## Lecture 5: Backpropagation Vector, Matrix and Tensor Derivatives

## Where we are ...

$$
\begin{aligned}
& \qquad s=f(x ; W)=W x \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\sum_{k} W_{k}^{2} \\
& \text { want } \nabla_{W} L
\end{aligned}
$$

## Optimization



[^0](image credits to Alec Radford)

## Gradient Descent

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Numerical gradient: slow :(, approximate :(, easy to write :) Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient

## Overview of where we're going

- We want to evaluate the gradient of a Loss function $\mathrm{L}(\mathrm{x}, \mathrm{W}, \ldots)$, with respect to the parameters (weights) of a neural network, at the "point" represented by the arguments to the function ( $\mathrm{x}, \mathrm{W}, \ldots$ ).
- We are not interested in an algebraic expression for the gradient, but rather only in the evaluation of that gradient at the current value of the function arguments.

Consider the function

$$
z(x, y)=x^{2}+y^{2}
$$

and suppose we are interested in evaluating the gradient of this function at the point

$$
(x, y)=(5,3)
$$

Evaluate the gradient:

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=2 x \\
& \frac{\partial z}{\partial y}=2 y
\end{aligned}
$$

The algebraic expression of the gradient is just the collection of these partials into a "vector":

$$
\nabla z=\left[\begin{array}{l}
2 x \\
2 y
\end{array}\right] . \quad \text { Don't care about this }
$$

The evaluation of this gradient at the point $(x, y)=(5,3)$ is simply

$$
\nabla z(5,3)=\left[\begin{array}{l}
2 \times 5 \\
2 \times 3
\end{array}\right]=\left[\begin{array}{c}
10 \\
6
\end{array}\right]
$$

# Convolutional Network (AlexNet) 


loss


## Neural Turing Machine

## input tape

loss


## Computational Graph



$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

Forward pass: evaluating each expression in the computational graph from the inputs to the
 final output (or outputs). The results of each forward step are shown in green.

```
# set some inputs
x = -2; y = 5; z = -4
# perform the forward pass
q = x + y # q becomes 3
f=q* z # f becomes -12
```

\# perform the backward pass (backpropagation) in reverse order:
\# first backprop through $f=q * z$
$\mathrm{dfdz}=\mathrm{q} \# d f / d z=q$, so gradient on $z$ becomes 3
dfdq $=\mathbf{z} \# d f / d q=z$, so gradient on $q$ becomes -4
\# now backprop through $q=x+y$
$d f d x=1.0 * d f d q ~ \# d q / d x=1$. And the multiplication here is the chain rule!
dfdy $=1.0 * d f d q \quad \# d q / d y=1$
$f(x, y, z)=(x+y) z$
e.g. $\mathrm{x}=-2, \mathrm{y}=5, \mathrm{z}=-4$

Backward pass: evaluating the partial derivative of each parameter or intermediate result in the computational graph from the outputs back to the inputs. The results of each backward step are shown in red.


Goal is to calculate

$$
\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
$$

evaluated at the point

$$
[x=-2, y=5, z=-4] .
$$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$



$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$
$f(x, y, z)=(x+y) z$
e.g. $x=-2, y=5, z=-4$

$$
q \equiv x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$



Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$
Compute some local partial derivatives.
These are derivatives of the outputs of a node with respect to the inputs....

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$



Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$



Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$



$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

$$
\frac{\partial f}{\partial z}
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$



$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

$$
x-2
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
x-2
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$



Want: $\quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$



Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$


$$
\frac{\partial f}{\partial y}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial y}
$$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$



Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

## Chain rule:

$$
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial x}
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$


```
# set some inputs
x = -2; y = 5; z = -4
# perform the forward pass
q = x + y # q becomes 3
f = q * z # f becomes -12
```

```
# perform the backward pass (backpropagation) in reverse order:
# first backprop through f = q * z
dfdz = q # df/dz = q, so gradient on z becomes 3
dfdq = z # df/dq = z, so gradient on q becomes -4
# now backprop through q = x + y
dfdx = 1.0 * dfdq # dq/dx = 1. And the multiplication here is the chain rule!
dfdy = 1.0 * dfdq # dq/dy = 1
```








## Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$



## Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$



| $f(x)=e^{x}$ | $\rightarrow$ | $\frac{d f}{d x}=e^{x}$ |
| :--- | :--- | :--- |
| $f_{a}(x)=a x$ | $\rightarrow$ | $f(x)=\frac{1}{x}$ |
| $d x$ | $=\frac{d f}{d x}=a$ | $f_{c}^{2}$ |
| $d x$ |  |  |

## Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$



## Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$



$$
\begin{array}{lll|lll|}
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=1
\end{array}
$$

## Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$



$$
\begin{array}{lll|ll|}
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow \\
\hline
\end{array}
$$

## Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$



| $f(x)=e^{x}$ | $\rightarrow$ | $\frac{d f}{d x}=e^{x}$ | $f(x)=\frac{1}{x}$ | $\rightarrow$ | $\frac{d f}{d x}=-1 / x^{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $f_{a}(x)=a x$ | $\rightarrow$ | $\frac{d f}{d x}=a$ | $f_{c}(x)=c+x$ | $\rightarrow$ | $\frac{d f}{d x}=1$ |

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$


$$
\begin{array}{|lll|lll}
\hline f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=1
\end{array}
$$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$


$$
\begin{array}{lll|lll}
\hline f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
\hline f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=1
\end{array}
$$

## Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$



| $f(x)=e^{x}$ | $\rightarrow$ | $\frac{d f}{d x}=e^{x}$ | $f(x)=\frac{1}{x}$ | $\rightarrow$ | $\frac{d f}{d x}=-1 / x^{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $f_{a}(x)=a x$ | $\rightarrow$ | $\frac{d f}{d x}=a$ |  |  |  |

## Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$



| $f(x)=e^{x}$ | $\rightarrow$ | $\frac{d f}{d x}=e^{x}$ | $f(x)=\frac{1}{x}$ | $\rightarrow$ | $\frac{d f}{d x}=-1 / x^{2}$ <br> $f_{a}(x)=a x$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

## Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$



## Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$



$$
\begin{array}{lll|ll}
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow
\end{array} \quad \begin{aligned}
& \frac{d f}{d x}=-1 / x^{2} \\
& f_{a}(x)=a x
\end{aligned}
$$

## Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$




## Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$



| $f(x)=e^{x}$ | $\rightarrow$ | $\frac{d f}{d x}=e^{x}$ | $f(x)=\frac{1}{x}$ | $\rightarrow$ |
| :--- | :--- | :--- | :--- | :--- |
| $f_{a}(x)=a x$ | $\rightarrow$ | $\frac{d f}{d x}=a$ | $f_{c}(x)=c+x$ |  |

$$
f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}
$$

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

$$
\frac{d \sigma(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)=(1-\sigma(x)) \sigma(x)
$$


sigmoid function

$$
\begin{aligned}
& f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}} \quad \sigma(x)=\frac{1}{1+e^{-x}} \\
& \frac{d \sigma(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)=(1-\sigma(x)) \sigma(x) \\
& \text { so } \frac{-3.00}{2.00}
\end{aligned}
$$

```
w = [2,-3,-3] # assume some random weights and data
x = [-1, -2]
# forward pass
dot = w[0]*x[0] + w[1]*x[1] + w[2]
f = 1.0 / (1 + math.exp(-dot)) # sigmoid function
# backward pass through the neuron (backpropagation)
ddot = (1 - f) * f # gradient on dot variable, using the sigmoid gradient derivation
dx = [w[0] * ddot, w[1] * ddot] # backprop into x
dw = [x[0] * ddot, x[1] * ddot, 1.0 * ddot] # backprop into w
# we're done! we have the gradients on the inputs to the circuit
```


## Patterns in backward flow

add gate: gradient distributor max gate: gradient router mul gate: gradient... "switcher"?


## Gradients add at branches



Lecture 5-50 Sept. 19, 2023

## Implementation: forward/backward API



Graph (or Net) object. (Rough pseudo code)

```
class ComputationalGraph(object):
```

class ComputationalGraph(object):
\#..
\#..
def forward(inputs):
def forward(inputs):
\# 1. [pass inputs to input gates...]
\# 1. [pass inputs to input gates...]
\# 2. forward the computational graph:
\# 2. forward the computational graph:
for gate in self.graph.nodes_topologically_sorted():
for gate in self.graph.nodes_topologically_sorted():
gate.forward()
gate.forward()
return loss \# the final gate in the graph outputs the loss
return loss \# the final gate in the graph outputs the loss
def backward():
def backward():
for gate in reversed(self.graph.nodes_topologically_sorted()):
for gate in reversed(self.graph.nodes_topologically_sorted()):
gate.backward() \# little piece of backprop (chain rule applied)
gate.backward() \# little piece of backprop (chain rule applied)
return inputs_gradients

```
        return inputs_gradients
```


## Implementation: forward/backward API



## Implementation: forward/backward API



## (x,y,z are scalars)

## Example: Torch Layers



## Example: Torch Layers




```
function MulConstant:__init(constant_scalar,ip)
    parent._init(self)
    assert(type(constant_scalar) == 'number', 'input is not scalar!')
    self.constant_scalar = constant_scalar
```

    default for inplace is false
    self.inplace \(=i p\) or false
    if (ip and type(ip) ~= 'boolean') then
        error('in-place flag must be boolean')
    end
    function MulConstant:updateOutput (input)
if self.inplace then
input:mul(self.constant_scalar)
self.output = input
else
self.output:resizeAs(input)
self.output:copy(input)
self.output:mul(self.constant_scalar)
end
return self.output

```
function MulConstant:updateGradInput(input, gradOutput)
    if self.gradInput then
        if self.inplace then
        gradOutput:mul(self.constant_scalar)
        self.gradInput = gradOutput
            restore previous input value
        input:div(self.constant_scalar)
    else
        self.gradInput:resizeAs(gradOutput)
        self.gradInput:copy(grad0utput)
        self.gradInput:mul(self.constant_scalar)
        end
        return self.gradInput
    end
```

Gradients for vectorized code $\begin{gathered}(x, y, z \text { are now } \\ \text { vectors })\end{gathered}$
This is now the Jacobian matrix (derivative of each element of $z$ w.r.t. each element of x )


```
[slides]
[backprop notes]
[Efficient BackProp] (optional)
related: [1], [2], [3] (optional)
[slides]
handout 1: Vector, Matrix, and Tensor Derivatives
handout 2: Derivatives, Backpropagation, and
Vectorization
Deep Learning [Nature] (optional)
```

[slides]
tips/tricks: [1], [2] (optional)

## Vectorized operations



## Vectorized operations

$$
\frac{\partial L}{\partial x}=\frac{\partial f}{\partial x} \frac{\partial L}{\partial f}
$$



## Vectorized operations

$$
\frac{\partial L}{\partial x}=\frac{\partial f}{\partial x} \frac{\partial L}{\partial f}
$$



## Vectorized operations

in practice we process an entire minibatch (e.g. 100) of examples at one time:


## Assignment: Writing SVM/Softmax Stage your forward/backward computation!



## Summary so far

- neural nets will be very large: no hope of writing down gradient formula by hand for all parameters
- backpropagation = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/ intermediates
- implementations maintain a graph structure, where the nodes implement the forward() / backward() API.
- forward: compute result of an operation and save any intermediates needed for gradient computation in memory
- backward: apply the chain rule to compute the gradient of the loss function with respect to the inputs.


[^0]:    \# Vanilla Gradient Descent
    while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights) weights += - step_size * weights_grad \# perform parameter update

