Lecture 16: Recurrent Neural Networks

Visual Question Answering

- Q: What endangered animal is featured on the truck?
- A: A bald eagle.
- A: A sparrow.
- A: A humming bird.
- A: A raven.

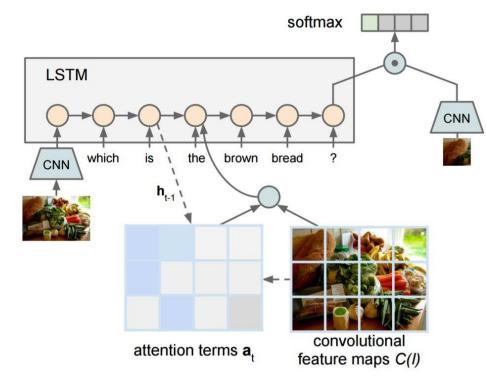
- Q: Where will the driver go if turning right?
- A: Onto 24 ¾ Rd.
- A: Onto 25 ¾ Rd.
- A: Onto 23 3/4 Rd.
- A: Onto Main Street.

- Q: When was the picture taken?
- A: During a wedding.
- A: During a bar mitzvah.
- A: During a funeral.
- A: During a Sunday church

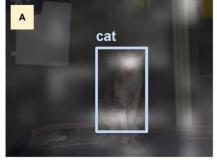
- Q: Who is under the umbrella?
- A: Two women.
- A: A child.
- A: An old man.
- A: A husband and a wife.

Agrawal et al, "VQA: Visual Question Answering", ICCV 2015 Zhu et al, "Visual 7W: Grounded Question Answering in Images", CVPR 2016 Figure from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.

Visual Question Answering: RNNs with Attention

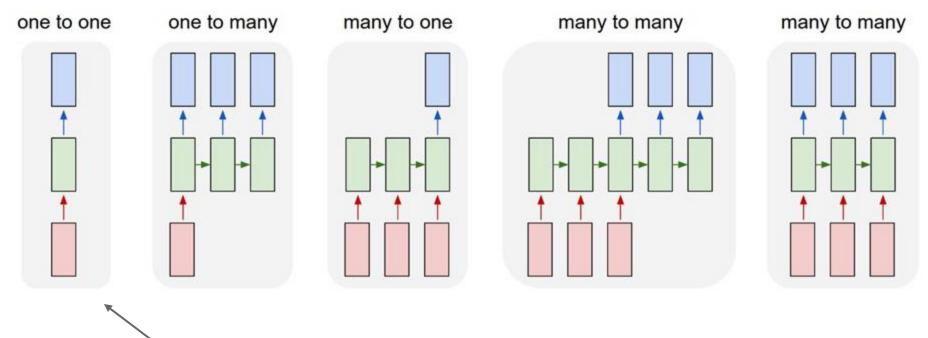


Zhu et al, "Visual 7W: Grounded Question Answering in Images", CVPR 2016 Figures from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.

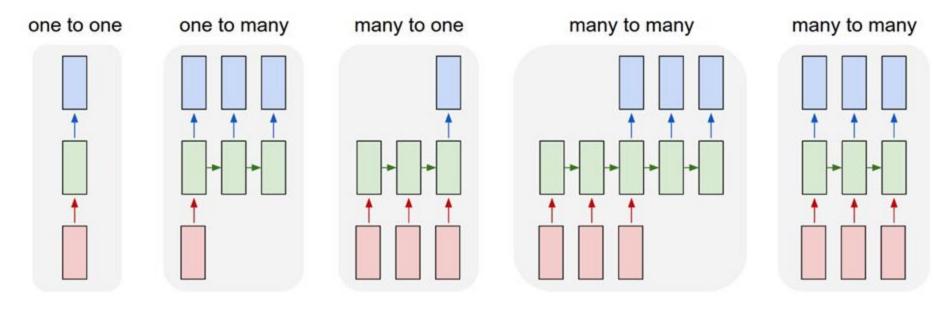


What kind of animal is in the photo? A cat.

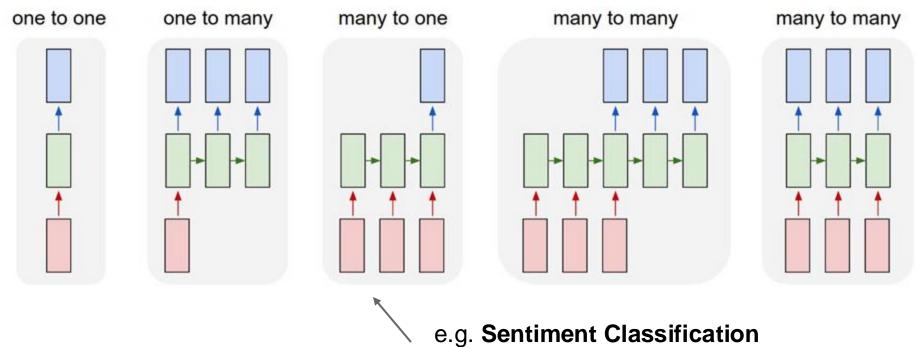
Why is the person holding a knife? To cut the **cake** with.



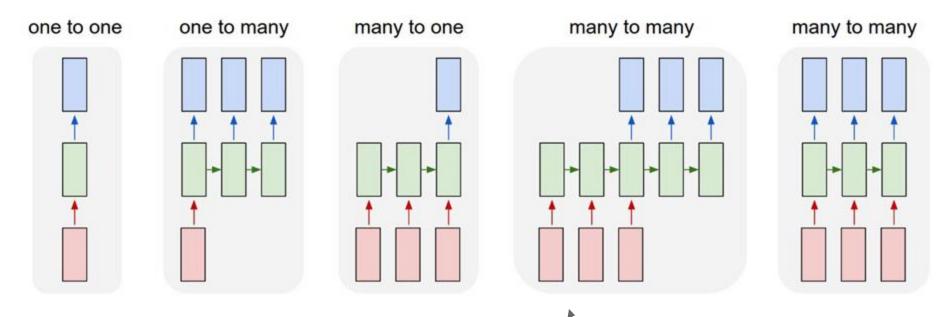
Vanilla Neural Networks



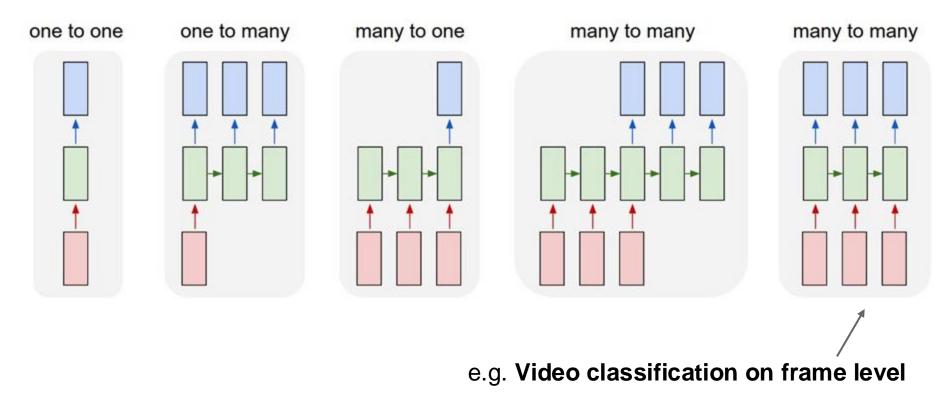
e.g. Image Captioning image -> sequence of words

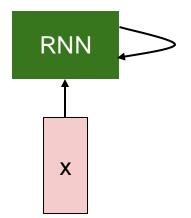


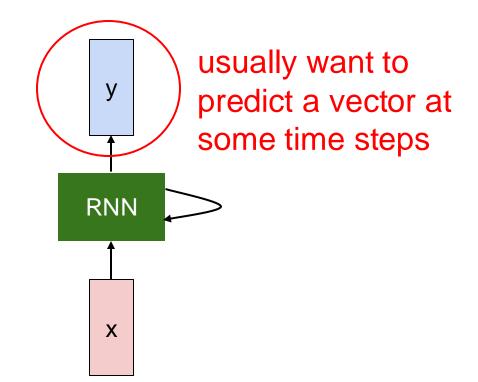
sequence of words -> sentiment



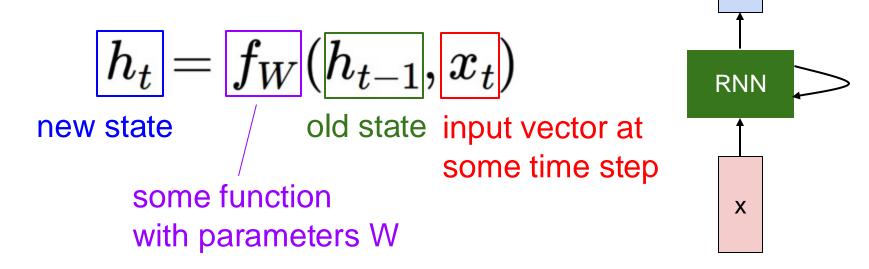
e.g. **Machine Translation** seq of words -> seq of words







We can process a sequence of vectors \mathbf{x} by applying a recurrence formula at every time step:

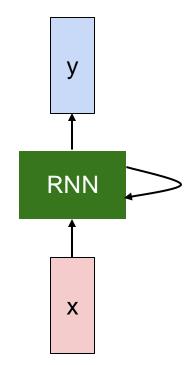


V

We can process a sequence of vectors **x** by applying a recurrence formula at every time step:

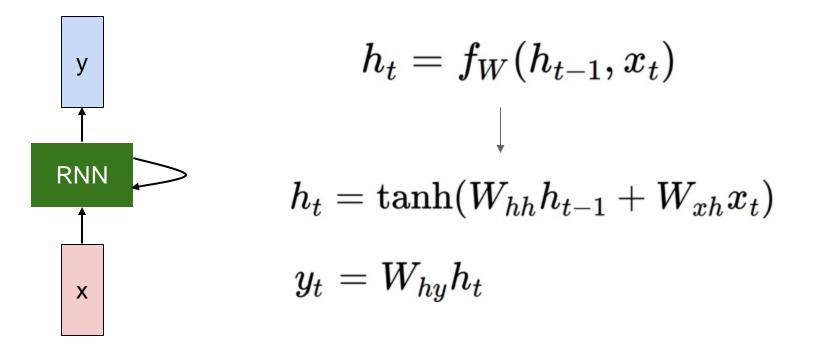
$$h_t = f_W(h_{t-1}, x_t)$$

Notice: the same function and the same set of parameters are used at every time step.



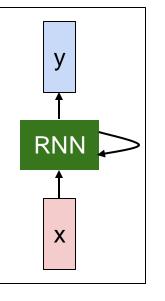
(Vanilla) Recurrent Neural Network

The state consists of a single "hidden" vector h:



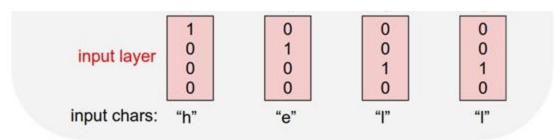
Vocabulary: [h,e,l,o]

Example training sequence: **"hello"**



Vocabulary: [h,e,l,o]

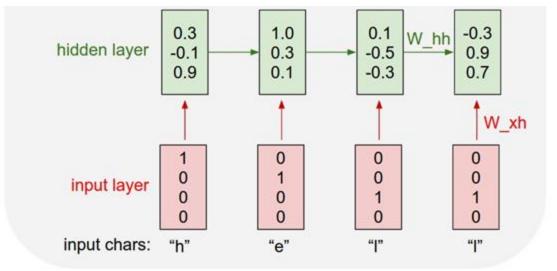
Example training sequence: "hello"



$$h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$$

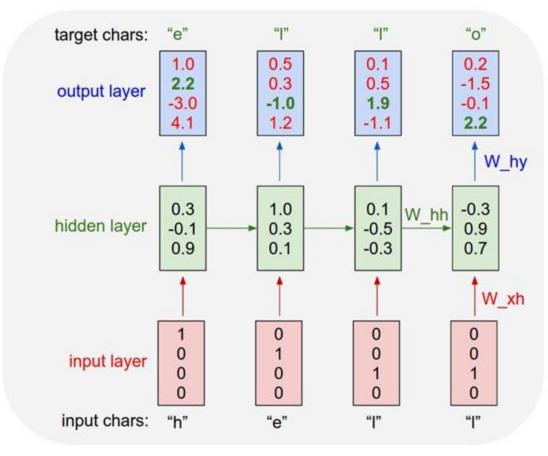
Vocabulary: [h,e,l,o]

Example training sequence: **"hello"**



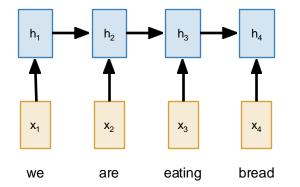
Vocabulary: [h,e,l,o]

Example training sequence: **"hello"**



Input: Sequence $x_1, ..., x_T$ **Output**: Sequence $y_1, ..., y_{T'}$

Encoder:
$$h_t = f_W(x_t, h_{t-1})$$

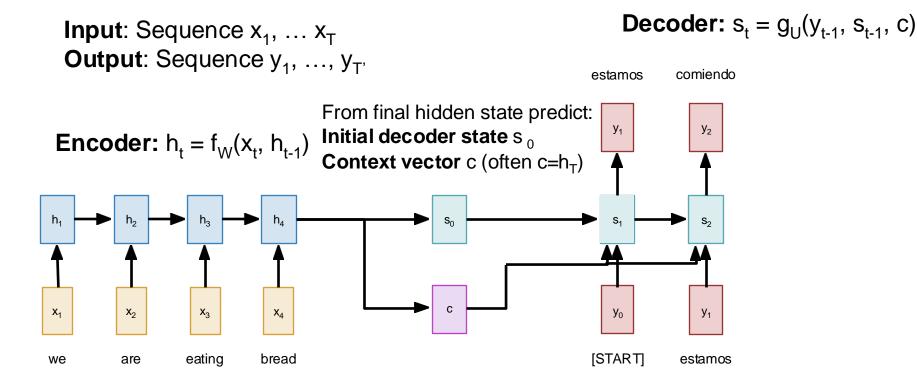


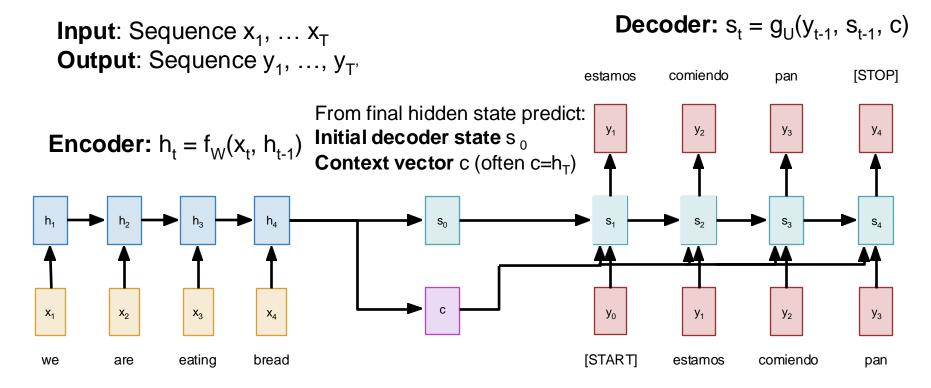
Input: Sequence $x_1, ..., x_T$ **Output**: Sequence $y_1, ..., y_{T'}$

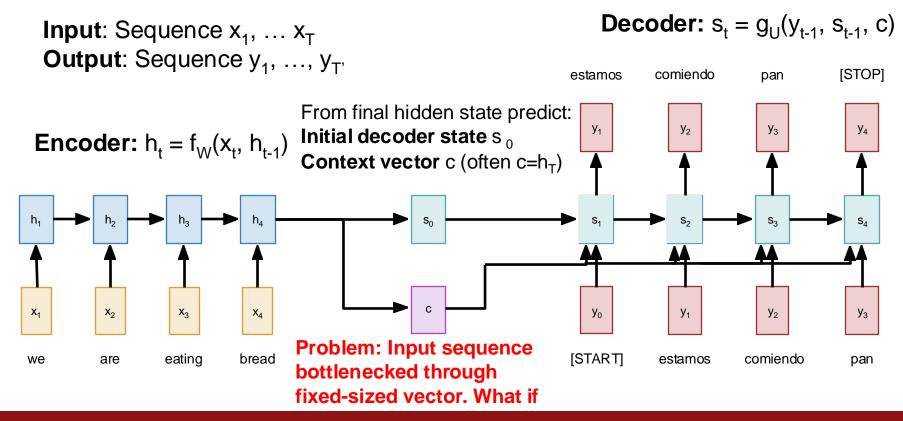
Encoder: $h_t = f_W(x_t, h_{t-1})$ From final hidden state predict: **Initial decoder state** s_0 **Context vector** c (often c=h_T)

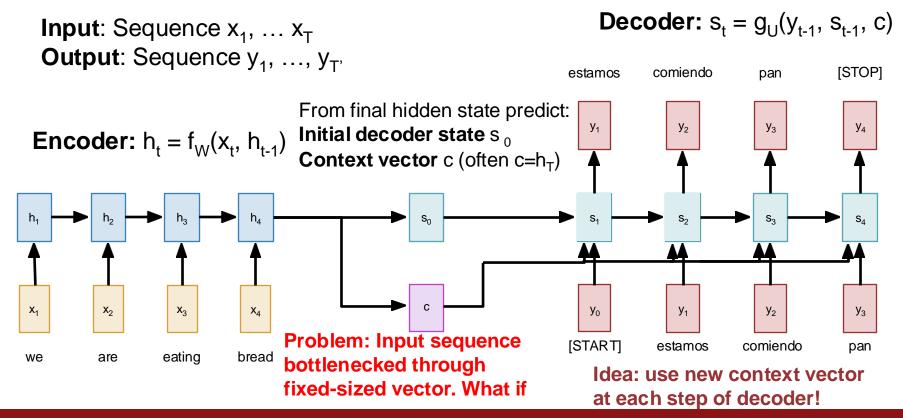
 $\begin{array}{c} h_1 \\ \hline h_2 \\ \hline h_3 \\ \hline h_4 \\$

Decoder: $s_t = g_{U}(y_{t-1}, s_{t-1}, c)$ **Input**: Sequence $x_1, \dots x_T$ **Output**: Sequence y_1, \ldots, y_{T} estamos From final hidden state predict: **У**1 **Initial decoder state** s₀ **Encoder:** $h_t = f_W(x_t, h_{t-1})$ **Context vector** c (often $c=h_{T}$) h_2 h_4 h₁ h₃ S_0 S₁ X₁ X_2 X₃ X_4 y₀ eating bread [START] we are



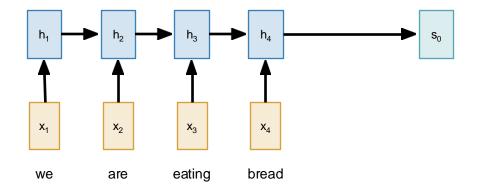




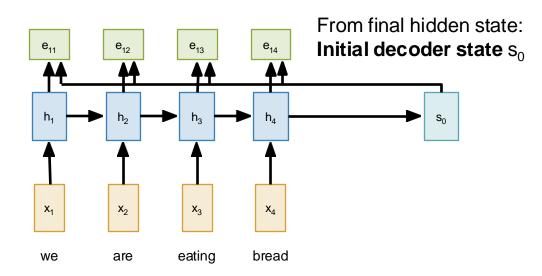


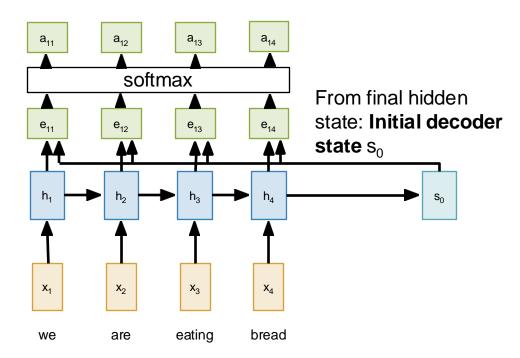
Input: Sequence $x_1, ..., x_T$ **Output**: Sequence $y_1, ..., y_{T'}$

Encoder: $h_t = f_W(x_t, h_{t-1})$ From final hidden state: Initial decoder state s_0



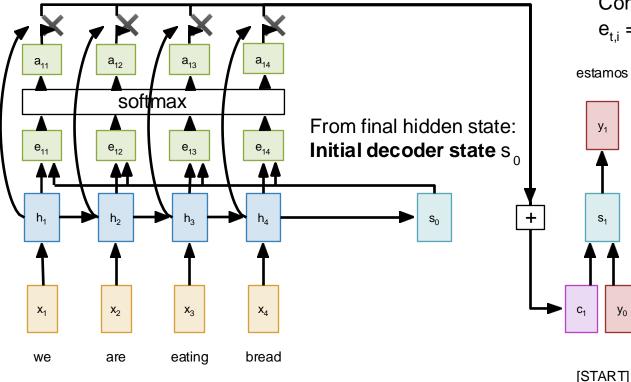
Compute (scalar) **alignment scores** $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is an MLP)



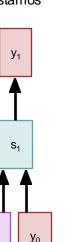


Compute (scalar) **alignment scores** $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is an MLP)

> Normalize alignment scores to get **attention weights** $0 < a_{ti} < 1$ $\sum_i a_{ti} = 1$



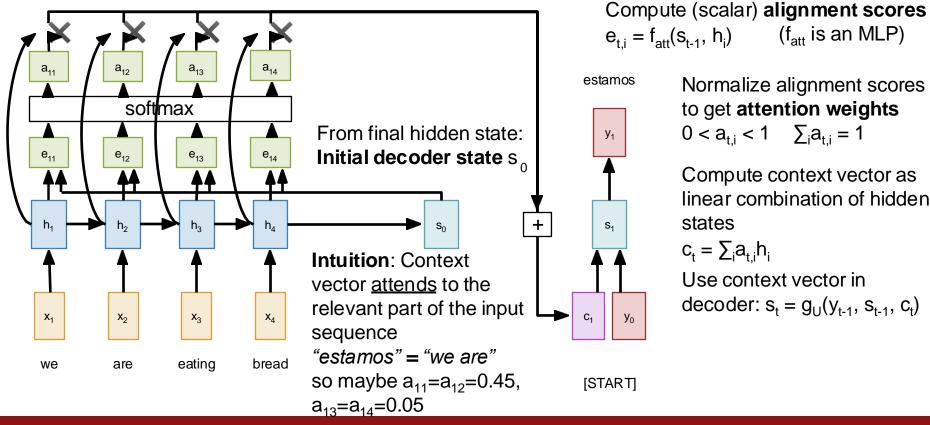
Compute (scalar) alignment scores $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is an MLP)



Normalize alignment scores to get attention weights $0 < a_{ti} < 1$ $\sum_{i} a_{ti} = 1$

Compute context vector as linear combination of hidden states

$$c_t = \sum_i a_{t,i} h_i$$

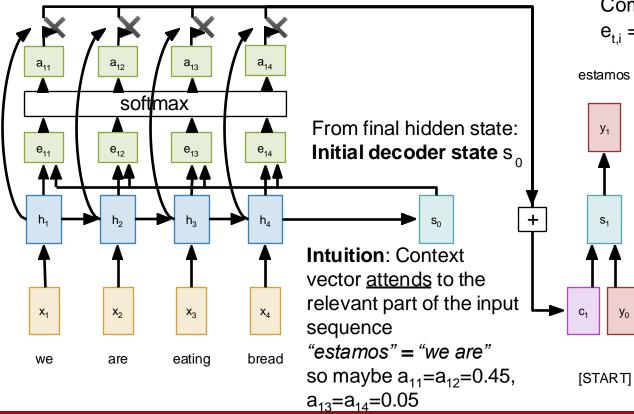


Normalize alignment scores to get attention weights $0 < a_{ti} < 1$ $\sum_{i} a_{ti} = 1$

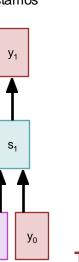
Compute context vector as linear combination of hidden states

 $c_t = \sum_i a_{t,i} h_i$

Use context vector in decoder: $s_t = g_{11}(y_{t-1}, s_{t-1}, c_t)$



Compute (scalar) **alignment scores** $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is an MLP)



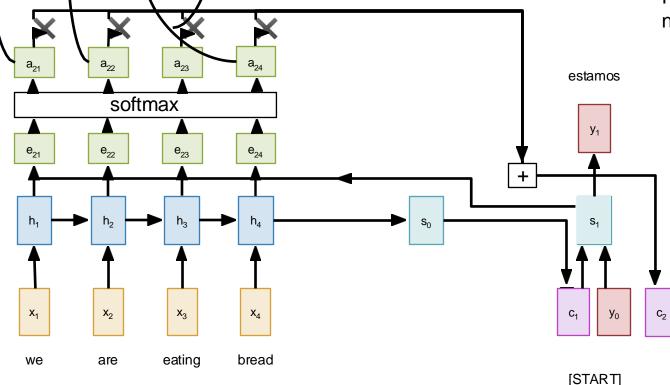
Normalize alignment scores to get attention weights $0 < a_{ti} < 1$ $\sum_{i} a_{ti} = 1$

Compute context vector as linear combination of hidden states

$$c_t = \sum_i a_{t,i} h_i$$

Use context vector in decoder: $s_t = g_{11}(y_{t-1}, s_{t-1}, c_t)$

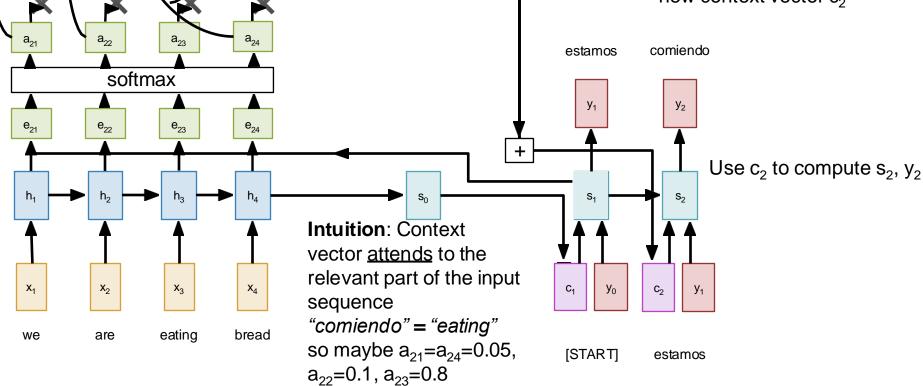
This is all differentiable! No supervision on attention weights – backprop through **everything**



Repeat: Use s_1 to compute new context vector c_2

Sequence to Sequence with RNNs and Attention Repeat: Use s₁ to compute new context vector c₂ a₂₂ a₂₃ a₂₄ a_{21} comiendo estamos softmax Y₁ y_2 e₂₁ e₂₂ e₂₃ e₂₄ + Use c_2 to compute s_2 , y_2 h₁ h_4 h₃ S_0 S_2 h_2 S₁ X_4 X_2 X₃ C_1 **C**₂ X₁ y₀ **У**1 eating bread we are [START] estamos

Sequence to Sequence with RNNs and Attention Repeat: Use s₁ to compute new context vector c₂



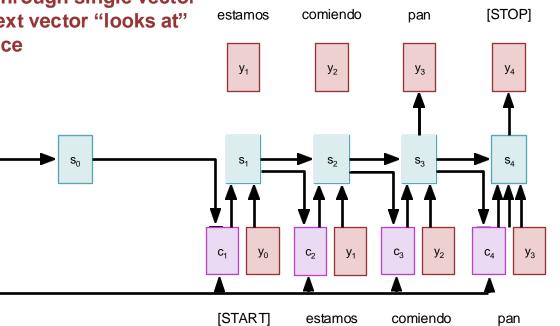
Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through single vector
- At each timestep of decoder, context vector "looks at" different parts of the input sequence

h₄

 X_4

bread



Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

h₂

 X_2

are

h₃

X₃

eating

h₁

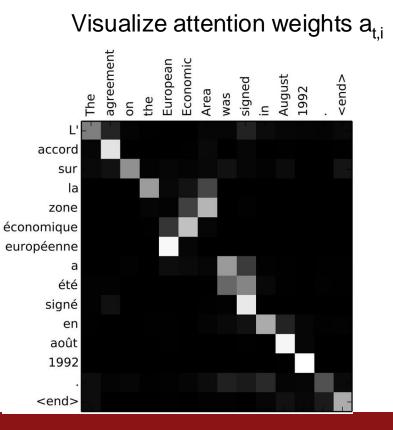
X₁

we

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."



Example: English to French translation

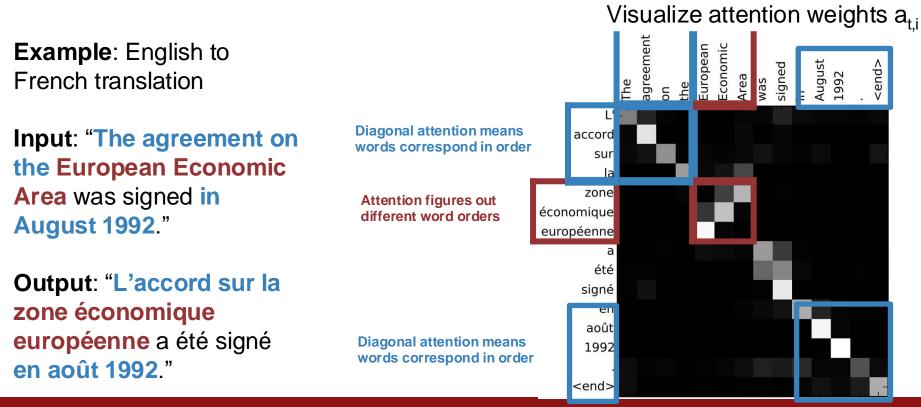
Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

> **Diagonal attention means** words correspond in order

Diagonal attention means





The decoder doesn't use the fact that h_i form an ordered sequence – it just treats them as an unordered set $\{h_i\}$

Can use similar architecture given any set of input hidden vectors $\{h_i\}!$

h₄

 X_4

bread

h₃

X₃

eating

 h_2

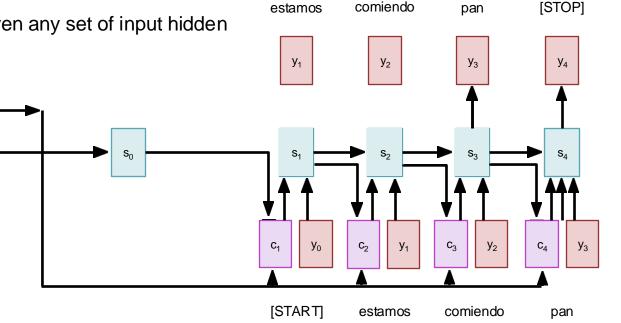
 X_2

are

h₁

X₁

we



Summary

- RNNs allow a lot of flexibility in architecture design
- Vanilla RNNs are simple but don't work very well
- Common to use LSTM or GRU: their additive interactions improve gradient flow
- Backward flow of gradients in RNN can explode or vanish.
 Exploding is controlled with gradient clipping. Vanishing is controlled with additive interactions (LSTM)
- Better/simpler architectures are a hot topic of current research
- Better understanding (both theoretical and empirical) is needed.