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Adversarial examples, texture
synthesis, and style transfer
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Agenda

Recap
Adversarial examples

Texture synthesis and style transfer

Bonus
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Last lecture: Understanding ConvNets

- Visualize the weights

- Visualize the last layer (via t-SNE)

- Visualize patches that maximally activate neurons
- Occlusion experiments

- Deconv approaches (single backward pass)

- |Optimization over image approaches (optimization)
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Question: Given a CNN code, is it
possible to reconstruct the original
image?
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Find an image such that:
- Its code is similar to a given code
- It "looks natural” (image prior regularization)

x* = argmin £(®(x),Py) + AR(x)

xeRHxWxC

U2(x), Do) = [|2(x) — Dol|*
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Understanding Deep Image Representations by Inverting Them
[Mahendran and Vedaldi, 2014]

original image .
reconstructions

from the 1000
log probabilities
for ImageNet
(ILSVRC)
classes
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Reconstructions from the representation after last last pooling layer
(immediately before the first Fully Connected layer)
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Reconstructions from intermediate layers
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We can pose an optimization over the input
iImage to maximize any class score.
That seems useful.

Question: Can we use this to “fool” ConvNets?

spoiler alert: yeah
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(1) Start from an arbitrary image

(2) Pick an arbitrary class

(3) Modify the image to maximize the class
(4) Repeat until network is fooled
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[Intriguing properties of neural networks, Szegedy et al., 2013]

-

correct +distort | ostrich correct +distort ostrich
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[Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Nguyen, Yosinski, Clune, 2014]

>99.6%
confidences

robin cheetah armadillo lesser panda

centipede peacock jackfruit bubble
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[Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Nguyen, Yosinski, Clune, 2014]
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These kinds of results were around even before ConvNets...
[Exploring the Representation Capabilities of the HOG Descriptor, Tatu et al., 2011]
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EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES
[Goodfellow, Shlens & Szegedy, 2014]

“primary cause of neural networks’ vulnerability to adversarial
perturbation is their linear nature”

Subhransu Maji, Chuang Gan and TAs Lecture 15 - 15 Nov 7, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



Lets fool a binary linear classifier:
(logistic regression)

1
ELE e—(wTz+b)

P{y=1| z;wb) = = o(wlz + b)

Since the probabilities of class 1 and 0 sum to one, the probability for class 0 is
Ply=0|z;w,b) =1— P(y=1| x;w,b) . Hence, an example is classified as a positive example (y = 1) if
a(wTw + b) > 0.5, or equivalently if the score wlz+b>0.
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Lets fool a binary linear classifier:

X |2 1 |3 |2 |2 |2 |1 4 |5 |1 |. input example
wot o eights
1 T
P(y=1 | z;w.b) = =o(w x +b)

(EEE e—(wTz+b)
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Lets fool a binary linear classifier:

X |2 1 |3 2 |2 2 1 4 |5 1 . input example
w |1 1 1|1 1|1 1 -1 1 4 weights
class 1 score = dot product:
=2+1+3+2+2-2+1-4-5+1=-3
=> probability of class 1 is 1/(1+e”(-(-3))) = 0.0474
i.e. the classifier is 95% certain that this is class 0 example.
1 T
P(y=1 | z;w.b) = =o(w x +b)

(EEE e—(wTz+b)
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Lets fool a binary linear classifier:

X |2 1 |3 2 |2 2 1 4 |5 1 . input example
w |1 1 -1 1 -1 1 1 -1 1 4 weights
. ? ? ? ? ? ? ? ? ? ?
adversarial x
class 1 score = dot product:
=2+1+3+2+2-2+1-4-5+1=-3
=> probability of class 1 is 1/(1+e”(-(-3))) = 0.0474
i.e. the classifier is 95% certain that this is class 0 example.
P(y: 1] a:;w,b) - 1+ e (wlz+b) = U(me +b)
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Lets fool a binary linear classifier:

X 2 -1 3 2 |2 2 1 4 |5 1 . input example
W -1 1 -1 1 -1 1 1 -1 1 « weights
. 15 |15 (35 |25 (25 |15 |15 |-35 |45 |15
adversarial x
class 1 score before:
2+1+3+2+2-2+1-4-5+1=-3
=> probability of class 1 is 1/(1+e”(-(-3))) = 0.0474 Ply—1| siw,b) — i
-1.5+1.5+3.5+2.5+2.5-1.5+1.5-3.5-4 5+1.5=2 A T e

=> probability of class 1 is now 1/(1+e”(-(2))) = 0.88
i.e. we improved the class 1 probability from 5% to 88%
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Lets fool a binary linear classifier:

X 2 -1 3 -2 2 2 1 -4 ) 1

<

input example

W -1 -1 1 -1 1 -1 1 1 -1 1 <

weights

. 1.5 -15 (35 |-25 |25 1.5 15 |-35 |45 1.5
adversarial x

class 1 score before: This was only with 10 input

2+1+3+2+2-2+1-4-5+1=-3 dimensions. A 224x224 input
=> probability of class 1 is 1/(1+e”(-(-3))) = 0.0474 image has 150,528.
-1.5+1.5+3.5+2.5+2.5-1.5+1.5-3.5-4.5+1.5 = 2

- ) (It's significantly easier with
=> probability of class 1 is now 1/(1+e”(-(2))) = 0.88 more numbers. need smaller

i.e. we improved the class 1 probability from 5% to 88%  nudge for each)
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+ .007 x RN =
x sign(VzJ(0,2,y)) x +€-sign(VeJ(0,2,y))

y ="“panda” “nematode” “gibbon”
w/ 57.7% confidence w/ 8.2% confidence w/ 99.3 % confidence

Explaining and Harnessing Adversarial Examples

lan J. Goodfellow, Jonathon Shlens, Christian Szegedy

Subhransu Maji, Chuang Gan and TAs Lecture 15 - 22 Nov 7, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



[Intriguing properties of neural networks, Szegedy et al., 2013]

-

correct +distort | ostrich correct +distort ostrich
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Can be printed on paper! Kurakin et al., 17

(a) Image from dataset (b) Clean image (c) Adv. image, € = 4 (d) Adv. image, € = 8
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Also works for 3D models!
(though a little harder for point clouds) Su et al.,, ECCV 2018

“plant” “‘bench” “plant” “bench”

point cloud voxel
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Neural Style Transfer and Texture Synthesis

Content Image Style Image Style Transfer!

This image is licensed under CC-BY 3.0 Starry Night by Van Gogh is in the public domain This image copyright Justin Johnson, 2015. Reproduced with
’ permission

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
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https://commons.wikimedia.org/wiki/File:Tuebingen_Neckarfront.jpg
https://creativecommons.org/licenses/by/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg
https://github.com/jcjohnson/neural-style

IS

Texture Synthes

iven a sample patch of some texture, can we

G

generate a bigger image of the same texture?

Output

Output image is licensed under the MIT license

Nov 7, 2024
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https://github.com/jcjohnson/texture-synthesis
https://github.com/jcjohnson/texture-synthesis/blob/master/LICENSE

scanline order; form neighborhood

of already generated pixels and
copy nearest neighbor from input

Generate pixels one at a time in

ighbor

Nearest Ne

IS

Texture Synthes

Wei and Levoy, “Fast Texture Synthesis using Tree-structured Vector Quantization”, SIGGRAPH 2000

Efros and Leung, “Texture Synthesis by Non-parametric Sampling”, ICCV 1999
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Texture Synthesis: Nearest Neighbor
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Images licensed under the MIT license
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https://github.com/jcjohnson/texture-synthesis/blob/master/examples.md
https://github.com/jcjohnson/texture-synthesis/blob/master/LICENSE

Neural Texture Synthesis: Gram Matrix

This image is in the publlc domain.

Each layer of CNN gives C x H x W tensor of
features; H x W grid of C-dimensional vectors
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https://commons.wikimedia.org/wiki/File:Coastal-rocks.jpg

Neural Texture Synthesis: Gram Matrix

C
%
C
H C
7 PRS0 N W
Each Iayer of CNN giveS C x H x W tensor of |
features; H x W grid of C-dimensional vectors
Outer product of C-dimensional vector with itself
gives C x C matrix measuring co-occurrence C
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https://commons.wikimedia.org/wiki/File:Coastal-rocks.jpg

Neural Texture Synthesis: Gram Matrix

This image is in the public domain.

Each layer of CNN gives C x H x W tensor of

features; H x W grid of C-dimensional vectors .
g 7] The green box G(i,j) represents the

AVERAGE, over image positions in the
image, of the product of features i and

J.

Outer product of C-dimensional vector with itself
gives C x C matrix measuring co-occurrence

Suppose “i” represents horizontal lines

and ‘" represents vertical lines.

Subhransu Maji, Chuang Gan and TAs Lecture 15 - 32 Nov 7, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller


https://commons.wikimedia.org/wiki/File:Coastal-rocks.jpg

Vertical and horizontal co-occur Vertical and horizontal DO NOT co-occur
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Neural Texture Synthesis: Gram Matrix

This image is in the public domain.

Each layer of CNN gives C x H x W tensor of G Matri
features; H x W grid of C-dimensional vectors ram Matrix

Outer product of C-dimensional vector with itself
gives C x C matrix measuring co-occurrence

Average over all HW outer products, giving Gram
matrix of shape C x C
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https://commons.wikimedia.org/wiki/File:Coastal-rocks.jpg

Neural Texture Synthesis: Gram Matrix

This image is in the public domain.

Each layer of CNN gives C x H x W tensor of
features; H x W grid of C-dimensional vectors

Outer product of C-dimensional vector with itself
gives C x C matrix measuring co-occurrence

Average over all HW outer products, giving Gram
matrix of shape Cx C

Subhransu Maji, Chuang Gan and TAs

Efficient to compute; reshape features from

CxHxWto =C x HW

then compute G = FFT
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https://commons.wikimedia.org/wiki/File:Coastal-rocks.jpg

Neural Texture Synthesis

1. Pretrain a CNN on ImageNet (VGG-19)
2. Run input texture forward through CNN,
record activations on every layer; layer i
gives feature map of shape C, x H, x W,

3. At each layer compute the Gram matrix
giving outer product of features:

G'; =Y F}F}, (shape C, x C)
k

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.
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Neural Texture Synthesis

1. Pretrain a CNN on ImageNet (VGG-19)

2. Run input texture forward through CNN,
record activations on every layer; layer i
gives feature map of shape C, x H, x W,

3. At each layer compute the Gram matrix
giving outer product of features:

Z L FL (shape C; x C))

4. In|t|aI|ze generated image from random
noise

5. Pass generated image through CNN,
compute Gram matrix on each layer

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.
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Neural Texture Synthesis  #-mpy(@-6)  cwp->un

1. Pretrain a CNN on ImageNet (VGG-19)

2. Run input texture forward through CNN,
record activations on every layer; layer i
gives feature map of shape C, x H, x W,

3. At each layer compute the Gram matrix
giving outer product of features:

Z L FL (shape C; x C))

4. Inltlallze generated image from random
noise

5. Pass generated image through CNN,
compute Gram matrix on each layer

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.
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Neural Texture Synthesis  #-mpy(@-6)  cwp->un

1. Pretrain a CNN on ImageNet (VGG-19)
> ‘" Pt

2. Run input texture forward through CNN,
record activations on every layer; layer i
gives feature map of shape C; x H, x W,

3. At each layer compute the Gram matrix
giving outer product of features:

Z L FL (shape C; x C))

4. Inltlallze generated image from random
noise :
5. Pass generated image through CNN, " [—
compute Gram matrix on each layer

: 1
distance between Gram matrices £ - - convi_ i-' D D l

7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO5

‘)_L Gradient
or descent

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.
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Neural Texture Synthesis

Reconstructing texture
from higher layers recovers
larger features from the
input texture

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.
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Neural Texture Synthesis: Texture = Artwork

relul_2 re1u2 2 re1u3 3 relud_3

Texture synthesis
(Gram
reconstruction)

Figure from Johnson, Alahi, and Fei-Fei, “Perceptual
Losses for Real-Time Style Transfer and Super-
Resolution”, ECCV 2016. Copyright Springer, 2016.
Reproduced for educational purposes.
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Neural Style Transfer: Feature + Gram Reconstruction

relul_2 relu2_2 3 relud_3

Y relud_

Texture synthesis
(Gram
reconstruction)

relub_3

Feature
reconstruction

Figure from Johnson, Alahi, and Fei-Fei, “Perceptual
Losses for Real-Time Style Transfer and Super-
Resolution”, ECCV 2016. Copyright Springer, 2016.
Reproduced for educational purposes.
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Neural Style Transfer

Content Image

This image is licensed under CC-BY 3.0 Starry Night by VVan Gogh is in the public domain

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
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Neural Style Transfer

Content Image

This image is licensed under CC-BY 3.0 Starry Night by Van Gogh is in the public domain This image copyright Justin Johnson, 2015. Reproduced with
’ permission

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
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Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure adapted from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-
Resolution”, ECCV 2016. Copyright Springer, 2016. Reproduced for educational purposes.
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Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure adapted from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-
Resolution”, ECCV 2016. Copyright Springer, 2016. Reproduced for educational purposes.
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Neural Style Transfer

Example outputs from

implementation
(in Torch)

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure copyright Justin Johnson, 2015.
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https://github.com/jcjohnson/neural-style

Neural Style Transfer

More weight to
content loss , Style loss
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Neural Style Transfer

Resizing style image before running style transfer
algorithm can transfer different types of features

Larger style p . Smaller style
image image

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure copyright Justin Johnson, 2015.
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Neural Style Transfer: Multiple Style Images

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure copyright Justin Johnson, 2015.
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Published as a conference paper at ICLR 2017

WHAT DOES IT TAKE TO GENERATE NATURAL

TEXTURES?
Ivan Ustyuzhaninov*"??, Wieland Brendel*', Leon Gatys"*3, Matthias Bethge'?3*

“contributed equally

! Centre for Integrative Neuroscience, University of Tiibingen, Germany
?Bemnstein Center for Computational Neuroscience, Tiibingen, Germany
3Graduate School of Neural Information Processing, University of Tiibingen, Germany

*Max Planck Institute for Biological Cybemetics, Tiibingen, Germany
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Original single-scale multi-scale Gatys et al. [1]
0.195-107* 0.094-107° 0.128 - 10~°
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Bilinear (second-order) pooling

CNN activations pooled after outer-product encoding

oolin

Fal T~
FOD 15003 bt 1) <o
f. 1" l

T bilineax(l,7) d(7)

fa

Generalizes texture encoders
bea | tail | bell  legs | bell

» Fisher vectors, Bag of Visual Words, VLAD
» Gram-matrix (when fa=fg) f B

» Excellent transfer from ImageNet to fine-grained
domains (e.qg., birds, cars, airplanes)

“gray belly”

Lin et al., Bilinear CNNs for Fine-grained Visual Recognition, ICCV 15, PAMI 17



Bilinear (second-order) pooling

Fine-grained classification ( VGG-D + VGG-M networks )

CUB 200-2011 FGVC Aircraft Stanford cars
200 species, 11,788 images 100 variants, 10,000 images 196 models, 16,185 images
Method Birds Aircraft Cars Method NABirds
Fully CFS]nected 70.4 76.6 79.8 Inception-BN ~ 73.1 [4]
B-CNN [D+M 79.4

Fisher vector [D] 74.7 78.7 85.7 CNN [D+M]

Bilinear [D+D] 84.0 83.9 90.6 48,562 images of 555 categories

Bilinear [D+M] 84.1 84.5 91.3

Previous work 84.1 [1] 80.7 2] 92.6 [3]

[1] Spatial Transformer Networks, Jaderberg et al., NIPS 15

[2] Revisiting the Fisher vector for Fine-grained Classification, Gosselin et al., PR Letters 14
[3] Fine-Grained Rec. w/o Part Annotations, Krause et al., CVPR 15

[4] Batch-normalized Inception Architectures, Szegedy et al., CVPR 15



Visualizing deep networks

“inverse” images for bilinear CNNs

Maximal images:  arg max log P(c|Z, W) + logT'(Z)

o northern flicker |

vermilion flycatcher

Lin and Maji, Visualizing and Understanding Deep Texture Representations, CVPR 16



Visualizing deep networks

What texture are birds?

I ma—

American goldfinch Pied kingfisher Hooded oriole White eyed vireo

Lin and Maji, Visualizing and Understanding Deep Texture Representations, CVPR 16



Visualizing deep networks

What texture are bookstores?

Describable Texture Datatset

braided bubbly o ﬁbro. . honeycombed interlaced mhed
Flickr Material Dataset
g 2 Y Al

L 4 ; ::ﬁ 7 :

g \({/_4\

bam 7 bookstore bowling closet classroom . laundromat



Visualizing deep networks

Oxford flowers

Tiger Lily

..




Visualizing deep networks

FGVC butterflies and moths




Visualizing deep networks
FGVC fungi




Summary

Many methods for understanding CNN representations

Activations: Nearest neighbors, Dimensionality reduction,
maximal patches, occlusion

Gradients: Saliency maps, class visualization, feature
Inversion

Fun: DeepDream, Texture Synthesis, Style Transfer
Bonus: Works for fine-grained categorization too!

Subhransu Maji, Chuang Gan and TAs Lecture 15 - 66 Nov 7, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



