632 Midterm Review

Max Hamilton and Oindrila Saha

Midterm Review

Today we will cover:

Visualizing ConvNets

Adversarial Training

Style Transfer

CNNs for spatial tasks: detection, segmentation

See Review Guide on piazza for full list of topics

Visualizing ConvNets

Visualize the filters/kernels (raw weights) one-stream Alextie!

{ —

| e—

I —
oz

it

]

convl .

only interpretable on the first layer :() S,,;jl

one-stream AlexNet

Visualize patches that maximally activate neurons

{ —
2
i"' d! ‘E ‘”- B ‘Il""- ﬂ"%" "”." —
i]
ﬁ o 2 ﬁ Ai A, =—

l.l'@! . pool5
-me-m || ———

0. 07 el X X 5
‘ «ﬂ . | ” e

Figure 4: Top regions for six pool units. Receptive fields and activation values are drawn in white. Some units are aligned to concepts,
such as people (row 1) or text (4). Other units capture texture and material properties, such as dot arrays (2) and specular reflections (6). e "

Rich feature hierarchies for accurate object detection and semantic segmentation _ s
[Girshick, Donahue, Darrell, Malik]

Visualizing the representation

t-SNE visualization

[van der Maaten & Hinton]
(t-distributed stochastic neighbor embed.)

Embed high-dimensional points so that
locally, pairwise distances are conserved

i.e. similar things end up in similar places.

dissimilar things end up wherever

Right: Example embedding of MNIST digits
(0-9) in 2D

(d) Classifier, probability

Occlusion experiments @ gt e
[Zeiler & Fergus 2013] \
i

(as a function of

the position of the
square of zeros in
the original image)

True Label: Afghan Hound

Deconv approaches

1. Feed image into net

2. Pick a layer, set the gradient there to be all zero except for one 1 for
some neuron of interest “Guided

3. Backprop to image: backpropagation:”
instead

In guided backprop: cancel out -ve paths of influence at each step
(i.e. we only keep positive paths of influence)

RelLU RelLU

O
eZo-o5e 08

1 -2 ,\

positive gradient, negative gradient, zero gradient

-3

Optimization to Image

1. feed in

Zeros. d | | - ‘-.* - 1 dense
Zero image . i:——‘ '5 7]3 X |» ,: 3 j! T s ['D

N
pookng 409 4096

2. set the gradient of the scores vector to be [0,0,....1,....,0], then backprop to image
3. do a small “image update”

4. forward the image through the network.
5. go back to 2.

arg max{So (D]~ A[7]

score for class c (before Softmax)

Find images that maximize some class score:

washing machine computer keyboard kit fox

We can in fact do this for arbitrary neurons along the ConvNet

55

dense dense
13 13 1
11)

:::::

1 ‘ Y : AN — 1) H 3 I s [v
e |) 27 A . 3 "\ ™

e nput "\ 3 | ‘

24 e - | 384 A 384 | 2 |
(RGB) e

Ma pooling 4096 4066
. pooling
Strde 9

Repeat:
1. Forward an image

2. Set activations in layer of interest to all zero, except for a 1.0 for a neuron of interest
3. Backprop to image

4. Do an “image update”

Higher-layer representations preserve the most important
elements of the image

Pirate Ship Rocking Chair Teddy Bear Windsor Tie Pitcher

Understanding Convnet - Question

Suppose | have access to an image classifier via an API. | can make a
request with an image and receive a response with the predicted
probabilities of each class. Which type of analysis would work best in this
case?

Understanding Convnet - Question

Suppose | have access to an image classifier via an API. | can make a
request with an image and receive a response with the predicted
probabilities of each class. Which type of analysis would work best in this
case?

Occlusion Experiments

Adversarial Perturbations

How can we fool a CNN?

Given a pre-trained model, modify the input so that it gets misclassified by the
CNN but looks identical to the original

max L(z',y) st ||z — 2| <€
x/

Maximize loss without allowing input to change by more than some €

Adversarial Perturbations

Maximize loss without allowing input to change by more than some ¢

The more we change x, the better we can fool the network
Lets change x as much as possible: every pixel gets +/- €

How do we know whether to increase or decrease?
Use the gradient!

' =z +e-sign(VL(z,y))

Adversarial Perturbations

+.007 x IESHUREEEY 20— .

T sign(VeJ(0,z,y)) x + ¢ - sign(VeJ(0, z,y))
y ="“panda” “nematode” “gibbon”
w/ 57.7% confidence w/ 8.2% confidence w/ 99.3 % confidence

Explaining and Harnessing Adversarial Examples

lan). Goodfellow, Jonathon Shlens, Christian Szegedy

Adversarial Perturbations - Example 5

Lets fool a binary linear classifier:
(logistic regression)

1 T
X 1 2 -2 3 1 2 2
w2 1 1 1 2 1 1

o(w'x+0) =0
(2+2+42-3-2-2+2-3) =
0(-2) = 0.1192

Adversarial Perturbations - Example

1 T
Ply=1|z;w,b) = o - o(w z+b)
X 1 2 2 3 1 2 2 3
W |2 1 -1 1 2 1 1 1
x| ? 2 2 2 ? 2 2 2

How much do we need to change x to fool the classifier?
- Try different epsilon, € = 0.1, 0.2, 0.3
- For each of these, find X’ and determine if it is misclassified
- Hint: the sign of the gradient in this case is the sign of w

Adversarial Perturbations - Example

€e=0.1
X 1 -2 -2 3 -1 2 -2 -3
w 2 -1 -1 -1 2 -1 -1 1
X’ 1.1 -2.1 -2.1 2.9 -0.9 1.9 -2.1 -2.9

O'(WTX’+O) =0
(2.2+2.1+2.1-2.9-1.8-1.9+2.1-2.9) =
o(-1) = 0.2689

Adversarial Perturbations - Example

€e=0.3
X 1 -2 -2 3 -1 2 -2 -3
w 2 -1 -1 -1 2 -1 -1 1
X 1.3 -2.3 -2.3 2.7 -0.7 1.7 -2.3 2.7

O'(WTX’+O) =0
(2.6+2.3+2.3-2.7-1.4-1.7+42.3-2.7) =
o(1) =0.7311

Adversarial Perturbations - Example

€=0.2
X 1 -2 -2 3 -1 2 -2 -3
w 2 -1 -1 -1 2 -1 -1 1
X 1.2 -2.2 -2.2 2.8 -0.8 1.8 -2.2 -2.8

O'(WTX’+O) =0
(2.4+2.2+2.2-2.8-1.6-1.8+2.2-2.8) =
o0(0)=0.5

Adversarial Training

[Intriguing properties of neural networks, Szegedy et al., 2013]

correct +distort ostrich +distort otrich |

Style Transfer
Content Image Style Image Style Transfer!

5 .’if”—: \»\\v‘ -‘ o ——";"Si.s(

re

—
—
This image is licensed under CC-BY 3.0 Starry Night by Van Gogh is in the public domain This image copyright Justin Johnson, 2015. Reproduced with
i N N) permission

We can use CNNs to transfer the style of one image to another!
- Optimize input image that minimizes style loss and content loss

Style Transfer - Style Loss

For each layer, we compute a Gram Matrix:

Gl =D FixFj
k

Style Transfer - Style Loss

For each layer, we compute a Gram Matrix:

Gl =D FixFji
k

1. For a specific pixel, extract the C features and take the outer product,
(c,1) x (1,c) = (c,c) matrix

Style Transfer - Style Loss

For each layer, we compute a Gram Matrix:

Gl =D FixFji
k

1. For a specific pixel, extract the C features and take the outer product,
(c,1) x (1,c) = (c,c) matrix
2. Sum across all pixels to produce the final Gram Matrix

Style Transfer - Style Loss

For each layer, we compute a Gram Matrix:

Gl =D FixFji
k

1. For a specific pixel, extract the C features and take the outer product,
(c,1) x (1,c) = (c,c) matrix
2. Sum across all pixels to produce the final Gram Matrix

Intuitively, Gij means “how much does channel i correlate with channel j”

Style Transfer - Style Loss
Let G be the Gram Matrix from features of the style image (for a specific layer)

The style loss is defined as:

Style Transfer - Style Loss

Let G be the Gram Matrix from features of the style image (for a specific layer)

The style loss is defined as:

1 A 2 [11
F, — E : [[Mean squared error

4 N l2 M l2 between Gram Matrices”

2V

Style Transfer - Style Loss

Let G be the Gram Matrix from features of the style image (for a specific layer)

The style loss is defined as:

1 R 2 “
T, — Gl Gl ‘ Mean squared error
[— A N2 M2 2 : (%] between Gram Matrices”
1,7

s f E Wy El “Weighted average across layers”

Style Transfer - Content Loss
We want our output to have the same content as the content image

How about MSE loss on the images?

Style Transfer - Content Loss
We want our output to have the same content as the content image

How about MSE loss on the images? Too restrictive!

Style Transfer - Content Loss
We want our output to have the same content as the content image
How about MSE loss on the images? Too restrictive!

Instead, compute the MSE loss between the CNN features themselves

1

oo .
»Ccontent(pa £, l) — 5 Z (Fz'lj T Pilj)

]

If the features are close, the “content” should be similar

Style Transfer

Style
image

Style Target €¢,relu1_2 €¢,relu2_2 e(}),reluB_S €¢,relu4_3

style style style style

y S AA Y Ad 'Y
N 11" """~ I
Output : :
image e | |
(Start with Y |
noise) | :
| |
: Loss Network O i
S— Ye | - §¢- """ —"—- '

£¢,relu3_3
Content Target feat
Content
image

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure adapted from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-
Resolution”, ECCV 2016. Copyright Springer, 2016. Reproduced for educational purposes.

Style Transfer - Question

Why would we want to compute the content loss with a deeper layer of the
network?

What happens if we used features from an earlier layer?

Detection using classification

Assume classification
over C classes:

Convolution
and Pooling

Final conv
feature map

Fully-connected

layers Classification head:
H_> C numbers
(one per class)

Class scores

Class agnostic:

Fully-connected 4 numbers
layers (one box)
H H_'D Class specific:
C x 4 numbers

Box coordinates (one box per class)

Detection when multiple objects in the image

Assume classification
over C classes:

Convolution
and Pooling

Final conv
feature map

Fully-connected
layers

H H*H K needs to vary

Class scores

Fully-connected
layers

_’U K x 4 numbers
(one box per object)

Box coordinates

Detection when multiple objects in the image

Assume classification
over C classes:

Convolution
and Pooling

Final conv
feature map

Fully-connected
layers

H H*H K needs to vary

Class scores

Fully-connected
layers

_’U K x 4 numbers
(one box per object)

Box coordinates

Sliding Window approach

e Run classification + regression network
at multiple locations on a high-
resolution image

e Convert fully-connected layers into
convolutional layers for efficient
computation

But too many
locations and
therefore too slow

e Combine classifier and
regressor predictions across all scales
for final prediction

Region Proposals

e Find “blobby” image regions that are likely to contain objects
e “Class-agnostic” object detector
e Look for “blob-like” regions

\ 4

Putting it together: R-CNN

Apply bounding-box regressors

Bbox reg || SVMs Classify regions with SVMs

Bbox reg || SVMs |y |

o |
Bbox reg | | SVMs u Forward each region
M ConvNet through ConvNet
ConvNet
ConvNet “ﬁ . .
\ y - 4 arped image regions

Ay

',:_ Regions of Interest (Rol)

from a proposal method
(~2Kk)

Post hoc component

Girshick et al. CVPR14.

R-CNN Problems

1. Slow at test-time: need to run full forward pass of
CNN for each region proposal

2. SVMs and regressors are post-hoc: CNN features
not updated in response to SVMs and regressors

3. Complex multistage training pipeline

Fast RCNN

Fast R-CNN (test time)

EH =
n &

FCs Fully-connected layers

1. Share computation
till convd

' I L
A o =

Regions of ”' y “conv5” feature map of image 2 End'tO'end training

Interest (Rols) t
from a proposal
method

Forward whole image through ConvNet

| —
4
?’ Input image

R o {.'\

Fast RCNN

Fast R-CNN (test time)

EH =
n &

FCs Fully-connected layers

1. Share computation
till convd

' I L
A o =

Regions of ”' y “conv5” feature map of image 2 End'tO'end training

Interest (Rols) t
from a proposal
method

Forward whole image through ConvNet

| —
4
?’ Input image

R o {.'\

Fast R-CNN: Region of Interest Pooling

Max-pool within

Convolution each grid cell Fully-connected
and Pooling layers
Hi-res input image: Hi-res conv features: Rol conv features: Fully-connected layers expect
3 x 800 x 600 CxHxW Cxhxw low-res conv features:
with region with region proposal for region proposal Cxhxw

proposal

Fast RCNN problem Faster R-CNN:

classifier

Region proposal is costly '
Rol pooling

Make region prOpoV
Joelizlot Region Proposal Network

CNN
4 /

Faster R-CNN: Region Proposal Network

Slide a small window on the feature map classify FCETess
obj./not-obj. box locations
scores coordinates
Build a small network for:
» classifying object or not-object, and 1 x 1 conv \ t 1 x 1 conv

* regressing bbox locations
256-d

1 x 1 conv
Position of the sliding window provides localization

information with reference to the image
Box regression provides finer localization information B‘Qg wmdok

with reference to this sliding window

convolutional feature map

Slide credit: Kaiming He

Faster R-CNN: Region Proposal Network

Use N anchor boxes at each location

L. . l n scores I ‘ 4n coordinates | < n anchors
Anchors are translation invariant: use the
same ones at every location \ t
| 256-d]
Regression gives offsets from anchor boxes t

Classification gives the probability that each -
(regressed) anchor shows an object

Faster R-CNN: Training

In the paper: Ugly pipeline
- Use alternating optimization to train RPN,

then Fast R-CNN with RPN proposals, etc.

- More complex than it has to be

Since publication: Joint training!
One network, four losses
- RPN classification (anchor good / bad)
- RPN regression (anchor -> proposal)
- Fast R-CNN classification (over classes)
- Fast R-CNN regression (proposal -> box)

Slide credit: Ross Girschick

proposals / ;

Region Proposal Network

feature map '

y
—crrr 77—

Semantic vs Instance Segmentation

Vil

Object Detection Semantic Segmentation Instance Segmentation

Instance Segmentation: Mask R-CNN

\é/)?

proposals
Instance

Segmentation

Region Proposal Network

CNN
4 /

DOG, DOG, CAT g 4 A

He et al, “Mask R-CNN”, ICCV 2017

Mask R-CNN

Classification Scores: C

% Box coordinates (per class): 4 * C

Conv Conv

Rol Align

256x14x14 256x14x14

Predict a mask for
each of C classes:
Cx28x28

FCN on ROI

He et al, “Mask R-CNN”, ICCV 2017

Segmentation: Sliding Window

Extract Classify center pixel
patch with CNN
. Cow
Cow
Grass

[~

Problem: Very inefficient! Not
reusing shared features
between overlapping patches

Fully Convolutional Network

Design a network as a bunch of convolutional
layers to make predictions for pixels all at once!

p Bl Conv| | Cony Conv Conv argmax
Input: 3)
3XxHXW o Scores: Predictions:
Convolutions: CxHxW HxW
DxHxW

Loss function: Per-Pixel cross-entropy
Problem #1: Effective receptive

field size is linear in number of Problem #2: Convolution on

conv layers: With L 3x3 conv high res images is expensive!
layers, receptive field is 1+2L

Fully Convolutional Network

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

Med-res: Med-res:

" Low-res:
D3x H/4 x W/
High-res: 4 High-res: Predictions:
D;x H/2 x W/2 D, xH/2 x W/2 HxW

Downsampling:
Pooling, strided
convolution Interpolation, ConvTranspose

Upsampling:

Spatial Localization - Question

What are some factors to consider when deciding whether to do
object detection or segmentation to determine what’s in an image?

