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Case Studies

LeNet 

(1998)

AlexNet

(2012)

ZFNet

(2013)
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Case Studies

VGG

(2014)
GoogLeNet

(2014)

ResNet

(2015)
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Localization and Detection

Results from Faster R-CNN, Ren et al 2015
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Classification
Classification 

+ Localization

Computer Vision Tasks

CAT CAT CAT, DOG, DUCK

Object Detection
Instance 

Segmentation

CAT, DOG, DUCK

Single object Multiple objects
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Classification
Classification 

+ Localization

Computer Vision Tasks

Object Detection
Instance 

Segmentation
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Classification + Localization: Task

Classification: C classes

Input: Image

Output: Class label

Evaluation metric: Accuracy

Localization:

Input: Image

Output: Box in the image (x, y, w, h)

Evaluation metric: Intersection over Union

Classification + Localization: Do both

CAT

(x, y, w, 

h)
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Classification + Localization: ImageNet

1000 classes (same as classification)

Each image has 1 class, at least one 

bounding box

~800 training images per class

Algorithm produces 5 (class, box) guesses

Example is correct if at least one guess has 

correct class AND bounding box at least 

0.5 intersection over union (IoU)

Krizhevsky et. al. 2012
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Idea #1: Localization as Regression

Input: image

Output: 

Box coordinates

(4 numbers)

Neural Net

Correct output:  

box coordinates

(4 numbers)

Loss:

L2 distance

Only one object, 

simpler than detection
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Simple Recipe for Classification + Localization
Step 1: Train (or download) a classification model (AlexNet, VGG, GoogLeNet)

Image

Convolution

and Pooling

Final conv 

feature map

Fully-connected 

layers

Class scores

Softmax loss
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Simple Recipe for Classification + Localization
Step 2: Attach new fully-connected “regression head” to the network

Image

Convolution

and Pooling

Final conv 

feature map

Fully-connected 

layers

Class scores

Fully-connected 

layers

Box coordinates

“Classification head”

“Regression head”
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Simple Recipe for Classification + Localization
Step 3: Train the regression head only with SGD and L2 loss

Image

Convolution

and Pooling

Final conv 

feature map

Fully-connected 

layers

Class scores

Fully-connected 

layers

Box coordinates

L2 loss
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Simple Recipe for Classification + Localization
Step 4: At test time use both heads

Image

Convolution

and Pooling

Final conv 

feature map

Fully-connected 

layers

Class scores

Fully-connected 

layers

Box coordinates
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Per-class vs class agnostic regression

Image

Convolution

and Pooling

Final conv 

feature map

Fully-connected 

layers

Class scores

Fully-connected 

layers

Box coordinates

Assume classification 

over C classes: Classification head:

C numbers 

(one per class)

Class agnostic:

4 numbers

(one box)

Class specific:

C x 4 numbers

(one box per class)
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Where to attach the regression head?

Image

Convolution

and Pooling

Final conv 

feature map

Fully-connected 

layers

Class scores

Softmax loss

After conv layers:

Overfeat, VGG

After last FC layer:

DeepPose, R-CNN
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Aside: Localizing multiple objects

Want to localize exactly K 

objects in each image

(e.g. whole cat, cat head, cat 

left ear, cat right ear for K=4)

Image

Convolution

and Pooling

Final conv 

feature map

Fully-connected 

layers

Class scores

Fully-connected 

layers

Box coordinates

K x 4 numbers

(one box per object)
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Aside: Human Pose Estimation

Represent a person by K joints

Regress (x, y) for each joint from 

last fully-connected layer of 

AlexNet

(Details: Normalized coordinates, 

iterative refinement)

Toshev and Szegedy, “DeepPose: Human Pose 

Estimation via Deep Neural Networks”, CVPR 2014
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Idea #2: Sliding Window

● Run classification + regression network 

at multiple locations on a high-
resolution image

● Convert fully-connected layers into 

convolutional layers for efficient 
computation

● Combine classifier and 

regressor predictions across all scales 
for final prediction
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Sliding Window: Overfeat

Image: 

3 x 221 x 221

Convolution 

+ pooling

Feature map: 

1024 x 5 x 5

4096 1024
Boxes:

1000 x 4

4096 4096 Class scores:

1000

Softmax

loss

Euclidean

loss

Winner of ILSVRC 2013

localization challenge

FC

FC FC

FC FC

FC

Sermanet et al, “Integrated Recognition, Localization and 

Detection using Convolutional Networks”, ICLR 2014
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Sliding Window: Overfeat

Network input: 

3 x 221 x 221 Larger image:

3 x 257 x 257
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Sliding Window: Overfeat

Network input: 

3 x 221 x 221 Larger image:

3 x 257 x 257

0.5

Classification scores: 

P(cat)
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Sliding Window: Overfeat

Network input: 

3 x 221 x 221

0.5 0.75

Classification scores: 

P(cat)

Larger image:

3 x 257 x 257



Lecture 12 - March 2022Erik Learned-Miller
Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 12 - 17 Oct 2024Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

25

Sliding Window: Overfeat

Network input: 

3 x 221 x 221

0.5 0.75

0.6

Classification scores: 

P(cat)

Larger image:

3 x 257 x 257
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Sliding Window: Overfeat

Network input: 

3 x 221 x 221

0.5 0.75

0.6 0.8

Classification scores: 

P(cat)

Larger image:

3 x 257 x 257
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Sliding Window: Overfeat

Network input: 

3 x 221 x 221

0.5 0.75

0.6 0.8

Classification scores: 

P(cat)

Larger image:

3 x 257 x 257
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Sliding Window: Overfeat

Network input: 

3 x 221 x 221 Classification score: 

P(cat)

Larger image:

3 x 257 x 257

Greedily merge boxes and 

scores (details in paper)

0.8
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Sliding Window: Overfeat

In practice use many sliding window 

locations and multiple scales

Window positions + score maps Box regression outputs Final Predictions

Sermanet et al, “Integrated Recognition, Localization and Detection using Convolutional Networks”, ICLR 2014
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Efficient Sliding Window: Overfeat

Image: 

3 x 221 x 221

Convolution 

+ pooling

Feature map: 

1024 x 5 x 5

4096 1024
Boxes:

1000 x 4

4096 4096 Class scores:

1000

FC

FC

FC FC

FC FC
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Efficient Sliding Window: Overfeat

Image: 

3 x 221 x 221

Convolution 

+ pooling

Feature map: 

1024 x 5 x 5

4096 x 1 x 1 1024 x 1 x 1

5 x 5 

conv

5 x 5 

conv

1 x 1 conv

4096 x 1 x 1 1024 x 1 x 1

Box coordinates:

(4 x 1000) x 1 x 1

Class scores:

1000 x 1 x 1

1 x 1 conv

1 x 1 conv 1 x 1 conv

Efficient sliding window by converting fully-

connected layers into convolutions
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Efficient Sliding Window: Overfeat

Training time: Small image, 1 

x 1 classifier output

Test time: Larger image, 2 x 2 
classifier output, only extra 
compute at yellow regions

Sermanet et al, “Integrated Recognition, Localization and Detection using Convolutional Networks”, ICLR 2014
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ImageNet Classification + Localization

AlexNet: Localization method not published

Overfeat: Multiscale convolutional regression 

with box merging

VGG: Same as Overfeat, but fewer scales 
and locations; simpler method, gains all due 

to deeper features

ResNet: Different localization method (RPN) 
and much deeper features
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Classification
Classification 

+ Localization

Computer Vision Tasks

Object Detection
Instance 

Segmentation
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Classification
Classification 

+ Localization

Computer Vision Tasks

Instance 

Segmentation
Object Detection
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Detection as Regression?

DOG, (x, y, w, h)

CAT, (x, y, w, h)

CAT, (x, y, w, h)

DUCK (x, y, w, h)

= 16 numbers
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Detection as Regression?

DOG, (x, y, w, h)

CAT, (x, y, w, h)

= 8 numbers
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Detection as Regression?

CAT, (x, y, w, h)

CAT, (x, y, w, h)

….

CAT (x, y, w, h)

= many numbers

Need variable sized outputs 
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Detection as Classification

CAT? NO

DOG? NO
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Detection as Classification

CAT? YES!

DOG? NO
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Detection as Classification

CAT? NO

DOG? NO
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Detection as Classification

Problem: Need to test many positions and scales

Solution: If your classifier is fast enough, just do it 
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Detection as Classification

Problem: Need to test many positions and scales, 

and use a computationally demanding classifier (CNN)

Solution: Only look at a tiny subset of possible positions
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Region Proposals

● Find “blobby” image regions that are likely to contain objects

● “Class-agnostic” object detector

● Look for “blob-like” regions
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Region Proposals: Selective Search

Bottom-up segmentation, merging regions at multiple scales

Convert 

regions 

to boxes

Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013
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Region Proposals: Many other choices

Hosang et al, “What makes for effective detection proposals?”, PAMI 2015
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Region Proposals: Many other choices

Hosang et al, “What makes for effective detection proposals?”, PAMI 2015



Lecture 12 - March 2022Erik Learned-Miller
Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 12 - 17 Oct 2024Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

48

Putting it together: R-CNN

Girschick et al, “Rich feature hierarchies for 

accurate object detection and semantic 
segmentation”, CVPR 2014

Slide credit: Ross Girschick
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R-CNN Training
Step 1: Train (or download) a classification model for ImageNet (AlexNet)

Image

Convolution

and Pooling

Final conv 

feature map

Fully-connected 

layers

Class scores

1000 classes

Softmax loss
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R-CNN Training
Step 2: Fine-tune model for detection

- Instead of 1000 ImageNet classes, want 20 object classes + background

- Throw away final fully-connected layer, reinitialize from scratch

- Keep training model using positive / negative regions from detection images

Image

Convolution

and Pooling

Final conv 

feature map

Fully-connected 

layers

Class scores:

21 classes

Softmax loss

Re-initialize this layer: 

was 4096 x 1000, 

now will be 4096 x 21
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R-CNN Training
Step 3: Extract features

- Extract region proposals for all images

- For each region: warp to CNN input size, run forward through CNN, save pool5 

features to disk

- Have a big hard drive: features are ~200GB for PASCAL dataset!

Image

Convolution

and Pooling

pool5 features

Region Proposals Crop + Warp Forward pass Save to disk
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R-CNN Training
Step 4: Train one binary SVM per class to classify region features

Positive samples for cat SVM Negative samples for cat SVM

Training image regions

Cached region features
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R-CNN Training
Step 4: Train one binary SVM per class to classify region features

Training image regions

Cached region features

Negative samples for dog SVM Positive samples for dog SVM
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R-CNN Training
Step 5 (bbox regression): For each class, train a linear regression model to map from 

cached features to offsets to GT boxes to make up for “slightly wrong” proposals

Training image regions

Cached region features

Regression targets

(dx, dy, dw, dh)
Normalized coordinates

(0, 0, 0, 0)

Proposal is good

(.25, 0, 0, 0)

Proposal too 
far to left

(0, 0, -0.125, 0)

Proposal too 
wide
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Object Detection: Datasets

PASCAL 

VOC
(2010)

ImageNet 

Detection
(ILSVRC 2014)

MS-COCO

(2014)

Number of 

classes
20 200 80

Number of 

images (train + 
val)

~20k ~470k ~120k

Mean objects per 

image
2.4 1.1 7.2
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Object Detection: Evaluation

We use a metric called “mean average precision” (mAP)

Compute average precision (AP) separately for each class, then 

average over classes
(https://towardsdatascience.com/map-mean-average-precision-

might-confuse-you-5956f1bfa9e2)

A detection is a true positive if it has IoU with a ground-truth box 
greater than some threshold (usually 0.5) (mAP@0.5)

Combine all detections from all test images to draw a precision / 

recall curve for each class; AP is area under the curve

mAP is a number from 0 to 100; high is good
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R-CNN Results

Wang et al, “Regionlets for Generic Object Detection”, ICCV 2013
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R-CNN Results Big improvement compared 

to pre-CNN methods
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R-CNN Results Bounding box regression 

helps a bit
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R-CNN Results Features from a deeper 

network help a lot
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R-CNN Problems

1. Slow at test-time: need to run full forward pass of 

CNN for each region proposal

2. SVMs and regressors are post-hoc: CNN features 

not updated in response to SVMs and regressors

3. Complex multistage training pipeline
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Girschick, “Fast R-CNN”, ICCV 2015

SPP: Spatial Pyramid Pooling

Slide credit: Ross Girschick
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R-CNN Problem #1: 

Slow at test-time due to 

independent forward 

passes of the CNN

Solution:

Share computation 

of convolutional 

layers between 

proposals for an 

image
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R-CNN Problem #2: 

Post-hoc training: CNN not 

updated in response to final 

classifiers and regressors

R-CNN Problem #3:

Complex training pipeline

Solution:

Just train the whole system 

end-to-end all at once!

Slide credit: Ross Girschick
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Fast R-CNN: Region of Interest Pooling

Hi-res input image:

3 x 800 x 600
with region 
proposal

Convolution

and Pooling

Hi-res conv features:

C x H x W
with region proposal

Fully-connected 

layers

Problem: Fully-connected 

layers expect low-res conv 
features: C x h x w



Lecture 12 - March 2022Erik Learned-Miller
Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 12 - 17 Oct 2024Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

66

Fast R-CNN: Region of Interest Pooling

Hi-res input image:

3 x 800 x 600
with region 
proposal

Convolution

and Pooling

Hi-res conv features:

C x H x W
with region proposal

Fully-connected 

layers

Project region proposal 

onto conv feature map

Problem: Fully-connected 

layers expect low-res conv 
features: C x h x w
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Fast R-CNN: Region of Interest Pooling

Hi-res input image:

3 x 800 x 600
with region 
proposal

Convolution

and Pooling

Hi-res conv features:

C x H x W
with region proposal

Fully-connected 

layers

Problem: Fully-connected 

layers expect low-res conv 
features: C x h x w

Divide projected 

region into h x w grid
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Fast R-CNN: Region of Interest Pooling

Hi-res input image:

3 x 800 x 600
with region 
proposal

Convolution

and Pooling

Hi-res conv features:

C x H x W
with region proposal

Fully-connected 

layers

Max-pool within 

each grid cell

RoI conv features:

C x h x w
for region proposal

Fully-connected layers expect 

low-res conv features: 
C x h x w
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Fast R-CNN: Region of Interest Pooling

Hi-res input image:

3 x 800 x 600
with region 
proposal

Convolution

and Pooling

Hi-res conv features:

C x H x W
with region proposal

Fully-connected 

layers

Can back propagate 

similar to max pooling

RoI conv features:

C x h x w
for region proposal

Fully-connected layers expect 

low-res conv features: 
C x h x w
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Fast R-CNN Results

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x

Using VGG-16 CNN on Pascal VOC 2007 dataset

Faster!
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Fast R-CNN Results

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x

Test time per image 47 seconds 0.32 seconds

(Speedup) 1x 146x

Using VGG-16 CNN on Pascal VOC 2007 dataset

Faster!

FASTER

!
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Fast R-CNN Results

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x

Test time per image 47 seconds 0.32 seconds

(Speedup) 1x 146x

mAP (VOC 2007) 66.0 66.9

Using VGG-16 CNN on Pascal VOC 2007 dataset

Faster!

FASTER

!

Better!



Lecture 12 - March 2022Erik Learned-Miller
Adapted from slides of Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 12 - 17 Oct 2024Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

73

Fast R-CNN Problem:

R-CNN Fast R-CNN

Test time per image 47 seconds 0.32 seconds

(Speedup) 1x 146x

Test time per image

with Selective Search
50 seconds 2 seconds

(Speedup) 1x 25x

Test-time speeds don’t include region proposals
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Fast R-CNN Problem Solution:

R-CNN Fast R-CNN

Test time per image 47 seconds 0.32 seconds

(Speedup) 1x 146x

Test time per image

with Selective Search
50 seconds 2 seconds

(Speedup) 1x 25x

Test-time speeds don’t include region proposals

Just make the CNN do region proposals too!
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Faster R-CNN: Insert a Region Proposal 

Network (RPN) after the last 

convolutional layer

RPN trained to produce region 
proposals directly; no need for 

external region proposals!

After RPN, use RoI Pooling and 

an upstream classifier and bbox 
regressor just like Fast R-CNN

Ren et al, “Faster R-CNN: Towards Real-Time Object 

Detection with Region Proposal Networks”, NIPS 2015

Slide credit: Ross Girschick
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Faster R-CNN: Region Proposal Network

Slide a small window on the feature map

Build a small network for:

• classifying object or not-object, and
• regressing bbox locations

Position of the sliding window provides localization

information with reference to the image

Box regression provides finer localization information
with reference to this sliding window

1 x 1 conv

1 x 1 conv1 x 1 conv

Slide credit: Kaiming He
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Faster R-CNN: Region Proposal Network

Use N anchor boxes at each location

Anchors are translation invariant: use the 

same ones at every location

Regression gives offsets from anchor boxes

Classification gives the probability that each 

(regressed) anchor shows an object
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Faster R-CNN: Training
In the paper: Ugly pipeline

- Use alternating optimization to train RPN, 

then Fast R-CNN with RPN proposals, etc.

- More complex than it has to be

Since publication: Joint training!

One network, four losses

- RPN classification (anchor good / bad)

- RPN regression (anchor -> proposal)

- Fast R-CNN classification (over classes)
- Fast R-CNN regression (proposal -> box)

Slide credit: Ross Girschick
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Faster R-CNN: Results

R-CNN Fast R-CNN Faster R-CNN

Test time per 

image

(with proposals)

50 seconds 2 seconds 0.2 seconds

(Speedup) 1x 25x 250x

mAP (VOC 2007) 66.0 66.9 66.9
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Object Detection State-of-the-art:

ResNet 101 + Faster R-CNN + some extras

He et. al, “Deep Residual Learning for Image Recognition”, arXiv 2015
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ImageNet Detection 2013 - 2015
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YOLO: You Only Look Once

Detection as Regression

Divide image into S x S grid

Within each grid cell predict:

B Boxes: 4 coordinates + 

confidence
Class scores: C numbers

Regression from image to 

7 x 7 x (5 * B + C) tensor

Direct prediction using a CNN

Redmon et al, “You Only Look Once: 

Unified, Real-Time Object Detection”, arXiv 2015
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YOLO: You Only Look Once

Detection as Regression

Faster than Faster R-CNN, but not 
as good

Redmon et al, “You Only Look Once: 

Unified, Real-Time Object Detection”, arXiv 2015
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Object Detection code links:

R-CNN

(Cafffe + MATLAB): https://github.com/rbgirshick/rcnn

Probably don’t use this; too slow

Fast R-CNN

(Caffe + MATLAB): https://github.com/rbgirshick/fast-rcnn

Faster R-CNN

(Caffe + MATLAB): https://github.com/ShaoqingRen/faster_rcnn

(Caffe + Python): https://github.com/rbgirshick/py-faster-rcnn

YOLO

http://pjreddie.com/darknet/yolo/

Maybe try this for projects?

https://github.com/rbgirshick/rcnn
https://github.com/rbgirshick/fast-rcnn
https://github.com/ShaoqingRen/faster_rcnn
https://github.com/rbgirshick/py-faster-rcnn
http://pjreddie.com/darknet/yolo/
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Recap
Localization:

- Find a fixed number of objects (one or many)

- L2 regression from CNN features to box coordinates

- Overfeat: Regression + efficient sliding window with FC -> conv conversion

- Deeper networks do better
Object Detection:

- Find a variable number of objects by classifying image regions

- Avoid dense sliding window with region proposals

- R-CNN: Selective Search + CNN classification / regression

- Fast R-CNN: Swap order of convolutions and region extraction
- Faster R-CNN: Compute region proposals within the network

- Deeper networks do better
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