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Lecture 8:

Training Neural Networks


Part III


1



Lecture 2 - Sept. 7. 2021Erik Learned-Miller and TAs 
Some slides kindly provided by Fei-Fei Li, Andrej Karpathy, Justin Johnson
Subhransu Maji, Chuang Gan and TAs 
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 8 - Sept. 28, 20232

Administrivia


Homework 1 due 11:59 pm, 9/28 (today!) — follow 
instructions and submit on Gradescope.

Homework 2 will be released tomorrow.


Project proposals due 10/8

TAs will provide more details on Tuesday’s lecture 10/3

Most of us will be at ICCV next week — apologies for 
fewer office hours, Thursday’s lecture will be remote
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Administrivia


Optional discussion on Vector, Matrix, and Tensor 
Derivatives, led by Eddie


Friday (9/29) from 10-11am in CS142


Join via zoom — https://umass-amherst.zoom.us/j/
2799045978 (will be recorded)

https://umass-amherst.zoom.us/j/2799045978
https://umass-amherst.zoom.us/j/2799045978
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Project proposals

https://cvl-umass.github.io/compsci682-fall-2023/projects/
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Project proposals

https://cvl-umass.github.io/compsci682-fall-2023/projects/
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Anonymous feedback

Fill as often as you 
like throughout the 
semester!

https://forms.gle/uFyBtoXuwqZL7aSQ6

https://forms.gle/uFyBtoXuwqZL7aSQ6
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Anonymous feedback

Like MOST?

Lectures are enjoyable and engaging.


Assignments are well-structured, with 
code broken down into understandable 
sections.


There's a detailed walkthrough of the 
underlying workings of neural networks.


The course is well-organized, clear 
structure, challenging, interesting.


TAs are helpful and easy to approach.


Assignments are practical, allowing 
students to apply lecture concepts.

Sample size = 9
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Anonymous feedback

Like LEAST?

/ Improvement 
Suggestions

Assignments are time-intensive and 
often require more time than anticipated.


Allow use of high-level libraries and APIs


Course requires a strong prior 
understanding of the content.


More emphasis on the mathematical 
aspects


Hard to hear / audio issues — have 
enabled transcripts


Remote participation is hard — will 
upload videos by end of lecture day

Sample size = 9
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Overview


1. One time setup

activation functions, preprocessing, weight 
initialization, regularization, batch normalization, 
gradient checking


2. Training dynamics

babysitting the learning process, hyperparameter 
optimization, parameter updates


3. Evaluation model ensembles
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Batch Normalization
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Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully 
Connected (or Convolutional, as 
we’ll see soon) layers, and before 
nonlinearity.
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Batch Normalization
“you want unit Gaussian activations? just make them so.”

Not actually “Gaussian”. Just zero mean, unit variance.

[Ioffe and Szegedy, 2015]

consider a batch of activations at some layer. 
To make each dimension unit normalized, 
apply:

this is a vanilla 
differentiable function...
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Batch Normalization [Ioffe and Szegedy, 2015]

XN

D

1. compute the empirical mean and 
variance independently for each 
dimension.

2. Normalize

“you want unit Gaussian activations? just make them so.”

Not actually “Gaussian”. Just zero mean, unit variance.
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Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully 
Connected / (or Convolutional, as 
we’ll see soon) layers, and before 
nonlinearity.
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Batch Normalization [Ioffe and Szegedy, 2015]

And then allow the network to squash 

the range if it wants to:

Note, the network can learn:

to recover the identity 
mapping.

Normalize:
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Batch Normalization [Ioffe and Szegedy, 2015]

- Improves gradient flow through 
the network


- Allows higher learning rates

- Reduces the strong dependence 

on initialization
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baseline (no BN)
BN + 5x learning rate

BN + same learning rate

Batch Normalization [Ioffe and Szegedy, 2015]
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Batch Normalization [Ioffe and Szegedy, 2015]

Note: at test time BatchNorm layer 
functions differently:


The mean/std are not computed 
based on the batch. Instead, a single 
fixed empirical mean of activations 
during training is used.


(e.g. can be estimated during training 
with running averages)


Source of many bugs!
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Gradient Checking
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Gradient checks
<latexit sha1_base64="3ijKZeCHbqrRWFeaCUg4QEJD4/k=">AAACGXicbZDLSsNAFIYn9VbrLerSzWARWsSSSFGXRTcuK9gLNKFMJpN26CQTZibSEvIabnwVNy4Ucakr38Zpm4W2/jDw8Z9zOHN+L2ZUKsv6Ngorq2vrG8XN0tb2zu6euX/QljwRmLQwZ1x0PSQJoxFpKaoY6caCoNBjpOONbqb1zgMRkvLoXk1i4oZoENGAYqS01TctJxAIp36Qpf44gw6KY8HHcO7aWTrMKkFlfDqswjOooVrtm2WrZs0El8HOoQxyNfvmp+NznIQkUpghKXu2FSs3RUJRzEhWchJJYoRHaEB6GiMUEumms8syeKIdHwZc6BcpOHN/T6QolHISerozRGooF2tT879aL1HBlZvSKE4UifB8UZAwqDicxgR9KghWbKIBYUH1XyEeIh2K0mGWdAj24snL0D6v2Re1+l293LjO4yiCI3AMKsAGl6ABbkETtAAGj+AZvII348l4Md6Nj3lrwchnDsEfGV8/52OfiA==</latexit>

df

dx
⇡ 1

h
(f(x+ h)� f(x))

1-sided

Compare gradient implementation with 
numerical gradients


Easy to implement, but slow


Numerical precision can be an issue 
(want h to be small but not too small)
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Gradient checks
<latexit sha1_base64="3ijKZeCHbqrRWFeaCUg4QEJD4/k=">AAACGXicbZDLSsNAFIYn9VbrLerSzWARWsSSSFGXRTcuK9gLNKFMJpN26CQTZibSEvIabnwVNy4Ucakr38Zpm4W2/jDw8Z9zOHN+L2ZUKsv6Ngorq2vrG8XN0tb2zu6euX/QljwRmLQwZ1x0PSQJoxFpKaoY6caCoNBjpOONbqb1zgMRkvLoXk1i4oZoENGAYqS01TctJxAIp36Qpf44gw6KY8HHcO7aWTrMKkFlfDqswjOooVrtm2WrZs0El8HOoQxyNfvmp+NznIQkUpghKXu2FSs3RUJRzEhWchJJYoRHaEB6GiMUEumms8syeKIdHwZc6BcpOHN/T6QolHISerozRGooF2tT879aL1HBlZvSKE4UifB8UZAwqDicxgR9KghWbKIBYUH1XyEeIh2K0mGWdAj24snL0D6v2Re1+l293LjO4yiCI3AMKsAGl6ABbkETtAAGj+AZvII348l4Md6Nj3lrwchnDsEfGV8/52OfiA==</latexit>

df

dx
⇡ 1

h
(f(x+ h)� f(x))

<latexit sha1_base64="2/zXZ1BhaXeMjRaSh9fImGD+rF0=">AAACHHicbZDLSsNAFIYnXmu9RV26GSxCi7QktajLohuXFewFmlAmk0kzdHJhZiItIQ/ixldx40IRNy4E38Zpm4W2/jDw8Z9zOHN+J2ZUSMP41lZW19Y3Ngtbxe2d3b19/eCwI6KEY9LGEYt4z0GCMBqStqSSkV7MCQocRrrO6GZa7z4QLmgU3stJTOwADUPqUYyksgb6ueVxhFPXy1J3nEELxTGPxnDumlla97OyVx5X/QqsQgVnfqUy0EtGzZgJLoOZQwnkag30T8uNcBKQUGKGhOibRiztFHFJMSNZ0UoEiREeoSHpKwxRQISdzo7L4KlyXOhFXL1Qwpn7eyJFgRCTwFGdAZK+WKxNzf9q/UR6V3ZKwziRJMTzRV7CoIzgNCnoUk6wZBMFCHOq/gqxj1QuUuVZVCGYiycvQ6deMy9qjbtGqXmdx1EAx+AElIEJLkET3IIWaAMMHsEzeAVv2pP2or1rH/PWFS2fOQJ/pH39ALgJoG0=</latexit>

df

dx
⇡ 1

2h
(f(x� h)� f(x+ h))

1-sided

2-sided

2-sided gradients have better numerical stability!
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Gradient checks
<latexit sha1_base64="3ijKZeCHbqrRWFeaCUg4QEJD4/k=">AAACGXicbZDLSsNAFIYn9VbrLerSzWARWsSSSFGXRTcuK9gLNKFMJpN26CQTZibSEvIabnwVNy4Ucakr38Zpm4W2/jDw8Z9zOHN+L2ZUKsv6Ngorq2vrG8XN0tb2zu6euX/QljwRmLQwZ1x0PSQJoxFpKaoY6caCoNBjpOONbqb1zgMRkvLoXk1i4oZoENGAYqS01TctJxAIp36Qpf44gw6KY8HHcO7aWTrMKkFlfDqswjOooVrtm2WrZs0El8HOoQxyNfvmp+NznIQkUpghKXu2FSs3RUJRzEhWchJJYoRHaEB6GiMUEumms8syeKIdHwZc6BcpOHN/T6QolHISerozRGooF2tT879aL1HBlZvSKE4UifB8UZAwqDicxgR9KghWbKIBYUH1XyEeIh2K0mGWdAj24snL0D6v2Re1+l293LjO4yiCI3AMKsAGl6ABbkETtAAGj+AZvII348l4Md6Nj3lrwchnDsEfGV8/52OfiA==</latexit>

df

dx
⇡ 1

h
(f(x+ h)� f(x))

<latexit sha1_base64="2/zXZ1BhaXeMjRaSh9fImGD+rF0=">AAACHHicbZDLSsNAFIYnXmu9RV26GSxCi7QktajLohuXFewFmlAmk0kzdHJhZiItIQ/ixldx40IRNy4E38Zpm4W2/jDw8Z9zOHN+J2ZUSMP41lZW19Y3Ngtbxe2d3b19/eCwI6KEY9LGEYt4z0GCMBqStqSSkV7MCQocRrrO6GZa7z4QLmgU3stJTOwADUPqUYyksgb6ueVxhFPXy1J3nEELxTGPxnDumlla97OyVx5X/QqsQgVnfqUy0EtGzZgJLoOZQwnkag30T8uNcBKQUGKGhOibRiztFHFJMSNZ0UoEiREeoSHpKwxRQISdzo7L4KlyXOhFXL1Qwpn7eyJFgRCTwFGdAZK+WKxNzf9q/UR6V3ZKwziRJMTzRV7CoIzgNCnoUk6wZBMFCHOq/gqxj1QuUuVZVCGYiycvQ6deMy9qjbtGqXmdx1EAx+AElIEJLkET3IIWaAMMHsEzeAVv2pP2or1rH/PWFS2fOQJ/pH39ALgJoG0=</latexit>

df

dx
⇡ 1

2h
(f(x� h)� f(x+ h))

<latexit sha1_base64="fhPPzqdl9ifSsDwUchIqZGgvvgU="></latexit>

df

dx
⇡ 1

12h
(�f(x+ 2h) + 8f(x+ h)� 8f(x� h) + f(x� 2h))

1-sided

2-sided

4-sided

4-sided gradients are even better!

How about 6 sided or 12 sided? https://justindomke.wordpress.com/2017/04/22/you-deserve-better-than-two-sided-finite-differences/
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Overview


1. One time setup

activation functions, preprocessing, weight 
initialization, regularization, batch normalization, 
gradient checking


2. Training dynamics

babysitting the learning process, hyperparameter 
optimization, parameter updates


3. Evaluation model ensembles
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Babysitting the Learning Process

24
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Step 1: Preprocess the data


(Assume X [NxD] is data matrix, 
each example in a row)

25
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Step 2: Choose the architecture:

say we start with one hidden layer of 50 neurons:

input 
layer hidden layer

output layer
CIFAR-10 
images, 3072 
numbers

10 output 
neurons, one 
per class

50 hidden 
neurons

26
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Double check that the loss is reasonable: 

returns the loss and the 
gradient for all parameters

disable regularization

loss ~2.3.

“correct “ for 

10 classes

27
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Double check that the loss is reasonable: 

crank up regularization

loss went up, good. (sanity check)

28
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Lets try to train now…  


Tip: Make sure that 
you can overfit very 
small portion of the 
training data The above code:


- take the first 20 examples from 
CIFAR-10


- turn off regularization (reg = 0.0)

- use simple vanilla ‘sgd’

29
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Lets try to train now…  


Tip: Make sure that 
you can overfit very 
small portion of the 
training data

Very small loss, 

train accuracy 1.00, 

nice!

30
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Lets try to train now…  


I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

31
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Lets try to train now…  


I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

Loss barely changing 
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Lets try to train now…  


I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.


loss not going down:

learning rate too low


Loss barely changing: Learning rate is 
probably too low
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Lets try to train now…  


I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.


loss not going down:

learning rate too low


Loss barely changing: Learning rate is 
probably too low


Notice train/val accuracy goes to 20% 
though, what’s up with that? (remember 
this is softmax)    (go to poll)
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Let’s try to train now…  


I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.


loss not going down:

learning rate too low

Okay now let’s try learning rate 1e6. What could 
possibly go wrong?
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cost: NaN almost 
always means high 
learning rate...

Lets try to train now…  


I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.


loss not going down:

learning rate too low

loss exploding:

learning rate too high
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Lets try to train now…  


I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.


loss not going down:

learning rate too low

loss exploding:

learning rate too high

3e-3 is still too high. Cost explodes….


=> Rough range for learning rate we 
should be cross-validating is 
somewhere [1e-3 … 1e-5]
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Hyperparameter Optimization
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Cross-validation strategy

I like to do coarse -> fine cross-validation in stages


First stage: only a few epochs to get rough idea of what params work

Second stage: longer running time, finer search

… (repeat as necessary)

Tip for detecting explosions in the solver: 

If the cost is ever > 3 * original cost, break out early
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For example: run coarse search  for 5 epochs

nice

note it’s best to optimize 
in log space!
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Now run finer search...
adjust range

53% - relatively good 
for a 2-layer neural net 
with 50 hidden neurons.
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Now run finer search...
adjust range

53% - relatively good 
for a 2-layer neural net 
with 50 hidden neurons.


But this best cross-
validation result is 
worrying. Why?
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Random Search vs. Grid Search

Random Search for Hyper-Parameter Optimization

Bergstra and Bengio, 2012
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Hyperparameters to play with:

- network architecture

- learning rate, its decay schedule, update type

- regularization (L2)

neural networks practitioner

music = loss function
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My cross-validation 
“command center”



Lecture 2 - Sept. 7. 2021Erik Learned-Miller and TAs 
Some slides kindly provided by Fei-Fei Li, Andrej Karpathy, Justin Johnson
Subhransu Maji, Chuang Gan and TAs 
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 8 - Sept. 28, 202347

Monitor and visualize the loss curve
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Loss

time
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Loss

time

Bad initialization

a prime suspect
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Monitor and visualize the accuracy:

big gap = overfitting

=> increase regularization strength?


no gap

=> increase model capacity?
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Track the ratio of weight updates / weight magnitudes:

ratio between the values and updates: ~ 0.0002 / 0.02 = 0.01 (about okay)

want this to be somewhere around 0.001 or so
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Summary

We looked in detail at:


- Activation Functions (use ReLU)

- Data Preprocessing (images: subtract mean)

- Weight Initialization (use Xavier init)

- Batch Normalization (use)

- Gradient Checking

- Babysitting the Learning process

- Hyperparameter Optimization (random sample hyperparams, in log 

space when appropriate)

TLDRs
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TODO

Look at:


- Parameter update schemes

- Learning rate schedules

- Regularization (Dropout etc)

- Evaluation (Ensembles etc)
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