Lecture 8: Training Neural Networks Part III

Administrivia

Homework 1 due 11:59 pm, 9/28 (today!) — follow instructions and submit on Gradescope.

Homework 2 will be released tomorrow.
Project proposals due 10/8
TAs will provide more details on Tuesday's lecture 10/3 Most of us will be at ICCV next week - apologies for fewer office hours, Thursday's lecture will be remote

Administrivia

Optional discussion on Vector, Matrix, and Tensor Derivatives, led by Eddie

Friday (9/29) from 10-11am in CS142
Join via zoom - https://umass-amherst.zoom.us/j/ $\underline{2799045978 \text { (will be recorded) }}$

Project proposals

https://cvl-umass.github.io/compsci682-fall-2023/projects/

The project proposal should be concise (200-400 words). You can use the provided template. Your proposal should contain:

- Group Members Who are the (2~3) group members? What will each person do? (This needs to be a separate detailed paragrapiti
- Motivation: What is the problem that you will be investigating? Why is it interesting?
- Literature Review: What reading will you examine to provide context and background?
- Data: What data will you use? If you are collecting new datasets, how do you plan to collect them? If the datasets are huge what compute resources are you using?
- Approach: What method or algorithm are you proposing? If there are existing implementations, will you use them and how? How do you plan to improve or modify such implementations?
- Evaluation Metric: How will you evaluate your results? Qualitatively, what kind of results do you expect (e.g. plots or figures)? Quantitatively, what kind of analysis will you use to evaluate and/or compare your results (e.g. what performance metrics or statistical tests)?
- References: Bibliography of papers based on which your project idea is based.

Submission: Please upload a PDF file to Gradescope. Please coordinate with your teammate and submit only under ONE of your accounts, and add your teammate on Gradescope.

Project proposals

https://cvl-umass.github.io/compsci682-fall-2023/projects/

Overview

The course project is an opportunity for you to apply what you have learned in class to a probl
Your are encouraged to select a topic and work on your own project. Potential projects usually

- Applications. If you're coming to the class with a specific background and interests (e.g problems related to your particular domain of interest. Pick a real-world problem and ap
- Models. You can build a new model (algorithm) with deep neural networks, or a new var challenging, and sometimes leads to a piece of publishable work.

Here you can find some sample project ideas:

Sample project ideas from TAs, Fall 2023 (Google Docs)

- Sample project Treas iromTrior. Efik Learned-Miller last semester (Google Docs)

Anonymous feedback

682 anonymous feedback form (Fall 23)
We are always working to improve the course and your feedback is valuable. Please let u kow what you feel works well and what doesnit, and changes that you'd like to see. Submit feedback as often as needed throughout the semester. The form is anonymous.
-Course Staff @ 682, Fall 2023
smaji@umass.edu Switch account
E6 Not shared

What do you like MOST about the class?
Your answer

What do you like LEAST about the class?

Youranswer

What changes would you suggest to better enhance your learning?
Your answer

Any other comments?

Your answer

Anonymous feedback

Lectures are enjoyable and engaging.
Assignments are well-structured, with code broken down into understandable sections.

There's a detailed walkthrough of the underlying workings of neural networks.

The course is well-organized, clear structure, challenging, interesting.

TAs are helpful and easy to approach.
Assignments are practical, allowing students to apply lecture concepts.

Sample size $=9$

Like MOST?

Anonymous feedback

Assignments are time-intensive and often require more time than anticipated.

Allow use of high-level libraries and APIs
Course requires a strong prior understanding of the content.

More emphasis on the mathematical aspects

Hard to hear / audio issues - have enabled transcripts

Remote participation is hard - will upload videos by end of lecture day

Sample size $=9$

Like LEAST? / Improvement Suggestions

Overview

1. One time setup
 activation functions, preprocessing, weight initialization, regularization, batch normalization, gradient checking
 2. Training dynamics
 babysitting the learning process, hyperparameter optimization, parameter updates
 3. Evaluation model ensembles

Batch Normalization

Batch Normalization

Usually inserted after Fully Connected (or Convolutional, as we'll see soon) layers, and before nonlinearity.

$$
\widehat{x}^{(k)}=\frac{x^{(k)}-\mathrm{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}
$$

Batch Normalization

"you want unit Gaussian activations? just make them so." Not actually "Gaussian". Just zero mean, unit variance.
consider a batch of activations at some layer. To make each dimension unit normalized, apply:

$$
\widehat{x}^{(k)}=\frac{x^{(k)}-\mathrm{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}
$$

this is a vanilla differentiable function...

Batch Normalization

"you want unit Gaussian activations? just make them so." Not actually "Gaussian". Just zero mean, unit variance.

1. compute the empirical mean and variance independently for each dimension.

2. Normalize

$$
\widehat{x}^{(k)}=\frac{x^{(k)}-\mathrm{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}
$$

Batch Normalization

Usually inserted after Fully Connected / (or Convolutional, as we'll see soon) layers, and before nonlinearity.

$$
\widehat{x}^{(k)}=\frac{x^{(k)}-\mathrm{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}
$$

Batch Normalization

Normalize:

$$
\widehat{x}^{(k)}=\frac{x^{(k)}-\mathrm{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}
$$

And then allow the network to squash the range if it wants to:

$$
y^{(k)}=\gamma^{(k)} \widehat{x}^{(k)}+\beta^{(k)}
$$

Note, the network can learn:

$$
\begin{aligned}
& \gamma^{(k)}=\sqrt{\operatorname{Var}\left[x^{(k)}\right]} \\
& \beta^{(k)}=\mathrm{E}\left[x^{(k)}\right]
\end{aligned}
$$

to recover the identity mapping.

Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B}=\left\{x_{1 \ldots m}\right\}$;
Parameters to be learned: γ, β
Output: $\left\{y_{i}=\mathrm{BN}_{\gamma, \beta}\left(x_{i}\right)\right\}$

$$
\begin{array}{rlr}
\mu_{\mathcal{B}} & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} & \text { // mini-batch mean } \\
\sigma_{\mathcal{B}}^{2} & \leftarrow \frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu_{\mathcal{B}}\right)^{2} & \text { // mini-batch variance } \\
\widehat{x}_{i} & \leftarrow \frac{x_{i}-\mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}} & \text { // normalize } \\
y_{i} & \leftarrow \gamma \widehat{x}_{i}+\beta \equiv \mathrm{BN}_{\gamma, \beta}\left(x_{i}\right) & \text { // scale and shift }
\end{array}
$$

- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization

Batch Normalization

Figure 2: Single crop validation accuracy of Inception and its batch-normalized variants, vs. the number of training steps.

Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B}=\left\{x_{1 \ldots m}\right\}$;
Parameters to be learned: γ, β
Output: $\left\{y_{i}=\mathrm{BN}_{\gamma, \beta}\left(x_{i}\right)\right\}$

$$
\begin{array}{rlr}
\mu_{\mathcal{B}} & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} & \text { // mini-batch mean } \\
\sigma_{\mathcal{B}}^{2} & \leftarrow \frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu_{\mathcal{B}}\right)^{2} & \text { // mini-batch variance } \\
\widehat{x}_{i} & \leftarrow \frac{x_{i}-\mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}} & \text { // normalize } \\
y_{i} & \leftarrow \gamma \widehat{x}_{i}+\beta \equiv \mathrm{BN}_{\gamma, \beta}\left(x_{i}\right) & \text { // scale and shift }
\end{array}
$$

Note: at test time BatchNorm layer functions differently:

The mean/std are not computed based on the batch. Instead, a single fixed empirical mean of activations during training is used.
(e.g. can be estimated during training with running averages)

Source of many bugs!

Gradient Checking

Gradient checks

1-sided
$\frac{d f}{d x} \approx \frac{1}{h}(f(x+h)-f(x))$

Compare gradient implementation with numerical gradients

Easy to implement, but slow
Numerical precision can be an issue (want h to be small but not too small)

Gradient checks

$$
\begin{aligned}
& \text { 1-sided } \\
& \frac{d f}{d x} \approx \frac{1}{h}(f(x+h)-f(x)) \\
& \text { 2-sided } \\
& \frac{d f}{d x} \approx \frac{1}{2 h}(f(x-h)-f(x+h))
\end{aligned}
$$

2-sided gradients have better numerical stability!

Gradient checks

4-sided gradients are even better!

1-sided
$\frac{d f}{d x} \approx \frac{1}{h}(f(x+h)-f(x))$
2-sided

$$
\frac{d f}{d x} \approx \frac{1}{2 h}(f(x-h)-f(x+h))
$$

4-sided

$$
\frac{d f}{d x} \approx \frac{1}{12 h}(-f(x+2 h)+8 f(x+h)-8 f(x-h)+f(x-2 h))
$$

How about 6 sided or 12 sided?

Overview

1. One time setup
 activation functions, preprocessing, weight initialization, regularization, batch normalization, gradient checking
 2. Training dynamics
 babysitting the learning process, hyperparameter optimization, parameter updates
 3. Evaluation model ensembles

Babysitting the Learning Process

Step 1: Preprocess the data

(Assume $\mathrm{X}[\mathrm{NxD}]$ is data matrix, each example in a row)

Step 2: Choose the architecture: say we start with one hidden layer of 50 neurons:

Double check that the loss is reasonable:

```
def init_two_layer_model(input_size, hidden_size, output_size):
    # initialize a model
    model = {}
    model['W1'] = 0.0001 * np.random.randn(input_size, hidden_size)
    model['b1'] = np.zeros(hidden size)
    model['W2'] = 0.0001 * np.random.randn(hidden_size, output_size)
    model['b2'] = np.zeros(output_size)
    return model
```


Double check that the loss is reasonable:

```
def init_two_layer_model(input_size, hidden_size, output_size):
    # initialize a model
    model = {}
    model['W1'] = 0.0001 * np.random.randn(input_size, hidden_size)
    model['b1'] = np.zeros(hidden size)
    model['W2'] = 0.0001 * np.random.randn(hidden_size, output_size)
    model['b2'] = np.zeros(output_size)
    return model
```

model = init_two_layer_model $(32 * 32 * 3,50,10)$ \# input size, hidden size, number of classes
loss, grad $=$ two_layer_net (X_train, model, y_train, le3)
print loss

3.06859716482

Lets try to train now...
model $=$ init_two layer_model $(32 * 32 * 3,50,10)$ \# input size, hidden size, number of classes trainer $=$ ClassifierTrainer()
X_tiny $=$ X_train[:20] \# take 20 examples
$y_{\text {_}}^{-}$tiny $=y_{-}^{-}$train [:20]
best_model, stats = trainer.train(x_tiny, y_tiny, x_tiny, y_tiny,
model, two layer_net,
num epochs=200, $\overline{r e g}=0.0$,
updāte='sgd', learning_rate_decay=1, sample_batches $=$ False,
learning_rate=1e-3, verbose=True)
Tip: Make sure that you can overfit very small portion of the training data

The above code:

- take the first 20 examples from CIFAR-10
- turn off regularization (reg $=0.0$)
- use simple vanilla 'sgd'

Lets try to train now..

Tip: Make sure that you can overfit very small portion of the training data

> Very small loss, train accuracy 1.00, nice!
num epochs $=200$, $\overline{\text { reg }}=0.0$,
updāte='sgd', learning_rate_decay=1,
sample batches $=$ False,
learning_rate=1e-3, verbose=True)

Finished epoch 195 ; 200: cost 0.002694 , train: 1.000000 , val 1.000000 , ir $1.000000 \mathrm{e}-03$ Finished epoch 196 / 200: cost 0.002674 , train: 1.000000, val 1.000000, lr 1.000000e-03 Finished epoch 197 / 200: cost 0.002655 , train: 1.000000, val 1.000000, lr 1.000000e-03 Finished epoch $198 / 200$: cost 0.002635 , train: 1.000000, val 1.000000, lr 1.000000e-03 Finished epoch 199 / 200: cost 0.002617 , train: 1.000000, val 1.000000, lr 1.000000e-03 Finished epoch 200 / 200: cost 0.002597 , train: 1.000000, val 1.000000 , lr $1.000000 \mathrm{e}-03$ finished optimization. best validation accuracy: 1.000000

Lets try to train now...

regularization and find learning rate that makes the loss go down.

Lets try to train now...

I like to start with small regularization and find learning rate that makes the loss go down.

model $=$ init two layer model(32*32*3, 50, 10) \# input size, hidden size, number of classes trainer = ClassifierTrainer()
best_model, stats = trainer. train(X_train, y_train, X_val, y_val
model, two layer net,
num_epochs $=10$, rē $=0.000001$,
updāte='sgd', learning rate decay=1,
sample_batehes $=$-True,
learning_rate $=1 \mathrm{e}-6$, verbose=True)
Finished epoch 1 / 10 :
Finished epoch 2 / 10:
Finished epoch $3 / 10$:
Finished epoch 4 / 10:
Finished epoch 5 / 10:
Finished epoch 6 / 10:
Finished epoch 7 / 10 :
Finished epoch 8 / 10 :
Finished epoch 9 / 10:
Finished epoch $10 / 10$
finished optimization.

Loss barely changing

Lets try to train now...

I like to start with small regularization and find learning rate that makes the loss go down.

loss not going down: learning rate too low

model $=$ init two layer model(32*32*3, 50, 10) \# input size, hidden size, number of classes trainer = ClassifierTrainer()
best_model, stats $=$ trainer. $\operatorname{train}\left(X_{-}\right.$train, y_train, $X_{\text {_val, }}$ y_val

Finished epoch $1 / 10$:
Finished epoch 2 / 10: Finished epoch 3 / 10: Finished epoch 4 / 10 : Finished epoch 5 / 10 : Finished epoch 6 / 10: Finished epoch 7 / 10: Finished epoch 8 / 10: Finished epoch 9 / 10: Finished epoch 10 / 10 finished optimization.
model, two layer net, num_epochs $=10$, rēg=0.000001, updāte='sgd', learning rate decay=1, sample_batehes $=$ - 于ine,
learning_rate $=1 e-6$, verbose=True)

mode num upda samp lear	```el, two_layer_ne\overline{t} epochs=10, reg=0.000001, ate='sgd', learning_rate_decay=1, ole_batehes = Trule, rning_rate=1e-6, verbose=True)```
cost 2.302576,	I: 0.080000, val 0.103000, lr 1.000000e-06
cost 2.302582,	train: 0.121000, val 0.124000, lr 1.000000e-06
cost 2.302558,	train: 0.119000, val 0.138000, lr 1.000000e-06
cost 2.302519,	trair: 0.127000, yal 0.151000, lr 1.000000e-06
cost 2.302517,	train: 0.158000, yal 0.171000, lr 1.000000e-06
cost 2.302518,	trair: 0.179000, yal 0.172000, lr 1.000000e-06
cost 2.302466,	trair: 0.180000, yal 0.176000, lr 1.000000e-06
cost 2.302452,	train: 0.175000, val 0.185000, lr 1.000000e-06
cost 2.302459,	trair: 0.206000, yal 0.192000, lr 1.000000e-06
cost 2.302420	train: 0.190000, val 0.192000, lr 1.000000e-06
hest val	accuracy: 0.192000

Loss barely changing: Learning rate is probably too low

Lets try to train now...

I like to start with small regularization and find learning rate that makes the loss go down.

loss not going down: learning rate too low

model $=$ init two layer model(32*32*3, 50, 10) \# input size, hidden size, number of classes trainer = ClassifierTrainer()
best_model, stats $=$ trainer.train(X_train, y_train, X_{-}val, y_val, model, two layer net,
num_epochs $=10$, rēg=0.000001,
update='sgd', learning_rate_decay=1,
sampte_batehes =- Tfile,
learning_rate $=1 e-6$, verbose=True)
Finished epoch $1 / 10$:
Finished epoch 2 / 10 : Finished epoch 3 / 10: Finished epoch 4 / 10 : Finished epoch 5 / 10: Finished epoch 6 / 10: Finished epoch $7 / 10$: Finished epoch $8 / 10$: Finished epoch $9 / 10$: Finished epoch 10 / 10 finished optimization.

mode num upda lear	```el, two_layer_net, epochs=10, reg=0.000001, a}te='sgd', learning_rate_decay=1 rning_rate=1e-6, verbose=True)```
cost 2.302576,	trair: 0.080000, val 0.103000, lr 1.000000e-06
cost 2.302582,	train: 0.121000, val 0.124000, lr 1.000000e-06
cost 2.302558,	train: 0.119000, val 0.138000, lr 1.000000e-06
cost 2.302519,	train: 0.127000, val 0.151000, lr 1.000000e-06
cost 2.302517,	train: 0.158000, val 0.171000, lr 1.000000e-06
cost 2.302518,	trair: 0.179000, val 0.172000, lr 1.000000e-06
cost 2.302466,	train: 0.180000, val 0.176000, lr 1.000000e-06
cost 2.302452,	trair: 0.175000, val 0.185000, lr 1.000000e-06
cost 2.302459,	train: 0.206000, yal 0.192000, lr 1.000000e-06
cost 2.302420	train: 0.190000, val 0.192000, lr 1.000000e-06
hest validation	accuracy: 0.192000

Loss barely changing: Learning rate is probably too low

Notice train/val accuracy goes to 20\% though, what's up with that? (remember this is softmax) (go to poll)

Let's try to train now...
model $=$ init_two layer_model(32*32*3, 50, 10) \# input size, hidden size, number of classes trainer = ClāssifierTräiner()
best_model, stats $=$ trainer. train (X_train, y_train, X_val, y_val,
model, two_layer net,
num epochs $=10$, reg=0.000001,
updāte='sgd', learning_rate_decay $=1$,
I like to start with small regularization and find learning rate that makes the loss go down.
learning_rate $=1 \mathrm{e} 6$, , erbose=True)

Okay now let's try learning rate 1 e6. What could possibly go wrong?

loss not going down: learning rate too low

Lets try to train now...
I like to start with small

```
                                    model = init_two_layer_model(32*32*3,
``` trainer = ClāssifierTräiner()
best_model, stats = trainer.train(X_train, y_train, X_val, y_val, model, two_layer_net, num epochs \(\overline{=} 10\), reg \(=0.000001\), updāte='sgd', learning_rate_decay=1, sample batches \(=\) True, learning_rate=1e6, verbose=True)
/home/karpathy/cs231n/code/cs231n/classifiers/neural_net.py:50: RuntimeWarning: divide by zero en countered in log
data loss \(=-n p . \operatorname{sum}(n p . \log (p r o b s[r a n g e(N), y])) / N\)
/home/karpathy/cs231n/code/cs231n/classifiers/neural_net.py:48: RuntimeWarning: invalid value enc ountered in subtract
probs \(=\) np.exp(scores \(-n p . \max (s c o r e s\), axis=1, keepdims=True))
Finished epoch \(1 / 10:\) cost nan, train: 0.091000, val 0.087000, lr \(1.000000 \mathrm{e}+06\)
Finished epoch \(2 / 10:\) cost nan, train: 0.095000 , val 0.087000 , lr \(1.000000 \mathrm{e}+06\)
Finished epoch \(3 / 10\) : cost nan, train: 0.100000 , val 0.087000 , lr \(1.000000 \mathrm{e}+06\)
loss not going down: learning rate too low loss exploding: learning rate too high
> cost: NaN almost always means high learning rate...

\section*{Lets try to train now...}
model \(=\) init_two_layer_model \((32 * 32 * 3,50,10)\) \# input size, hidden size, number of classes trainer = ClassifierTrainer()
best_model, stats = trainer.train(X_train, y_train, X_val, y_val,
model, two layer net,
num_epochs=10, reg=0.000001, updāte='sgd', learning_rate_decay=1, sample hatches = Trye, learning_rate \(=3 e-3\), verbose=True)

Finished epoch \(1 / 10:\) cost 2.186654, train: 0.308000, val 0.306000, lr 3.000000e-03 Finished epoch \(2 / 10\) : cost 2.176230, train: 0.330000, val 0.350000, lr 3.000000e-03 Finished epoch \(3 / 10\) : cost 1.942257, train: 0.376000, val 0.352000, lr 3.000000e-03 Finished epoch \(4 / 10\) : cost 1.827868 , train: 0.329000, val 0.310000, lr 3.000000e-03 Finished epoch \(5 / 10\) : cost inf, train: 0.128000, val 0.128000, lr 3.000000e-03 Finished epoch \(6 / 10\) : cost inf, train: 0.144000, val 0.147000, lr 3.000000e-03
\(3 \mathrm{e}-3\) is still too high. Cost explodes....

\section*{loss not going down: learning rate too low loss exploding: learning rate too high}
should be cross-validating is somewhere [1e-3 ... 1e-5]

\title{
Practical Recommendations for Gradient-Based Training of Deep Architectures
}

\author{
Yoshua Bengio
}

Version 2, Sept. 16th, 2012

\begin{abstract}
Learning algorithms related to artificial neural networks and in particular for Deep Learning may seem to involve many bells and whistles, called hyperparameters. This chapter is meant as a practical guide with recommendations for some of the most commonly used hyper-parameters, in particular in the context of learning algorithms based on back-
\end{abstract}
of practice, focusing on learning algorithms aiming at training deep neural networks, but leaving most of the material specific to the Boltzmann machine family to another chapter (Hinton, 2013).

Although such recommendations come out of a living practice that emerged from years of experimentation and to some extent mathematical justification, they should be challenged. They constitute a good startina moint for tho ovrnorimontor and moor of loarn_

\section*{Hyperparameter Optimization}

\section*{Cross-validation strategy}

\section*{I like to do coarse -> fine cross-validation in stages}

First stage: only a few epochs to get rough idea of what params work Second stage: longer running time, finer search
... (repeat as necessary)

Tip for detecting explosions in the solver:
If the cost is ever > 3 * original cost, break out early

\section*{For example: run coarse search for 5 epochs}
max_count \(=100\)
for count in xrange(max count)
reg \(=10 * *\) uniform \((-5,5)\)
lr = 10**uniform(-3, -6)
trainer = ClassifierTrainer()
model \(=\) init_two_layer_model(32*32*3, 50, 10) \# input size, hidden size, number of classes trainer = ClassifierTrainer()
best_model_local, stats = trainer.train(X_train, y_train, X_val, y_val, model, two layer net, num_epochs=5, reg=reg,
update='momentum', learning rate decay=0.9, sample_batches \(=\) True, batch size \(=100\),
learning rate=lr, verbose=Fā̄se)

\section*{Now run finer search...}
max_count = 100
for count in xrange(max_count): reg \(=10 * *\) uniform \((-5,5)\) lr \(=10 * *\) uniform \((-3,-6)\)
adjust range
```

max count = 100
for count in xrange(max count):
reg = 10**uniform(-4, 0)
lr = 10**uniform(-3, -4)

```

53\% - relatively good for a 2-layer neural net with 50 hidden neurons.

\section*{Now run finer search...}
max_count = 100
for count in xrange(max_count): reg \(=10 * *\) uniform \((-5,5)\) \(\operatorname{lr}=10 * *\) uniform \((-3,-6)\)
adjust range
```

max count = 100
for count in xrange(max count):
reg = 10**uniform(-4, 0)
lr = 10**uniform(-3, -4)

```
```

val acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100)
vat_acc: 0.492000, tr: 2.279484e-04, reg: 9.991345e-04, (1 / 100)
val_acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
val acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)
val_acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-02, (4 / 100)
val_acc: 0.498000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100)
val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100)
val_acc: 0.522000, lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100)
val acc: 0.530000, lr: 5.808183e-04, reg: 8.259964e-02, (8 / 100)
val acc: 0.489000, lr: 1.979168e-04, reg: 1.010889e-04, (9 / 100)
val-acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100)
val acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100)
val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 100)
val- acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100)
val acc: 0.531000, lr: 9.471549e-04, reg: 1.433895e-03, (14 / 100)
val acc: 0.509000, lr: 3.140888e-04, reg: 2.857518e-01, (15 / 100)
val_acc: 0.514000, lr: 6.438349e-04, reg: 3.033781e-01, (16 / 100)
val acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 100)
val-acc: 0.509000, lr: 9.752279e-04, reg: 2.850865e-03, (18 / 100)
val_acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
val acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
val_acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 100)

```

\section*{Random Search vs. Grid Search}

Random Search for Hyper-Parameter Optimization
Bergstra and Bengio, 2012

\section*{Hyperparameters to play with: \\ - network architecture \\ - learning rate, its decay schedule, update type - regularization (L2)}
neural networks practitioner music = loss function

My cross-validation "command center"

\section*{Monitor and visualize the loss curve}

\section*{Monitor and visualize the accuracy:}

\section*{big gap = overfitting}
=> increase regularization strength?
no gap
=> increase model capacity?

\section*{Track the ratio of weight updates / weight magnitudes:}
```


# assume parameter vector W and its gradient vector dW

param_scale = np.linalg.norm(W.ravel())
update = -learning_rate*dW \# simple SGD update
update_scale = np.linalg.norm(update.ravel())
W += update \# the actual update
print update_scale / param_scale \# want ~1e-3

```
ratio between the values and updates: \(\sim 0.0002 / 0.02=0.01\) (about okay)
want this to be somewhere around 0.001 or so

\section*{Summary}

\section*{TLDRs}

\section*{We looked in detail at:}
- Activation Functions (use ReLU)
- Data Preprocessing (images: subtract mean)
- Weight Initialization (use Xavier init)
- Batch Normalization (use)
- Gradient Checking
- Babysitting the Learning process
- Hyperparameter Optimization (random sample hyperparams, in log space when appropriate)

\section*{TODO}

\section*{Look at:}
- Parameter update schemes
- Learning rate schedules
- Regularization (Dropout etc)
- Evaluation (Ensembles etc)```

