Lecture 4: Optimization:
 Stochastic Gradient Descent and Backpropagation

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

3.2

$$
5.1
$$

1.3
4.9

Losses: 2.9
cat
car
2.0
frog

$$
-1.7
$$

-3.1
2.2
2.5

Multiclass SVM loss:

Given an example $\quad\left(x_{i}, y_{i}\right)$ where x_{i} is the image ana where y_{i} is the (integer) label,
and using the shorthand for the scores vector:

$$
s_{i}=f\left(x_{i}, W\right)
$$

the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q5: usually at initialization W are small numbers, so all s ~= 0 . What is the loss?

Softmax vs. SVM

$$
L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right) \quad L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Optimization

Recap

- We have some dataset of (x, y)
- We have a score function:

$$
s=f(x ; W) \stackrel{\text { e.g. }}{=} W x
$$

- We have a loss function:

$$
\begin{aligned}
& L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right) \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+R(W) \text { Full loss }
\end{aligned}
$$

Strategy \#1: A first very bad idea solution: Random search

```
# assume X_train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y_train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
    W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
    loss = L(X_train, Y_train, W) # get the loss over the entire training set
    if loss < bestloss: # keep track of the best solution
        bestloss = loss
        bestW = W
    print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```


Let's see how well this works on the test set...

```
# Assume X test is [3073 x 10000], Y test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```


15.5\% accuracy! not bad!
 (SOTA is ~95\%)

```
# Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```


15.5\% accuracy! not bad! (SOTA is ~95\%)

Strategy \#2: Follow the slope

In 1-dimension, the derivative of a function:

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

In multiple dimensions, the gradient is the vector of (partial derivatives).

Consider the function

$$
z(x, y)=x^{2}+y^{2}
$$

and suppose we are interested in evaluating the gradient of this function at the point

$$
(x, y)=(5,3)
$$

Evaluate the gradient:

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=2 x \\
& \frac{\partial z}{\partial y}=2 y
\end{aligned}
$$

The algebraic expression of the gradient is just the collection of these partials into a "vector":

$$
\nabla z=\left[\begin{array}{l}
2 x \\
2 y
\end{array}\right]
$$

The evaluation of this gradient at the point $(x, y)=(5,3)$ is simply

$$
\nabla z(5,3)=\left[\begin{array}{l}
2 \times 5 \\
2 \times 3
\end{array}\right]=\left[\begin{array}{c}
10 \\
6
\end{array}\right]
$$

A sneak "preview" of the motivation for backpropagation

Consider the function

$$
z(x, y)=x^{2}+y^{2}
$$

and suppose we are interested in evaluating the gradient of this function at the point

$$
(x, y)=(5,3)
$$

Evaluate the gradient:

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=2 x \\
& \frac{\partial z}{\partial y}=2 y
\end{aligned}
$$

The algebraic expression of the gradient is just the collection of these partials into a "vector":

$$
\nabla z=\left[\begin{array}{l}
2 x \\
2 y
\end{array}\right] . \quad \text { Don't care about this }
$$

The evaluation of this gradient at the point $(x, y)=(5,3)$ is simply

$$
\nabla z(5,3)=\left[\begin{array}{l}
2 \times 5 \\
2 \times 3
\end{array}\right]=\left[\begin{array}{c}
10 \\
6
\end{array}\right]
$$

Numerical evaluation of the gradient...

current W:

[0.34,
-1.11,
0.78 ,
0.12,
0.55 ,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25347

gradient dW:

current W:

[0.34,
-1.11,
0.78 ,
0.12,
0.55 ,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25347
$\mathbf{W}+\mathbf{h}$ (first dim):
$[0.34+0.0001$,
-1.11,
0.78,
0.12,
0.55 ,
2.81,
-3.1,
-1.5,
$0.33, \ldots$]
loss 1.25322

gradient dW:

current W:

[0.34,
-1.11,
0.78 ,
0.12,
0.55 ,
2.81,
-3.1,
-1.5,
$0.33, \ldots$]
loss 1.25347
$\mathbf{W}+\mathbf{h}$ (first dim):
$[0.34+0.0001$,
-1.11,
0.78,
0.12,
0.55 ,
2.81,
-3.1,
-1.5,
$0.33, \ldots$]
loss 1.25322

gradient dW:

[-2.5, ?,
?
(1.25322-1.25347)/0.0001

$$
=-2.5
$$

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
?, \ldots]
$$

current W:

[0.34,
-1.11,
0.78 ,
0.12,
0.55 ,
2.81,
-3.1,
-1.5,
$0.33, \ldots]$
loss 1.25347
$\mathbf{W}+\mathbf{h}$ (second dim):
[0.34,
$-1.11+0.0001$,
0.78 ,
0.12,
0.55 ,
2.81,
-3.1,
-1.5,
0.33,...]

Ioss 1.25353

gradient dW:

current W:

[0.34
-1.11,
0.78 ,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
$0.33, \ldots$]
loss 1.25347
$\mathbf{W}+\mathbf{h}$ (second dim):
[0.34,
$-1.11+0.0001$,
0.78 ,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
$0.33, \ldots]$
Ioss 1.25353

gradient dW:

current W:

[0.34,
-1.11,
0.78 ,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25347
$\mathbf{W}+\mathbf{h}$ (third dim):
[0.34,
-1.11,
0.78 + 0.0001,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
0.33,...]

Ioss 1.25347

gradient dW:

current W:

[0.34,
-1.11,
0.78 ,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
$0.33, \ldots$]
loss 1.25347
$\mathbf{W}+\mathbf{h}$ (third dim):
[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55 ,
2.81,
-3.1,
-1.5,
0.33,...]

Ioss 1.25347

gradient dW:

0.6 ,
0 ,

(1.25347-1.25347)/0.0001

$$
=0
$$

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

current W:

gradient dW:

$[0.34$,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
$0.33, \ldots]$
loss 1.25347

$$
\begin{aligned}
& \mathrm{dW}=\ldots \\
& \text { (some function of } \\
& \text { data and } \mathrm{W} \text {) }
\end{aligned}
$$

$$
[-2.5,
$$

0.6,

0 ,
0.2 ,
0.7 ,
-0.5,
1.1, 1.3, $-2.1, \ldots$]

Evaluating the gradient numerically

```
def eval_numerical_gradient(f, x):
    """
    a naive implementation of numerical gradient of f at x
    f should be a function that takes a single argument
    x is the point (numpy array) to evaluate the gradient at
    |"
fx = f(x) # evaluate function value at original point
grad = np.zeros(x.shape)
h = 0.00001
# iterate over all indexes in x
it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:
    # evaluate function at x+h
    ix = it.multi_index
    old_value = x[ix]
    x[ix] = old value + h # increment by h
    fxh = f(x) # evalute f(x+h)
    x[ix] = old_value # restore to previous value (very important!)
    # compute the partial derivative
    grad[ix] = (fxh - fx) / h # the slope
    it.iternext() # step to next dimension
return grad
```


Evaluating the gradient numerically

```
def eval_numerical_gradient(f, x):
    """
    a naive implementation of numerical gradient of f at x
    f should be a function that takes a single argument
    x is the point (numpy array) to evaluate the gradient at
*
fx = f(x) # evaluate function value at original point
grad = np.zeros(x.shape)
h = 0.00001
# iterate over all indexes in x
it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:
    # evaluate function at }x+
    ix = it.multi_index
    old_value = x[ix]
    x[ix] = old_value + h # increment by h
    fxh = f(x) # evalute f(x+h)
    x[ix] = old_value # restore to previous value (very important!)
    # compute the partial derivative
    grad[ix] = (fxh - fx) / h # the slope
    it.iternext() # step to next dimension
return grad
```


This is silly. The loss is just a function of W:

$$
\begin{aligned}
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\sum_{k} W_{k}^{2} \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& s=f(x ; W)=W x
\end{aligned}
$$

$$
\text { want } \nabla_{W} L
$$

"The gradient of the loss L with respect to the parameters W"

This is silly. The loss is just a function of W :

$$
\begin{aligned}
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\sum_{k} W_{k}^{2} \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& s=f(x ; W)=W x
\end{aligned}
$$

want $\nabla_{W} L$

Retropolis

During a pandemic, Isaac Newton had to work from home, too. He used the time wisely.

1. Developed calculus
2. Fundamentals of optics
3. Theory of gravity
...not too shabby!

A later portrait of Sir Isaac Newton by Samuel Freeman. (British Library/National Endowment for the Humanities)

By Gillian Brockell

This is silly. The loss is just a function of W :

$$
\begin{aligned}
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\sum_{k} W_{k}^{2} \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& s=f(x ; W)=W x
\end{aligned}
$$

$$
\nabla_{W} L=\ldots
$$

In summary:

- Numerical gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone
=>
In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

Gradient Descent

```
# Vanilla Gradient Descent
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```


Mini-batch Gradient Descent

- only use a small portion of the training set to compute the gradient.

```
# Vanilla Minibatch Gradient Descent
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Common mini-batch sizes are 32/64/128 examples e.g. Krizhevsky ILSVRC ConvNet used 256 examples

Mini-batch Gradient Descent

- only use a small portion of the training set to compute the gradient. Why?
- Goal is to estimate the gradient
- Trade-off between accuracy and computation
- No point in doing more computation if it won't change the updates

Mini-batch Gradient Descent

- only use a small portion of the training set to compute the gradient.

```
# Vanilla Minibatch Gradient Descent
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Common mini-batch sizes are 32/64/128 examples e.g. Krizhevsky ILSVRC ConvNet used 256 examples

The effects of step size (or "learning rate")

Mini-batch Gradient Descent

- only use a small portion of the training set to compute the gradient.

```
# Vanilla Minibatch Gradient Descent
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Common mini-batch sizes are 32/64/128 examples e.g. Krizhevsky ILSVRC ConvNet used 256 examples
we will look at more fancy update formulas (momentum, Adagrad, RMSProp, Adam, ...)

The effects of different update form formulas

(image credits to Alec Radford)

Backpropagation

 and
Neural Networks part 1

Where we are...

$$
\begin{array}{lc}
s=f(x ; W)=W x & \text { scores function } \\
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) & \text { SVM loss } \\
L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\sum_{k} W_{k}^{2} & \text { data loss + regularization }
\end{array}
$$

want $\nabla_{W} L$

Optimization

[^0](image credits to Alec Radford)

Gradient Descent

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Numerical gradient: slow :(, approximate :(, easy to write :) Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient

Computational Graph

Convolutional Network (AlexNet)

loss

Neural Turing Machine

input tape

loss

Consider the function

$$
z(x, y)=x^{2}+y^{2}
$$

and suppose we are interested in evaluating the gradient of this function at the point

$$
(x, y)=(5,3)
$$

Evaluate the gradient:

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=2 x \\
& \frac{\partial z}{\partial y}=2 y
\end{aligned}
$$

The algebraic expression of the gradient is just the collection of these partials into a "vector":

$$
\nabla z=\left[\begin{array}{l}
2 x \\
2 y
\end{array}\right]
$$

The evaluation of this gradient at the point $(x, y)=(5,3)$ is simply

$$
\nabla z(5,3)=\left[\begin{array}{l}
2 \times 5 \\
2 \times 3
\end{array}\right]=\left[\begin{array}{c}
10 \\
6
\end{array}\right]
$$

Consider the function

$$
z(x, y)=x^{2}+y^{2}
$$

and suppose we are interested in evaluating the gradient of this function at the point

$$
(x, y)=(5,3)
$$

Evaluate the gradient:

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=2 x \\
& \frac{\partial z}{\partial y}=2 y
\end{aligned}
$$

The algebraic expression of the gradient is just the collection of these partials into a "vector":

$$
\nabla z=\left[\begin{array}{l}
2 x \\
2 y
\end{array}\right] . \quad \text { Don't care about this }
$$

The evaluation of this gradient at the point $(x, y)=(5,3)$ is simply

$$
\nabla z(5,3)=\left[\begin{array}{l}
2 \times 5 \\
2 \times 3
\end{array}\right]=\left[\begin{array}{c}
10 \\
6
\end{array}\right]
$$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

Want: $\quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

Critical technique!

Introduce names (variables)
for intermediate results!
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y
$$

$$
f=q z
$$

Critical technique!

Introduce names (variables)
for intermediate results!
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$
$f(x, y, z)=(x+y) z$
e.g. $x=-2, y=5, z=-4$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Critical technique!

Introduce names (variables)
for intermediate results!

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

$$
\frac{\partial f}{\partial z}
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

$$
\frac{\partial f}{\partial z}
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

$$
x-2
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

$$
x-2
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\frac{\partial f}{\partial y}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial y}
$$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Chain rule:

$$
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial x}
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

[^0]: \# Vanilla Gradient Descent
 while True:
 weights_grad = evaluate_gradient(loss_fun, data, weights) weights += - step_size * weights_grad \# perform parameter update

