Lecture 8:
Training Neural Networks
Part Il
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Administrivia

Homework 1 due 11:59 pm, 9/28 (today!) — follow
instructions and submit on Gradescope.
Homework 2 will be released tomorrow.

Project proposals due 10/8

TAs will provide more details on Tuesday’s lecture 10/3
Most of us will be at ICCV next week — apologies for
fewer office hours, Thursday’s lecture will be remote

Subhransu Maji, Chuang Gan and TAs Lecture 8 - 2 Sept. 28, 2023

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



Administrivia

Optional discussion on Vector, Matrix, and Tensor
Derivatives, led by Eddie

Friday (9/29) from 10-11am in CS142

Join via zoom — htips://umass-amherst.zoom.us/j/
2799045978 (will be recorded)
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https://umass-amherst.zoom.us/j/2799045978
https://umass-amherst.zoom.us/j/2799045978

Project proposals

https://cvl-umass.github.io/compsci682-fall-2023/projects/

The project proposal should be concise (200-400 words). You can use the provided template. Your proposal should
contain:

« Group Members Who are the (2 3) group members" vDat will each person do? (This needs to be a
separate detailed paragraeTe= NS

« Motivation: What is the problem that you will be investigating? Why is it interesting?

« Literature Review: What reading will you examine to provide context and background?

« Data: What data will you use? If you are collecting new datasets, how do you plan to collect them? If the
datasets are huge what compute resources are you using?

« Approach: What method or algorithm are you proposing? If there are existing implementations, will you use
them and how? How do you plan to improve or modify such implementations?

« Evaluation Metric: How will you evaluate your results? Qualitatively, what kind of results do you expect (e.g.
plots or figures)? Quantitatively, what kind of analysis will you use to evaluate and/or compare your results
(e.g. what performance metrics or statistical tests)?

« References: Bibliography of papers based on which your project idea is based.

Submission: Please upload a PDF file to Gradescope. Please coordinate with your teammate and submit only
under ONE of your accounts, and add your teammate on Gradescope.
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Project proposals

https://cvl-umass.github.io/compsci682-fall-2023/projects/

Overview
The course project is an opportunity for you to apply what you have learned in class to a probl
Your are encouraged to select a topic and work on your own project. Potential projects usually

« Applications. If you're coming to the class with a specific background and interests (e.g
problems related to your particular domain of interest. Pick a real-world problem and ap)

» Models. You can build a new model (algorithm) with deep neural networks, or a new var
challenging, and sometimes leads to a piece of publishable work.

Here you can find some sample prolect ideas:

Sample pro;ect |deas from TAs FaII 2023 (Google Docs) ) _
« Sample project. “Pror. trik Learned-Miller last semester (Google Docs)
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Anonymous feedback

682 anonymous feedback form (Fall 23) https://forms.gle/uFyBtoXuwqgZL7aSQ6

We are always working to improve the course and your feedback is valuable. Please let us
know what you feel works well and what doesn't, and changes that you'd like to see.
Submit feedback as often as needed throughout the semester. The form is anonymous.

- Course Staff @ 682, Fall 2023

like throughout the
semester!

Your answer

What changes would you suggest to better enhance your learning?

Any other comments?
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Anonymous feedback

Lectures are enjoyable and engaging. S " _

ample size = 9
Assignments are well-structured, with p
code broken down into understandable

. Like MOST?

There's a detailed walkthrough of the
underlying workings of neural networks.

The course is well-organized, clear
structure, challenging, interesting.

TAs are helpful and easy to approach.

Assignments are practical, allowing
students to apply lecture concepts.
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Anonymous feedback

Assignments are time-intensive and

often require more time than anticipated. Sam ple SIZG — 9

Allow use of high-level libraries and APIs

Course requires a strong prior L| ke L EAST?

understanding of the content.

More emphasis on the mathematical / I m p rove m e nt
R Suggestions

Hard to hear / audio issues — have
enabled transcripts

Remote participation is hard — will
upload videos by end of lecture day
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Overview

1. One time setup
activation functions, preprocessing, weight
initialization, regularization, batch normalization,
gradient checking

2. Training dynamics
babysitting the learning process, hyperparameter
optimization, parameter updates

3. Evaluation model ensembles
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Batch Normalization
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Batch Normalization [loffe and Szegedy, 2015]

A 4

FC Usually inserted after Fully
BlN ~ Connected (or Convolutional, as
I we’ll see soon) layers, and before
tarh nonlinearity.
FC
I
BN ) z*) — E[x(k)]
|
- v/ Var[z(%)]
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Batch Normalization [loffe and Szegedy, 2015]

“you want unit Gaussian activations? just make them so.”
Not actually “Gaussian”. Just zero mean, unit variance.

consider a batch of activations at some layer.
To make each dimension unit normalized,

apply:
(k) _ E[(k)
~(k) — L kA

v/ Var[z(%)] this is a vanilla
differentiable function...
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Batch Normalization [loffe and Szegedy, 2015]

“you want unit Gaussian activations? just make them so.”
Not actually “Gaussian”. Just zero mean, unit variance.

2 a2 a 1. compute the empirical mean and
variance independently for each
dimension.

N X
2. Normalize
VYY 7(k) — g — E[x(k)]
D \/Var[:z:(k)]
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Batch Normalization [loffe and Szegedy, 2015]

A 4

FC Usually inserted after Fully
BlN _ Connected / (or Convolutional, as
I we’ll see soon) layers, and before
tarh nonlinearity.
FC
I
BN ) z*) — E[x(k)]
|
- v/ Var[z(%)]
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Batch Normalization [loffe and Szegedy, 2015]

Normalize:
k k
(k) z(®) — E[z(*)]
! ")
\/Var[x ] Note, the network can learn:
And then allow the network to squash v(k) = \/Var[x(k)]
the range if it wants to:

Bk — Elz(®)]

to recover the identity
mapping.
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Batch Normalization

Input: Values of x over a mini-batch: B = {z1_ . };
Parameters to be learned: ~, 3

Output: {y; = BN, 5(z;)}

1 m
MB(—E;Z’Z

1 m
0B = Z(fﬁz — pg)*
=1

1=

// mini-batch mean

// mini-batch variance

Ty — KB
Vog+e

Wi =% + = BN, 5l(x:)

T; // normalize

// scale and shift
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[loffe and Szegedy, 2015]

Improves gradient flow through
the network

Allows higher learning rates
Reduces the strong dependence
on initialization
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Batch Normalization [loffe and Szegedy, 2015]

08 BN + same learning rate baseline (no BN)
BN + 5x learning rate / /
\ ‘ " o-F = -
0.7 W’ -----
0.6,
- = = Inception
== BN-Baseline
os{-t e BN-x5
: BN-x30
: .+ BN-x5-Sigmoid
: 4 Steps to match Inception
1 L ] : :

0.4 ! !
5M 10M 15M 20M 25M 30M

Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.
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Batch Normalization [loffe and Szegedy, 2015]

Input: Values of = over a mini-batch: B = {1 }; Note: at test time BatchNorm layer

Parameters to be learned: v, 3 functions differently:
Output: {y; = BN, g(z;)}

| m The mean/std are not computed
UB — — Z T // mini-batch mean | based on the batch. Instead, a single
B i fixed empirical mean of activations

2k during training is used.
0123 — i E (x; — ug)z // mini-batch variance 9 9
m ._ [ L] " L]
x,tlﬂs (e.g. can be estimated during training
T — —— // normalize | with running averages)
UB + €

¥; + 7%; + B = BN, g(z;) // scale and shift| gqyrce of many bugs!
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Gradient Checking
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Gradient checks

1-sided
10.04}

df N 1 — 1-sided (]
oo E(f(CUJFh)—f(fE)) 0|

In(x), x = 0.1

- - true

10.00 H

Compare gradient implementation with
numerical gradients

estimated df/dx

9.98

Easy to implement, but slow

9.96

Numerical precision can be an issue ‘ . ‘ ‘ : .
105 1013 101 10° 107 10°° 107 101 10!
(want h to be small but not too small)

epsilon
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. 2-sided gradients have better numerical stability!
Gradient checks ’ '

4+9.9994e2 In(x), x = 0.001
. - - true
1-sided 0.10 _ scided 1
d 1 — 2-sided
f Y

L~ (fla+h) - f(@)
2-sided

ad 1
N o (flz—h) = flz+h) e

0.06

estimated df/dx

0.02

1075 102 101 10° 107 10°°
epsilon

107 10 10*
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. 4-sided gradients are even better!
Gradient checks ’

+9.99999¢e4 In(x), x = 1e-05

1-sided 014 " rated |
— 2-sided
df 1 012 — 4-sided
— =~ —(f(x+ h)— f(z )
=~ = (f(z+h) = f(@))
© 010 . ]
2-sided g
df 1 00.08
~ —h) — h
=~ o (fa = h) = fz+ D))
0.06
4-sided 105 100 100 107 107 10 107 107 10!
epsilon
a 1

——~ (= f(@+2h) +8f(z+ h) = 8f(x — h) + f(x — 2h))

How about 6 sided or 12 sided? https://justindomke.wordpress.com/2017/04/22/you-deserve-better-than-two-sided-finite-differences/
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Overview

1. One time setup
activation functions, preprocessing, weight
initialization, regularization, batch normalization,
gradient checking

2. Training dynamics
babysitting the learning process, hyperparameter
optimization, parameter updates

3. Evaluation model ensembles
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Babysitting the Learning Process
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Step 1: Preprocess the data

original data zero-centered data normalized data
10 10 10 -
. A
5 5 S
0 - 0 - 0 / I

-10 -10
1q -10 -5 0 5 1g -10 -5 0 5 10

X -= np.mean(X, axis = 0) . X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)
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Step 2: Choose the architecture:
say we start with one hidden layer of 50 neurons:

50 hidden

neurons -

/ output layer 10 output
CIFAR-10 input neurclms, one
images, 3072 layer hidden layer per class
numbers
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Double check that the loss is reasonable:

def init two layer model(input size, hidden size, output size):

model = {}
model[ '\
model[ '}

1'] = 0.0001 * np.random.randn(input size, hidden size)

1']
model [ 'W2"']

S

e

np.zeros(hidden size)
0.0001 * np.random.randn(hidden size, output size)
np.zeros(output size)

imn n u

model[ 'l
mod 1

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
loss, grad = two layer net(X train, model, y train| 0.0

Ciiat Toss < = disable regularization
2.30261216167 \ |OSS ~23

“correct “ for returns the loss and the

10 classes gradient for all parameters
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Double check that the loss is reasonable:

def init two layer model(input size, hidden size, output size):

0.0001 * np.random.randn(input size, hidden size)
np.zeros(hidden size)
0.0001 * np.random.randn(hidden size, output size)
np.zeros(output size)

imn n u

model[ b2 ]
model

model = init two layer model(32*32*3, 50, 10) # ingut_size, hidden size, number of classes
loss, grad = two layer net(X train, model, y train,| 1e3 crank up regularization
print loss

3.06859716482 1\
loss went up, good. (sanity check)
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. model = init_two_layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
LetS try to traln nOW trainer = ClassifierTrainer()
LRCI X tiny = X train[:20] # take 20 examples
y tiny = y train[:20]
best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,

model, two layer net,
num_epochs=200, reg=0.0,

Tip: Make sure that Fote vatens S ot
. earning rate=le-3, verbose=True
you can overfit very

small portion of the
training data The above code:

- take the first 20 examples from
CIFAR-10

- turn off regularization (reg = 0.0)

- use simple vanilla ‘sgd’
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| | i
. model = init_two_layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
Lets try to traln now trainer = ClassifierTrainer()
. X tiny = X train[:20] # take 20 examples
y tiny = y train[:20]
best model, stats = trainer.train(X_tiny, y tiny, X tiny, y tiny,

model, two layer net,
num_epochs=200, reg=0.0,

Tip: Make sure that Conple batenis < Fatse,
. learning_rate=le-3, verbose=True)
yOU Can Overflt Vel’y Finished epoch

1/ 200: cost 2.302603, train: 0.400000, val 0.400000, lr 1.000000e-03

Finished epoch 2 / 200: cost 2.302258, train: 0.450000, val 0.450000, lr 1.000000e-03

. Finished epoch 3 / 200: cost 2.301849, train: 0.600000, val 0.600000, lr 1.000000e-03

Sma” portlon Of the Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val 0.650000, lr 1.000000e-03

Finished epoch 5 / 200: cost 2.300044, train: 0.650000, val 0.650000, lr 1.000000e-03

H - Finished epoch 6 / 200: cost 2.297864, train: 0.550000, val 0.550000, lr 1.000000e-03

tralnlng data Finished epoch 7 / 200: cost 2.293595, train: 0.600000, val 0.600000, lr 1.000000e-03

Finished epoch 8 / 200: cost 2.285096, train: 0.550000, val 0.550000, lr 1.000000e-03

Finished epoch 9 / 200: cost 2.268094, train: 0.550000, val 0.550000, lr 1.000000e-03

Finished epoch 10 / 200: cost 2.234787, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 11 / 200: cost 2.173187, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 12 / 200: cost 2.076862, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 13 / 200: cost 1.974090, train: 0.400000, val 0.400000, lr 1.000000e-03

Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val 0.400000, lr 1.000000e-03

Finished epoch 15 / 200: cost 1.820876, train: 0.450000, val 0.450000, lr 1.000000e-03

Finished epoch 16 / 200: cost 1.737430, train: 0.450000, val 0.450000, lr 1.000000e-03

Finished epoch 17 / 200: cost 1.642356, train: 0.500000, val 0.500000, lr 1.000000e-03

Ver- Sma” IOSS Finished epoch 18 / 200: cost 1.535239, train: ©.600000, val 0.600000, lr 1.000000e-03
3/ y Finished epoch 19 / 200: cost 1.421527, train: 0.600000, val 0.600000, lr 1.000000e-03 g

Fawmacmhad aca-sl AN 4 AN 1 nNAcCTIEen - Nn cocnannn caml N cocnnnn T e 1 AAAAAN~A AN

== = - ———— mm— = s m—— = e L R e A R et

traln aCCu raCy 1 OO Finished epoch 195 / 200: cost 0.002694, train: 1.000000, val 1.000000, lr 1.000000e-03
) ) Finished epoch 196 / 200: cost 0.002674, train: 1.000000, val 1.000000, lr 1.000000e-03

. Finished epoch 197 / 200: cost ©.002655, train: 1.000000, val 1.000000, lr 1.000000e-03
nlce| > Finished epoch 198 ; 200: cost 8.002635, train: 1.000000, val 1.000000, 1lr i.OOGOGOe-OS
/ 1

on

Finished epoch 199 / 200: cost 0.002617, train: 1.000000, val 1.000000, lr 1.000000e-03
Finished epoch 200 / 200: cost 0.002597, train: 1.000000, val 1.000000, lr 1.000000e-03
finished optimization. best validation accuracy: 1.000000
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model = init_two_layer model(32*32*3, 50, 10) # input size, hidden size, number of classes

LetS try to train nOW_ o trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,

| like to start with small Bt Ste B e i
regularization and find

learning rate that

makes the loss go

down.
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. model = init_two_layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
LetS try to traln nOW_ . trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,

I Iike tO Start With Sma” |1earniﬁg_ rate=1e-6,13érbose=True)

re ularlzatlon and f|nd Finished epoch 1 / 10:|cost 2.302576, |trair: 0.080000, al ©.103000, lr 1.000000e-06

SJ Finished epoch 2 / 10:|cost 2.302582, |train: 0.121000, val 0.124000, 1lr 1.000000e-06

. Finished epoch 3 / 10:|cost 2.302558, |trairl: ©0.119000, al ©.138000, lr 1.000000e-06

Iearnlng rate that Finished epoch 4 / 10:|cost 2.302519, |train: 0.127000, val 0.151000, 1r 1.000000e-06

Finished epoch 5 / 10:|cost 2.302517, |trairl: ©.158000, al 0.171000, lr 1.000000e-06

Finished epoch 6 / 10:|cost 2.302518, |train: 0.179000, Val 0.172000, 1lr 1.000000e-06

makes the |OSS go Finished epoch 7 / 10:|cost 2.302466, |trairl: ©.180000, al ©.176000, lr 1.000000e-06

Finished epoch 8 / 10:|cost 2.302452, |trairl: 0.175000, al ©.185000, lr 1.000000e-06

Finished epoch 9 / 10:|cost 2.302459, |[trairl: 0.206000, al ©0.192000, lr 1.000000e-06

down. Finished epoch 10 / 10} cost 2.302420| trajn: 0.190000, fval 0.192000, lr 1.000000e-06
finished optimization.lbest validation accﬂ?EEVT'GTTgiﬁﬁe

Loss barely changing
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. model = init_two_layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
LetS try to traln nOW_ . trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,

I Iike tO Start With Sma” |1earniﬁg_ rate=1e-6,13érbose=True)

re ularlzatlon and f|nd Finished epoch 1 / 10:|cost 2.302576, |trair: 0.080000, al ©.103000, lr 1.000000e-06

SJ Finished epoch 2 / 10:|cost 2.302582, |train: 0.121000, val 0.124000, 1lr 1.000000e-06

. Finished epoch 3 / 10:|cost 2.302558, |trairl: ©0.119000, al ©.138000, lr 1.000000e-06

Iearnlng rate that Finished epoch 4 / 10:|cost 2.302519, |train: 0.127000, val 0.151000, 1r 1.000000e-06

Finished epoch 5 / 10:|cost 2.302517, |trairl: ©.158000, al 0.171000, lr 1.000000e-06

Finished epoch 6 / 10:|cost 2.302518, |train: 0.179000, Val 0.172000, 1lr 1.000000e-06

makes the |OSS go Finished epoch 7 / 10:|cost 2.302466, |trairl: ©.180000, al ©.176000, lr 1.000000e-06

Finished epoch 8 / 10:|cost 2.302452, |trairl: 0.175000, al ©.185000, lr 1.000000e-06

Finished epoch 9 / 10:|cost 2.302459, |[trairl: 0.206000, al ©0.192000, lr 1.000000e-06

down. Finished epoch 10 / 10} cost 2.302420| trajn: 0.190000, fval 0.192000, lr 1.000000e-06
finished optimization.lbest validation accﬂ?EEVT'GTTgiﬁﬁe

] Loss barely changing: Learning rate is
loss not going down: probably too low

learning rate too low
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. model = init_two_layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
LetS try to traln nOW_ . trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,

I Iike tO Start With Sma” |1earniﬁg_ rate=1e-6,13érbose=True)

re ularlzatlon and f|nd Finished epoch 1 / 10:|cost 2.302576, |trair: 0.080000, al ©.103000, lr 1.000000e-06

SJ Finished epoch 2 / 10:|cost 2.302582, |train: 0.121000, val 0.124000, 1lr 1.000000e-06

. Finished epoch 3 / 10:|cost 2.302558, |trairl: ©0.119000, al ©.138000, lr 1.000000e-06

Iearnlng rate that Finished epoch 4 / 10:|cost 2.302519, |train: 0.127000, val 0.151000, 1r 1.000000e-06

Finished epoch 5 / 10:|cost 2.302517, |trairl: ©.158000, al 0.171000, lr 1.000000e-06

Finished epoch 6 / 10:|cost 2.302518, |train: 0.179000, Val 0.172000, 1lr 1.000000e-06

makes the |OSS go Finished epoch 7 / 10:|cost 2.302466, |trairl: ©.180000, al ©.176000, lr 1.000000e-06

Finished epoch 8 / 10:|cost 2.302452, |trairl: 0.175000, al ©.185000, lr 1.000000e-06

Finished epoch 9 / 10:|cost 2.302459, |[trairl: 0.206000, al ©0.192000, lr 1.000000e-06

down. Finished epoch 10 / 10} cost 2.302420| trajn: 0.190000, fval 0.192000, lr 1.000000e-06
finished optimization.lbest validation accﬂ?ﬁ???'ﬁTT??ﬁU@

] Loss barely changing: Learning rate is
loss not going down: probably too low
learning rate too low | _
Notice train/val accuracy goes to 20%
though, what's up with that? (remember
this is softmax) (go to poll)
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) . model = init_two_layer model(32%32*3, 50, 10) # input size, hidden size, number of classes
Let S try tO traln nOW_ . » trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,

I Iike to Start With Sma” ‘ 1earniﬁg_ra‘te=1;6, IZ;'bose=True)
regularization and find \

learning rate that Okay now let’s try learning rate 1e6. What could
makes the loss go possibly go wrong?

down.

loss not going down:
learning rate too low

Subhransu Maji, Chuang Gan and TAs Lecture 8 - 35 Sept. 28, 2023

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



model = init_two_layer model(32%32*3, 50, 10) # input size, hidden size, number of classes

LetS try to train nOW_ . . trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,
sample batches = True,

I Iike to Start With Sma” learning rate=1e6, verbose=True)

/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:50: RuntimeWarning: divide by zero en

reQUIarization and find countered in log

data loss = -np.sum(np.log(probs[range(N), yl)) / N
/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:48: RuntimeWarning: invalid value enc

Iearning rate that ountered in subtract

probs = np.exp(scores - np.max(scores, axis=1, keepdims=True))
Finished epoch 1 / 10: cost nan, train: 0.091000, val 0.087000, lr 1.000000e+06

makeS the |OSS go Finished epoch 2 / 10: cost nan, train: ©.095600, val 0.087000, lr 1.000000e+06

Finished epoch 3 / 10: cost nan, train: 0.100000, val 0.087000, lr 1.000000e+06

cost: NaN almost
always means high
learning rate...

loss not going down:
learning rate too low
loss exploding:
learning rate too high
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model = init_two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()

LetS try to traln nOW .. best model, stats = trainer.train(X train, y train, X val, y val,

model, two layer net,
num_epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,

| like to start with small e o

Finished epoch 10: cost 2.186654, train: 0.308000, val 0.306000, lr 3.000000e-03

regularlzatlon and f|nd Eiﬂii'ﬁiﬁ :Bgzn 10: cost 2.176230, train: ©.330000, val 0.350000, lr 3.000000e-03

1o

2::f

3 / 10: cost 1.942257, train: 0.376000, val 0.352000, lr 3.000000e-03
Finished epoch 4 / 10: cost 1.827868, train: ©0.329000, val 0.310000, lr 3.000000e-03

5:.f

6 /

I Finished epoch 10: cost inf, train: ©0.128000, val 0.128000, 1lr 3.000000e-03
Iearnlng rate that Finished epoch 10: cost inf, train: ©.144000, val 0.147000, lr 3.000000e-03
makes the loss go
down.

3e-3 is still too high. Cost explodes....

loss not going down: - o learming rat
. => Rough range for learning rate we
Ieammg rate too low should be cross-validating is

loss exploding: somewhere [1e-3 ... 1e-5]
learning rate too high
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[cs.LG] 16 Sep 2012

Practical Recommendations for Gradient-Based Training of Deep
Architectures

Yoshua Bengio

Version 2, Sept. 16th, 2012

Abstract

Learning algorithms related to artificial neural net-
works and in particular for Deep Learning may seem
to involve many bells and whistles, called hyper-
parameters. This chapter is meant as a practical
guide with recommendations for some of the most
commonly used hyper-parameters, in particular in
the context of learning algorithms based on back-

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

of practice, focusing on learning algorithms aiming
at training deep ncural nctworks, but leaving most
of the material specific to the Boltzmann machine
family to another chapter (HintonL [2013).

Although such recommendations come out of a liv-
ing practice that emerged from years of experimenta-
tion and to some extent mathematical justification,
they should be challenged. They constitute a good

ctartina nnint far tha avnorimentar and neor of loarn_
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Hyperparameter Optimization
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Cross-validation strategy

| like to do coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
... (repeat as necessary)

Tip for detecting explosions in the solver:
If the cost is ever > 3 * original cost, break out early
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For example: run coarse search for 5 epochs

for count in xrange (nax count) note it’'s best to optimize
reg = 10**uniform(-5, 5) « .
lr = 10**uniform(-3, -6) In Iog Space!

trainer = ClassifierTrainer()
model = init two layer model(32%32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model local, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=5, reg=reg,
update='momentum’', learning rate decay=0.9,
sample batches = True, batch size = 100,
learning rate=lr, verbose=False)

| val acc: 0.412000, lr: 1.405206e-04, reg: 4.793564e-01, (1 / 100)|
val acc: 0.214000, lr: 7.231888e-06, reg: 2.321281le-04, (2 / 100)
val acc: 0.208000, lr: 2.119571e-06, reg: 8.011857e+01, (3 / 100)
val acc: 0.196000, lr: 1.551131e-05, reg: 4.374936e-05, (4 / 100)
val acc: 0.079000, lr: 1.753300e-05, reg: 1.200424e+03, (5 / 100)
val acc: 0.223000, Llr: 4.215128e-05, reg: 4.196174e+01, (6 / 100)
) | val acc: 0.441000, lr: 1.750259e-04, reg: 2.110807e-04, (7 / 100)|
nice val acc: 0.241000, lr: 6.749231e-05, reg: 4.226413e+01, (8 / 100)
:| val acc: 0.482000, lr: 4.296863e-04, reg: 6.642555e-01, (9 / 100)|
val acc: 0.079000, Llr: 5.401602e-06, reg: 1.599828e+04, (10 / 100)
val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100)
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Now run finer search...

max_count = 100

for count in xrange(max_count): adjust range

reg = 10**uniform(-5, 5)
1r = 10*%*uniform(-3, -6)

v

max _count = 100

for count in xrange(max_count):
reg = 10**uniform(-4, 0)
1r = 10**uniform(-3, -4)

val acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100)
val_acc: U.492000, 3 & J484€-0U4, reg: 9.99 4o5€e-04,
val acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
val acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)
val acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-02, (4 / 100) 0 :
val acc: 0.498000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100) 53% - relatwely gOOd
val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100) for a 2-|ayer neural net
val acc: 0.522000, lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100) . .
val_acc: 0.530000, lr: 5.808183e-04, reg: 8.259964e-02, (8 / 100) with 50 hidden neurons.
val acc: 0.489000, lr: 1.979168e-04, reg: 1.010889%e-04, (9 / 100)
val acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 1600)
val acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100)
val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 160)
val acc: 0.515000, 1r: 6.947668e-04, reg: 1.562808e-02, (13 / 100)
[ val acc: 0.531000, lr: 9.471549e-04, reg: 1.433895e-03, (14 / 100) |
val acc: 0.509000, Lr: 3.140888e-04, reg: 2.857518e-01, (15 / 1600)
val acc: 0.514000, lr: 6.438349e-04, reg: 3.033781le-01, (16 / 100)
val acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 160)
val acc: 0.509000, lr: 9.752279e-04, reg: 2.850865e-03, (18 / 100)
val acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 160)
val acc: 0.466000, 1lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
val acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 160)
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Now run finer search...

max_count = 100 adjust range max_count = 100
for count in xrange(max_count): for count in xrange(max_count):

reg = 10**upiform(-5, 5) reg = 10**uniform(-4, 0)
1lr = 10*%*uniform(-3, -6) 1r = 10**uniform(-3, -4)

v

val acc: 0.527000, .340517e-04, .097824e-01, (0 / 100)
val acc: U.497000, . . J484e-U04 R B L 45€e-04,
val acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
val acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)
val _acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-02, (4 / 100) o :
val acc: 0.498000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100) 53% - relatively good
val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100) for a 2-|ayer neural net
val acc: 0.522000, lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100) . .
val_acc: 0.530000, lr: 5.808183e-04, reg: 8.259964e-02, (8 / 100) with 50 hidden neurons.
val acc: 0.489000, lr: 1.979168e-04, reg: 1.010889e-04, (9 / 100)
val acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100) .
val acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100) But this best cross-
val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 100) At .
val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100) validation result is
[ val acc: 0.531000, lr: 9.471549e-04, reg: 1.433895e-03, (14 / 100) |« worrying. Why?
val acc: 0.509000, Lr: 3.140888e-04, reg: 2.857518e-01, (15 / 100)
val acc: 0.514000, lr: 6.438349e-04, reg: 3.033781le-01, (16 / 100)
val acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 100)
val acc: 0.509000, lr: 9.752279e-04, reg: 2.850865e-063, (18 / 100)
val acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
val acc: 0.466000, 1lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
val acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 100)
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Random Search vs. Grid Search

Grid Layout Random Layout
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Random Search for Hyper-Parameter Optimization
Bergstra and Bengio, 2012
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Hyperparameters to play with:
- network architecture

- learning rate, its decay schedule, update type
- regularization (L2)

neural networks practitioner
music = loss function
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My cross-validation
“‘command center”
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Monitor and visualize the loss curve

25

low learning rate

Loss

high learning rate

good learning rate

0oL : ; : , epoch

20 40 60 80 100
Epoch &
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Loss

v

time
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Loss

Bad initialization
——— a prime suspect

v

time
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Monitor and visualize the accuracy:

075 f\A
V]

/\
| ’MW \/W | big gap = overfitting
060} | =2 increase regularization strength?

MWMMW\/\/\/\MWM no gap

oas| | =>increase model capacity?

— Training accuracy
— Validation accuracy

0 20 40 60 80 100

.....
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Track the ratio of weight updates / weight magnitudes:

# assume parameter vector W and its gradient vector dW
param scale = np.linalg.norm(W.ravel())

update = -learning rate*dW # simple SGD update

update scale = np.linalg.norm(update.ravel())

W += update # the actual update

print update scale / param scale # want ~le-3

ratio between the values and updates: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so
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Summary TLDRs

We looked in detail at:

- Activation Functions (use RelLU)

- Data Preprocessing (images: subtract mean)

- Weight Initialization (use Xavier init)

- Batch Normalization (use)

- Gradient Checking

- Babysitting the Learning process

- Hyperparameter Optimization (random sample hyperparams, in log
space when appropriate)
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TODO

Look at:

- Parameter update schemes
- Learning rate schedules

- Regularization (Dropout etc)
- Evaluation (Ensembles etc)
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