quad s=f\left(x_{i} ; W\right)
$$

Want to maximize the log likelihood, or (for a loss function)
cat
car
frog -1.7
3.2
5.1
to minimize the negative log likelihood of the correct class:

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

Softmax Classifier (Multinomial Logistic Regression)

scores $=$ unnormalized log probabilities of the classes.

$$
P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \text { where } \quad s=f\left(x_{i} ; W\right)
$$

Want to maximize the log likelihood, or (for a loss function)
 to minimize the negative log likelihood of the correct class:

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

$$
\text { in summary: } \quad L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right)
$$

Softmax Classifier (Multinomial Logistic Regression)

$$
L_{i}=-\log \left(\frac{e^{s_{y_{i}}}}{\sum_{j} e^{s_{j}}}\right)
$$

unnormalized log probabilities

Softmax Classifier (Multinomial Logistic Regression)

$$
L_{i}=-\log \left(\frac{e^{s_{y_{i}}}}{\sum_{j} e^{s_{j}}}\right)
$$

unnormalized probabilities

\(\left.$$
\begin{array}{l}\text { cat } \\
\text { car } \\
\text { frog }\end{array}
$$ $$
\begin{array}{|c}3.2 \\
5.1 \\
-1.7\end{array}
$$. \begin{array}{r}24.5

\end{array}\right]\)| 164.0 |
| ---: |
| 0.18 |

unnormalized log probabilities

Softmax Classifier (Multinomial Logistic Regression)

$$
L_{i}=-\log \left(\frac{e^{s_{y_{i}}}}{\sum_{j} e^{s_{j}}}\right)
$$

unnormalized probabilities

cat	3.2		24.5	$\xrightarrow{\text { normalize }}$	0.13
	5.1	exp	164.0		0.87
frog	-1.7		0.18		0.00
unnormalized log probabilities					obabilities , sum to

Softmax Classifier (Multinomial Logistic Regression)

$$
L_{i}=-\log \left(\frac{e^{s_{y_{i}}}}{\sum_{j} e^{s_{j}}}\right)
$$

unnormalized probabilities

Softmax Classifier (Multinomial Logistic Regression)

$$
L_{i}=-\log \left(\frac{e^{s_{y_{i}}}}{\sum_{j} e^{s_{j}}}\right)
$$

unnormalized probabilities

Softmax Classifier (Multinomial Logistic Regression)

Q: What is the min / \max possible loss L_i?

unnormalized probabilities

Softmax Classifier (Multinomial Logistic Regression)

$$
L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right)
$$

unnormalized probabilities

> Q2: usually at initialization W are small numbers, so all s $\sim=0$. What is the loss?
0.13
0.87
0.00 $\quad \rightarrow \begin{aligned} & L_{-} i=-\log (0.13) \\ & =0.89\end{aligned}$
probabilities

Softmax vs. SVM

$$
L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right) \quad L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Softmax vs. SVM

$$
L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{e_{j}}}\right) \quad L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and

Q: Suppose I take a datapoint and I jiggle a bit (changing its score slightly). What happens to the loss in both cases?

Interactive Web Demo time....

http://vision.stanford.edu/teaching/cs231n/linear-classify-demo/

Recap

- We have some dataset of (x, y)
- We have a score function:

$$
s=f(x ; W) \stackrel{\text { e.g. }}{=} W x
$$

- We have a loss function:

$$
\begin{aligned}
& L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right) \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+R(W) \text { Full loss }
\end{aligned}
$$

Optimization

Strategy \#1: A first very bad idea solution: Random search

```
# assume X_train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y_train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
    W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
    loss = L(X_train, Y_train, W) # get the loss over the entire training set
    if loss < bestloss: # keep track of the best solution
        bestloss = loss
        bestW = W
    print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```


Let's see how well this works on the test set...

```
# Assume X test is [3073 x 10000], Y test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```


15.5\% accuracy! not bad!
 (SOTA is ~95\%)

How often should I expect a random search to find a new improved solution? (POLL)

