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Lecture 5:

Backpropagation 


Vector, Matrix and Tensor 
Derivatives
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want

scores function

SVM loss

data loss + regularization

Where we are … 
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(image credits 

to Alec Radford)

Optimization
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Gradient Descent

Numerical gradient: slow :(, approximate :(, easy to write :)

Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your 
implementation with numerical gradient
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● We want to evaluate the gradient of a Loss function 
L(x,W,...), with respect to the parameters (weights) of a 
neural network, at the “point” represented by the 
arguments to the function (x,W,...).

○ We are not interested in an algebraic expression 

for the gradient, but rather only in the evaluation of 
that gradient at the current value of the function 
arguments.

Overview of where we’re going
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Don’t care about this

Do care about this

6
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Convolutional Network

(AlexNet)

input image

weights

loss
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Neural Turing Machine

input tape

loss
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Computational Graph

x

W

* hinge 
loss

R

+ L
s (scores)
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e.g. x = -2, y = 5, z = -4

Forward pass: evaluating each expression in 

the computational graph from the inputs to the 
final output (or outputs). The results of

each forward step are shown in green.
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e.g. x = -2, y = 5, z = -4
Backward pass: evaluating the partial derivative of 
each parameter or intermediate result in the 
computational graph from the outputs back to the 
inputs.The results of each backward step are 
shown in red.
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e.g. x = -2, y = 5, z = -4

Want: 
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e.g. x = -2, y = 5, z = -4

Want: 

Important: name the intermediate quantities 

Compute some local partial derivatives. 
These are derivatives of the outputs of a node 
with respect to the inputs....
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e.g. x = -2, y = 5, z = -4

Want: 
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e.g. x = -2, y = 5, z = -4

Want: 
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e.g. x = -2, y = 5, z = -4

Want: 
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e.g. x = -2, y = 5, z = -4

Want: 
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e.g. x = -2, y = 5, z = -4

Want: 
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e.g. x = -2, y = 5, z = -4

Want: 
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e.g. x = -2, y = 5, z = -4

Want: 
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e.g. x = -2, y = 5, z = -4

Want: 

Chain rule:
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e.g. x = -2, y = 5, z = -4

Want: 
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e.g. x = -2, y = 5, z = -4

Want: 

Chain rule:
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f

activations
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f

activations

“local gradient”
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f

activations

“local gradient”

gradients
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f

activations

gradients

“local gradient”
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f

activations

gradients

“local gradient”



Lecture 2 - Sept. 7. 2021Erik Learned-Miller and TAs 
Some slides kindly provided by Fei-Fei Li, Andrej Karpathy, Justin Johnson
Subhransu Maji, Chuang Gan and TAs 
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 5 - Sept. 19, 202331

f

activations

gradients

“local gradient”
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Another example: “sigmoid function”
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:

(-1) * (-0.20) = 0.20
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Another example:
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Another example:

[local gradient] x [its gradient]

[1] x [0.2] = 0.2

[1] x [0.2] = 0.2  (both inputs!)
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Another example:
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Another example:

[local gradient] x [its gradient]

x0: [2] x [0.2] = 0.4

w0: [-1] x [0.2] = -0.2
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sigmoid function

sigmoid gate
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sigmoid function

sigmoid gate

(0.73) * (1 - 0.73) = 0.2
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Patterns in backward flow

add gate: gradient distributor

max gate: gradient router

mul gate: gradient… “switcher”?
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Gradients add at branches

+
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Implementation:   forward/backward API

Graph (or Net) object. (Rough pseudo code)
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Implementation:   forward/backward API

(x,y,z are scalars)

*

x

y

z
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Implementation:   forward/backward API

(x,y,z are scalars)

*

x

y

z
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Example: Torch Layers
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Example: Torch Layers

=
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Example: Torch MulConstant

initialization

forward()

backward()
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Gradients for vectorized code

f

“local gradient”

This is now the 
Jacobian matrix 
(derivative of each 
element of z w.r.t. each 
element of x)

(x,y,z are now 
vectors)

gradients



Lecture 2 - Sept. 7. 2021Erik Learned-Miller and TAs 
Some slides kindly provided by Fei-Fei Li, Andrej Karpathy, Justin Johnson
Subhransu Maji, Chuang Gan and TAs 
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 5 - Sept. 19, 202358



Lecture 2 - Sept. 7. 2021Erik Learned-Miller and TAs 
Some slides kindly provided by Fei-Fei Li, Andrej Karpathy, Justin Johnson
Subhransu Maji, Chuang Gan and TAs 
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 5 - Sept. 19, 202359

Vectorized operations

f(x) = max(0,x)

(elementwise)

4096-d 

input vector

4096-d 

output vector
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Vectorized operations

f(x) = max(0,x)

(elementwise)

4096-d 

input vector

4096-d 

output vector

Q: what is the 
size of the 
Jacobian matrix?

Jacobian matrix
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max(0,x)

(elementwise)

4096-d 

input vector

4096-d 

output vector

Q: what is the 
size of the 
Jacobian matrix?

[4096 x 4096!]

Q2: what does it 
look like?

Vectorized operations

Jacobian matrix

f(x) = max(0,x)

(elementwise)
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max(0,x)

(elementwise)

100 4096-d 

input vectors

100 4096-d 

output vectors

Vectorized operations

in practice we process an 
entire minibatch (e.g. 100) 
of examples at one time:

i.e. Jacobian would technically be a

[409,600 x 409,600] matrix :\

f(x) = max(0,x)

(elementwise)
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Assignment: Writing SVM/Softmax

Stage your forward/backward computation!

E.g. for the SVM:
margins
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Summary so far


- neural nets will be very large: no hope of writing down gradient formula by 
hand for all parameters


- backpropagation = recursive application of the chain rule along a 
computational graph to compute the gradients of all inputs/parameters/
intermediates


- implementations maintain a graph structure, where the nodes implement 
the forward() / backward() API.


- forward: compute result of an operation and save any intermediates 
needed for gradient computation in memory


- backward: apply the chain rule to compute the gradient of the loss 
function with respect to the inputs.



