Lecture 17: Attention and Transformers

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 17-1 14 Nov 2024**

Project Presentation:

All teams are required to present in person; however, teams with online students have the option to present either in person or online. Presentations will take place over the last three days, with the presentation order determined randomly.

Last Time: Recurrent Neural Networks

Lecture 17 - 3 14 Nov 2024 Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 17 - 4 14 Nov 2024**

Input: Sequence x₁, ... x_T **Output:** Sequence y₁, ..., y_T

$$
Encoder: h_t = f_W(x_t, h_{t-1})
$$

Sutskever et al, "Sequence to sequence learning with neural networks", NeurIPS 2014

Subhransu Maji, Chuang Gan and TAs
 Lecture 17 - 5 14 Nov 2024 Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Input: Sequence x₁, ... x_T **Output:** Sequence y₁, ..., y_T

From final hidden state predict: **Encoder:** $h_t = f_W(x_t, h_{t-1})$ **Initial decoder state** s₀ **Context vector** c (often c=h_T)

 X_1 we are eating x_2 x_3 h_1 \longrightarrow h_2 \longrightarrow h_3 \longrightarrow h_4 \longrightarrow s_0 bread X_4 h_4 c

Sutskever et al, "Sequence to sequence learning with neural networks", NeurIPS 2014

Subhransu Maji, Chuang Gan and TAs

Lecture 17 - 6 14 Nov 2024 Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Input: Sequence $x_1, ... x_T$ Output: Sequence y₁, ..., y_T

Decoder:
$$
s_t = g_U(y_{t-1}, s_{t-1}, c)
$$

estamos

Sutskever et al, "Sequence to sequence learning with neural networks", NeurIPS 2014

Sutskever et al, "Sequence to sequence learning with neural networks", NeurIPS 2014

Subhransu Maji, Chuang Gan and TAs

Lecture 17 - 8 14 Nov 2024 Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Decoder: $s_t = g_U(y_{t-1}, s_{t-1}, c)$

Sutskever et al, "Sequence to sequence learning with neural networks", NeurIPS 2014

Sutskever et al, "Sequence to sequence learning with neural networks", NeurIPS 2014

Input: Sequence x₁, ... x_T Output: Sequence y₁, ..., y_T

Encoder: $h_t = f_w(x_t, h_{t-1})$ From final hidden state: **Initial decoder state** s_0

Sutskever et al, "Sequence to sequence learning with neural networks", NeurIPS 2014

Subhransu Maji, Chuang Gan and TAs

Lecture 17 - 12 14 Nov 2024 Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Compute (scalar) **alignment scores** $e_{t,i} = f_{att}(s_{t-1}, h_{i})$ (f_{att}) is an MLP)

Sutskever et al, "Sequence to sequence learning with neural networks", NeurIPS 2014

Compute (scalar) **alignment scores** $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is an MLP)

> Normalize alignment scores to get **attention weights** $0 < a_{1i} < 1$ $\sum_{i} a_{1i} = 1$

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Sequence to Sequence with RNNs and Attention

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Sequence to Sequence with RNNs and Attention Compute (scalar) **alignment scores**

estamos Normalize alignment scores to get **attention weights** (f_{att}) is an MLP)

 $0 < a_{\rm ti} < 1$ $\sum_i a_{\rm ti} = 1$

Compute context vector as linear combination of hidden states

$$
\mathbf{c}_t = \sum_i \mathbf{a}_{t,i} \mathbf{h}_i
$$

Use context vector in decoder: $s_t = g_U(y_{t-1}, s_{t-1}, c_t)$

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Sequence to Sequence with RNNs and Attention Compute (scalar) **alignment scores**

estamos Normalize alignment scores to get **attention weights** $0 < a_{\rm ti} < 1$ $\sum_i a_{\rm ti} = 1$

 (f_{att}) is an MLP)

Compute context vector as linear combination of hidden states

$$
\boldsymbol{c}_{t}=\sum_{i}\boldsymbol{a}_{t,i}\boldsymbol{h}_{i}
$$

Use context vector in decoder: $s_t = g_U(y_{t-1}, s_{t-1}, c_t)$

This is all differentiable! No supervision on attention weights – backprop through everything

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Lecture 17 - 18 14 Nov 2024 Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 17 - 19 14 Nov 2024 Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Use a different context vector in each timestep of decoder

- **Input sequence not bottlenecked through single vector**
- **At each timestep of decoder, context vector "looks at" different parts of the input sequence**

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

 X_1

we are eating

 x_2 x_3

Subhransu Maji, Chuang Gan and TAs

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

bread

 X_4

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Subhransu Maji, Chuang Gan and TAs

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Visualize attention weights a_{ij} agreement European Economic signed <end> kugust 992 Area Rew The \overline{a} accord sur la zone économique européenne a été signé en août

 $<$ end $>$

1992

Example: English to French translation

Input: "**The agreement on the** European Economic Area was signed **in August 1992**."

Output: "**L'accord sur la** zone économique européenne a été signé **en août 1992**."

> **Diagonal attention means words correspond in order**

Diagonal attention means

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Example: English to French translation

Input: "**The agreement on the European Economic Area** was signed **in August 1992**."

Output: "**L'accord sur la zone économique européenne** a été signé **en août 1992**."

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Visualize attention weights a_{ij} agreemen **Economic** :uropean signed August end: 992 Area Rew eqaccord **Diagonal attention means** sur **words correspond in order** zone **Attention figures out** économique **different word orders** européenne été signé août **Diagonal attention means** 1992 **words correspond in order** <end>

The decoder doesn't use the fact that h_{i} form an ordered sequence – it just treats them as an unordered set {h_i}

 X_1 we are eating x_2 x_3 h_1 \longrightarrow h_2 \longrightarrow h_3 \longrightarrow h_4 \longrightarrow s_0 bread X_4 h_4 s₂ s₂ s₂ [START] y_0 y_1 | y_2 estamos comiendo pan estamos comiendo pan $s_3 \rightarrow s_4$ y_3 y_4 [STOP] c_1 | y_0 | c_2 | y_1 c_3 y₂ c₄ y_3 Can use similar architecture given any set of input hidden vectors {h_i}!

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Input: Image **I Output:** Sequence $y = y_1, y_2,..., y_T$

Extract spatial features from a pretrained CNN

Features: H x W x D

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with VisualAttention", ICML 2015

Subhransu Maji, Chuang Gan and TAs
 Lecture 17 - 26 14 Nov 2024 Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Input: Image **I Output:** Sequence $y = y_1, y_2,..., y_T$

Encoder: $h_0 = f_w(z)$ where **z** is spatial CNN features f_w (.) is an MLP

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with VisualAttention", ICML 2015

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 17-27 14 Nov 2024**

Output: Sequence $\mathbf{y} = y_1, y_2, \ldots, y_T$ **Input**: Image **I**

Extract spatial **CNN** Features: h_0 $z_{0,0}$ $z_{0,1}$ $z_{0,2}$ $z_{1,0}$ $z_{1,1}$ $z_{1,2}$ MLP $z_{2,0}$ $z_{2,1}$ $z_{2,2}$ y_0 $h₁$ $y₁$ **Encoder**: $h_0 = f_w(z)$ person where **z** is spatial CNN features f_{w} $(.)$ is an MLP \mathbf{C} $H \times W \times D$ features from a pretrained CNN Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015 [START]

Subhransu Maji, Chuang Gan and TAs

Lecture 17 - 28 14 Nov 2024 Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Decoder: $y_t = g_v(y_{t-1}, h_{t-1}, c)$ where context vector c is often $c = h_0$

Output: Sequence $\mathbf{y} = y_1, y_2, \ldots, y_T$ **Input**: Image **I**

Decoder: $y_t = g_v(y_{t-1}, h_{t-1}, c)$ where context vector c is often $c = h_0$

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Output: Sequence $\mathbf{y} = y_1, y_2, \ldots, y_T$ **Input**: Image **I**

Decoder: $y_t = g_v(y_{t-1}, h_{t-1}, c)$ where context vector c is often $c = h_0$

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Output: Sequence $\mathbf{y} = y_1, y_2, \ldots, y_T$ **Input**: Image **I**

Decoder: $y_t = g_v(y_{t-1}, h_{t-1}, c)$ where context vector c is often $c = h_0$

Problem: Input is "bottlenecked" through c

- Model needs to encode everything it wants to say within c

gif [source](https://thumbs.gfycat.com/ThickTatteredFlea-max-1mb.gif)

Attention idea: New context vector at every time step.

Each context vector will attend to different image regions

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with VisualAttention", ICML 2015

Subhransu Maji, Chuang Gan and TAs
 Lecture 17 - 33 14 Nov 2024 Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Attention Saccades in humans

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with VisualAttention", ICML 2015

Subhransu Maji, Chuang Gan and TAs

Subhransu Maji, Chuang Gan and TAs

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Compute alignments scores (scalars):

 $e_{t,i,j} = f_{att} (h_{t-1}, z_{i,j})$

 $f_{\text{at}}(.)$ is an MLP

attention weights:

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with VisualAttention", ICML 2015

Each timestep of decoder uses a different context vector that looks at different parts of the input image

 $e_{t,i,j} = f_{att} (h_{t-1}, z_{i,j})$ person $a_{t, \ldots}$ = softmax ($e_{t, \ldots}$) $y₁$ $c_t = \sum_{i,j} a_{t,i,j} z_{t,i,j}$ $z_{0,0}$ $z_{0,1}$ $z_{0,2}$ h_0 $h₁$ **CNN** $Z_{1,0}$ $Z_{1,1}$ $Z_{1,2}$ $Z_{2,0}$ $Z_{2,1}$ $Z_{2,2}$ Features: Extract spatial $C₁$ y_0 H x W x D features from a pretrained CNN **[START]** Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with VisualAttention", ICML 2015

Subhransu Maji, Chuang Gan and TAs

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Decoder: $y_t = g_v(y_{t-1}, h_{t-1}, c_t)$ New context vector at every time step

Each timestep of decoder uses a different context vector that looks at different parts of the input image

Decoder: $y_t = g_v(y_{t-1}, h_{t-1}, c_t)$ New context vector at every time step

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Each timestep of decoder uses a different context vector that looks at different parts of the input image

Decoder: $y_t = g_v(y_{t-1}, h_{t-1}, c_t)$ New context vector at every time step

Each timestep of decoder uses a different context vector that looks at different parts of the input image

Decoder: $y_t = g_v(y_{t-1}, h_{t-1}, c_t)$ New context vector at every time step

Image Captioning withAttention

Xu et al, "Show, Attend, and Tell: Neural Image Caption Generation with VisualAttention", ICML 2015 Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Subhransu Maji, Chuang Gan and TAs
 Lecture 17 - 43 14 Nov 2024 Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Image Captioning withAttention

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Xu et al, "Show, Attend, and Tell: Neural Image Caption Generation with VisualAttention", ICML 2015 Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Subhransu Maji, Chuang Gan and TAs

Lecture 17 - 44 14 Nov 2024 Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Inputs:

Features: **z** (shape: H x W x D) Query: **h** (shape: D)

Lecture 17 - 46 14 Nov 2024 Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Operations: Alignment: $e_{i,j} = f_{att}(h, z_{i,j})$

Features: **z** (shape: H x W x D) Query: **h** (shape: D)

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 17 - 47** 14 Nov 2024

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 17 - 48** 14 Nov 2024

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 17 - 49** 14 Nov 2024

Attention operation is **permutation invariant.**

- Doesn't care about ordering of the features
- Stretch $H \times W = N$ into N vectors

Subhransu Maji, Chuang Gan and TAs

Subhransu Maji, Chuang Gan and TAs

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Change $f_{\text{att}}(.)$ to a simple dot product

only works well with key & value transformation trick (will mention in a few slides)

Subhransu Maji, Chuang Gan and TAs

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Change $f_{\text{att}}(.)$ to a scaled simple dot product

- Larger dimensions means more terms in the dot product sum.
- So, the variance of the logits is higher. Large magnitude vectors will produce much higher logits.
- So, the post-softmax distribution has lower-entropy, assuming logits are IID.
- Ultimately, these large magnitude vectors will cause softmax to peak and assign very little weight to all others
- Divide by \sqrt{D} to reduce effect of large magnitude vectors

Lecture 17 - 52 14 Nov 2024 Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 17-53 14 Nov 2024**

context vectors: **y** (shape: D)

Operations:

Alignment: $\mathbf{e}_{\mathsf{i},\mathsf{j}} = \mathsf{q}_{\mathsf{j}} \cdot \mathsf{x}_{\mathsf{i}} / \sqrt{\mathsf{D}}$ Attention: **a** = softmax(**e**) Output: $y_i = \sum_i a_{i,i} x_i$

Notice that the input vectors are used for both the alignment as well as the attention calculations.

We can add more expressivity to the layer by adding a different FC layer before each of the two steps.

Inputs:

Input vectors: **x** (shape: N x D) Queries: **q** (shape: M x D)

Subhransu Maji, Chuang Gan and TAs

Subhransu Maji, Chuang Gan and TAs

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Subhransu Maji, Chuang Gan and TAs

and the state of the Lecture 17 - 55 14 Nov 2024 Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Outputs:

context vectors: **y** (shape: <mark>D)</mark>

Operations: Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_k$ Value vectors: $v = x\hat{W}$ Alignment: $\mathbf{e}_{i,j} = \mathbf{q}_j \cdot \mathbf{k}_i / \sqrt{D}$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $y_i = \sum_i a_{i,i} v_i$

The input and output dimensions can now change depending on the key and value FC layers

> Notice that the input vectors are used for both the alignment as well as the attention calculations.

We can add more expressivity to the layer by adding a different FC layer before each of the two steps.

Inputs: Input vectors: **x** (shape: N x D) $\bm{\mathsf{Queries: q}}$ (shape: M x $\bm{\mathsf{D}}_{\mathsf{k}})$

Subhransu Maji, Chuang Gan and TAs

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

context vectors: **y** (shape: D_v)

Operations: Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $v = xW$ Alignment: e_{i,j} = q_j · k_i / √D Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $y_i = \sum_i a_{i,i} v_i$

Recall that the query vector was a function of the input vectors

Encoder: $h_0 = f_w(z)$ where **z** is spatial CNN features $\mathsf{f}_{\mathsf{W}}^{\mathsf{}}(\mathsf{.})$ is an MLP

Inputs: Input vectors: **x** (shape: N x D) $\bm{\mathsf{Queries: q}}$ (shape: M x $\bm{\mathsf{B}}_{\bm{\mathsf{k}}})$

Subhransu Maji, Chuang Gan and TAs

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Self attention layer

Operations: Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_k$ Value vectors: $v = xW$ Query vectors: $q = xW_q$ <u>Alignment: e_{i,j} = q_i ⋅ k_i / √D</u> Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $y_i = \sum_i a_{i,i} v_i$

Input vectors: **x** (shape: N x D) $\bm{\mathsf{Queries: q}}$ (shape: M x $\bm{\mathsf{B}}_{\mathsf{k}}$)

We can calculate the query vectors from the input vectors, therefore, defining a "self-attention" layer.

Instead, query vectors are calculated using a FC layer.

No input query vectors anymore

Subhransu Maji, Chuang Gan and TAs

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Inputs:

Self attention layer

context vectors: **y** (shape: D_v)

Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $v = xW$ Query vectors: $q = xW_q$ Alignment: $\mathbf{e}_{i,j} = \mathbf{q}_j \cdot \mathbf{k}_i / \sqrt[D]{\mathbf{D}}$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$

Input vectors: **x** (shape: N x D)

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 17-59 14 Nov 2024**

Self attention layer - attends over sets of inputs

Outputs:

context vectors: **y** (shape: D_v)

Operations: Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $v = xW$ _v Query vectors: $q = xW_q$ Alignment: $\mathbf{e}_{i,j} = \mathbf{q}_j \cdot \mathbf{k}_i / \sqrt[D]{\mathbf{D}}$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $y_i = \sum_i a_{i,i} v_i$

Inputs: Input vectors: **x** (shape: N x D) self-attention $x_0 \| x_1 \| x_2$ $y_0 \parallel y_1 \parallel y_2$

Subhransu Maji, Chuang Gan and TAs

Subhransu Maji, Chuang Gan and TAs

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

 e_{22}

 e_{12}

 $e_{0,2}$

 a_{22}

 a_{12}

 $a_{0,2}$

Alignment Attention

Alignment

Attention

softmax (↑)

 $e_{2,0}$ $e_{2,1}$

 q_0 || q_1 || q_2

 $e_{1,0}$ | $e_{1,1}$

 $e_{0,0}$ | $e_{0,1}$

 $\mathsf{a}_{\mathsf{2.0}}$ a $_{\mathsf{2.1}}$

 $\mathsf{a}_{\scriptscriptstyle 1,0}$ a_{1,1}

 $\mathsf{a}_{\scriptscriptstyle 0,0}$ a_{0,1}

 $y_0 \parallel y_1 \parallel y_2$

 $mul(\rightarrow) + add (\uparrow)$

 X_2

 k_2

 k_1

 K_0

 V_2

 $V₁$

 V_{0}

 X_1

Input vectors

 x_0

Self attention layer - attends over sets of inputs

Permutation equivariant

Self-attention layer doesn't care about the orders of the inputs!

Problem: How can we encode ordered sequences like language or spatially ordered image features?

Subhransu Maji, Chuang Gan and TAs
 Lecture 17 - 61 14 Nov 2024 Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Concatenate/add special positional encoding $\bm{{\mathsf{p}}}_\text{j}$ to each input vector $\bm{{\mathsf{x}}}_\text{j}$

We use a function *pos*: N →R^d to process the position j of the vector into a d-dimensional vector

So, $p_i = pos(j)$

Desiderata of *pos*(.) :

- 1. It should output a **unique** encoding for each time-step (word's position in a sentence)
- **2. Distance** between any two time-steps should be consistent across sentences with different lengths.
- 3. Our model should generalize to **longer** sentences without any efforts. Its values should be bounded.
- 4. It must be **deterministic**.

Subhransu Maji, Chuang Gan and TAs

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Concatenate special positional encoding $\bm{{\mathsf{p}}}_\text{j}$ to each input vector $\bm{{\mathsf{x}}}_\text{j}$

We use a function *pos*: N →R^d to process the position j of the vector into a d-dimensional vector

So, $p_i = pos(j)$

Options for *pos*(.)

- 1. Learn a lookup table:
	- Learn parameters to use for *pos*(t) for t ε [0, T)
	- Lookup table contains T x d parameters.

Desiderata of *pos*(.) :

- 1. It should output a **unique** encoding for each time-step (word's position in a sentence)
- **2. Distance** between any two time-steps should be consistent across sentences with different lengths.
- 3. Our model should generalize to **longer** sentences without any efforts. Its values should be bounded.
- 4. It must be **deterministic**.

Subhransu Maji, Chuang Gan and TAs

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Concatenate special positional encoding $\bm{{\mathsf{p}}}_\text{j}$ to each input vector $\bm{{\mathsf{x}}}_\text{j}$

We use a function *pos*: N →R^d to process the position j of the vector into a d-dimensional vector

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 17 - 64 14 Nov 2024**

Options for *pos*(.)

- 1. Learn a lookup table:
	- Learn parameters to use for *pos*(t) for t ε [0, T)
	- \circ Lookup table contains T x d parameters.
- 2. Design a fixed function with the desiderata

So, p^j = *pos*(j) Vaswani et al, "Attention is all you need", NeurIPS ²⁰¹⁷

Concatenate special positional encoding $\bm{{\mathsf{p}}}_\text{j}$ to each input vector $\bm{{\mathsf{x}}}_\text{j}$

We use a function *pos*: N →R^d to process the position j of the vector into a d-dimensional vector

Lecture 17 - 65 14 Nov 2024 Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Options for *pos*(.)

- 1. Learn a lookup table:
	- Learn parameters to use for *pos*(t) for t ε [0, T)
	- \circ Lookup table contains T x d parameters.
- 2. Design a fixed function with the desiderata

So, $p_i = pos(j)$ Vaswani et al, "Attention is all you need", NeurIPS 2017

Masked self-attention layer

context vectors: **y** (shape: D_v)

Operations: Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $v = xW$ Query vectors: $q = xW_q$ Alignment: $\mathbf{e}_{i,j} = \mathbf{q}_j \cdot \mathbf{k}_i / \sqrt[D]{\mathbf{D}}$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $y_i = \sum_i a_{i,i} v_i$

Inputs: Input vectors: **x** (shape: N x D)

- Prevent vectors from looking at future vectors.
- Manually set alignment scores to -infinity

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 17 - 66 14 Nov 2024**

Multi-head self-attention layer

- Multiple self-attention heads in parallel

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 17 - 67 14 Nov 2024**

General attention versus self-attention

Lecture 17 - 68 14 Nov 2024 Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Input Image

age is free to use under the [Pixabay](https://pixabay.com/service/license/) License

Zhang et al, "Self-Attention Generative Adversarial Networks", ICML 2018

Lecture 17 - 69 14 Nov 2024 Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Zhang et al, "Self-Attention Generative Adversarial Networks", ICML 2018

Lecture 17 - 70 14 Nov 2024 Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Zhang et al, "Self-Attention Generative Adversarial Networks", ICML 2018

Subhransu Maji, Chuang Gan and TAs

and the state of t Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Zhang et al, "Self-Attention Generative Adversarial Networks", ICML 2018

Lecture 17 - 72 14 Nov 2024 Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller
Example: CNN with Self-Attention

Zhang et al, "Self-Attention Generative Adversarial Networks", ICML 2018

Slide credit: Justin Johnson

Subhransu Maji, Chuang Gan and TAs

and the state of the Lecture 17 - 73 14 Nov 2024 Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Example: CNN with Self-Attention

Self-Attention Module

Zhang et al, "Self-Attention Generative Adversarial Networks", ICML 2018

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 17-74 14 Nov 2024**

Comparing RNNs to Transformer

RNNs

(+) LSTMs work reasonably well for long sequences.

(-) Expects an ordered sequences of inputs

(-) Sequential computation: subsequent hidden states can only be computed after the previous ones are done.

Transformer:

(+) Good at long sequences. Each attention calculation looks at all inputs. (+) Can operate over unordered sets or ordered sequences with positional encodings. (+) Parallel computation: All alignment and attention scores for all inputs can be done in parallel. (-) Requires a lot of memory: N x M alignment and attention scalers need to be calculated and stored for a single self-attention head. (but GPUs are getting bigger and better)

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 17-75 14 Nov 2024**

Attention Is All You Need

"ImageNet Moment for Natural Language Processing"

Ashish Vaswani* Google Brain avaswani@google.com

Noam Shazeer* Google Brain noam@google.com

Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Łukasz Kaiser*

Google Brain lukaszkaiser@google.com

Pretraining:

Download a lot of text from the internet

Train a giant Transformer model for language modeling

Llion Jones* Google Research llion@google.com

Aidan N. Gomez^{*} University of Toronto aidan@cs.toronto.edu

Illia Polosukhin* ‡ illia.polosukhin@gmail.com **Finetuning:**

Fine-tune the Transformer on your own NLP task

On the Opportunities and Risks of **Foundation Models**

Rishi Bommasani* Drew A. Hudson Ehsan Adeli Russ Altman Simran Arora Sydney von Arx Michael S. Bernstein Jeannette Bohg Antoine Bosselut Emma Brunskill Erik Brynjolfsson Shyamal Buch Dallas Card Rodrigo Castellon Niladri Chatterji Annie Chen Kathleen Creel Jared Quincy Davis Dorottya Demszky Chris Donahue Moussa Doumbouya Esin Durmus Stefano Ermon John Etchemendy Kawin Ethayarajh Li Fei-Fei Chelsea Finn Trevor Gale Lauren Gillespie Karan Goel Noah Goodman Shelby Grossman Neel Guha Tatsunori Hashimoto Peter Henderson John Hewitt Daniel E. Ho Jenny Hong Kyle Hsu Jing Huang Thomas Icard Saahil Jain Dan Jurafsky Pratyusha Kalluri Siddharth Karamcheti Geoff Keeling Fereshte Khani Omar Khattab Pang Wei Koh Mark Krass Ranjay Krishna Rohith Kuditipudi Ananya Kumar Faisal Ladhak Mina Lee Tony Lee Jure Leskovec Isabelle Levent Xiang Lisa Li Xuechen Li Tengyu Ma Ali Malik Christopher D. Manning Suvir Mirchandani Eric Mitchell Zanele Munyikwa Suraj Nair Avanika Narayan Deepak Narayanan Ben Newman Allen Nie Juan Carlos Niebles Hamed Nilforoshan Julian Nyarko Giray Ogut Laurel Orr Isabel Papadimitriou Joon Sung Park Chris Piech Eva Portelance Christopher Potts Aditi Raghunathan Rob Reich Hongyu Ren Frieda Rong Yusuf Roohani Camilo Ruiz Jack Ryan Christopher Ré Dorsa Sadigh Shiori Sagawa Keshav Santhanam Andy Shih Krishnan Srinivasan Alex Tamkin Rohan Taori Armin W. Thomas Florian Tramèr Rose E. Wang William Wang Bohan Wu Jiajun Wu Yuhuai Wu Sang Michael Xie Michihiro Yasunaga Jiaxuan You Matei Zaharia Michael Zhang Tianyi Zhang Xikun Zhang Yuhui Zhang Lucia Zheng Kaitlyn Zhou Percy Liang^{*1}

> Center for Research on Foundation Models (CRFM) Stanford Institute for Human-Centered Artificial Intelligence (HAI) **Stanford University**

Image Captioning using Transformers

Input: Image **I Output:** Sequence $y = y_1, y_2,..., y_T$

Extract spatial features from a pretrained CNN

Features: H x W x D

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 17-78 14 Nov 2024**

Image Captioning using Transformers

Input: Image **I Output:** Sequence $y = y_1, y_2,..., y_T$

Encoder: $c = T_w(z)$ where **z** is spatial CNN features T_w(.) is the transformer encoder

Subhransu Maji, Chuang Gan and TAs

2024 Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Image Captioning using Transformers

Output: Sequence $\mathbf{y} = y_1, y_2, \ldots, y_T$ **Input**: Image **I**

Encoder: $c = T_w(z)$

Decoder: $y_t = T_D(y_{0:t-1}, c)$ where T_D(.) is the transformer decoder

Made up of N encoder blocks.

In vaswani et al. $N = 6$, $D_q = 512$

Vaswani et al, "Attention is all you need", NeurIPS 2017

Lecture 17 - 81 14 Nov 2024 Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Let's dive into one encoder block

Vaswani et al, "Attention is all you need", NeurIPS 2017

Lecture 17 - 82 14 Nov 2024 Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

...

Lecture 17 - 83 14 Nov 2024 Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 17 - 84 14 Nov 2024**

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 17-85 14 Nov 2024**

LayerNorm over each vector individually

Residual connection

Attention attends over all the vectors

Vaswani et al, "Attention is all you need", NeurIPS 2017

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 17 - 86 14 Nov 2024**

MLP over each vector individually

LayerNorm over each vector individually

Residual connection

Attention attends over all the vectors

Vaswani et al, "Attention is all you need", NeurIPS 2017

Residual connection

MLP over each vector individually

LayerNorm over each vector individually

Residual connection

Attention attends over all the vectors

Vaswani et al, "Attention is all you need", NeurIPS 2017

Lecture 17 - 88 14 Nov 2024 Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Transformer Encoder Block:

Inputs: Set of vectors **x Outputs**: Set of vectors **y**

Self-attention is the only interaction between vectors.

Layer norm and MLP operate independently per vector.

Positional encoding **parallelizable, but high memory usage.** Highly scalable, highly

Vaswani et al, "Attention is all you need", NeurIPS 2017

Subhransu Maji, Chuang Gan and TAs

2024 Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

person wearing hat [END]

Made up of N decoder blocks.

In vaswani et al. $N = 6$, $D_q = 512$

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 17 - 90 14 Nov 2024**

Lecture 17 - 91 14 Nov 2024 Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Most of the network is the same the transformer encoder.

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 17-92 14 Nov 2024**

Vaswani et al, "Attention is all you need", NeurIPS 2017

Multi-head attention block attends over the transformer encoder outputs.

For image captioning, this is how we inject image features into the decoder.

Subhransu Maji, Chuang Gan and TAs

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Vaswani et al, "Attention is all you need", NeurIPS 2017

Transformer Decoder Block:

Inputs: Set of vectors **x** and Set of context vectors **c. Outputs**: Set of vectors **y.**

Masked Self-attention only interacts with past inputs.

Multi-head attention block is NOT self-attention. It attends over encoder outputs.

Highly scalable, highly parallelizable, but high memory usage.

Vaswani et al, "Attention is all you need", NeurIPS 2017

Image Captioning using transformers

- No recurrence at all

Subhransu Maji, Chuang Gan and TAs

and the state of t Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Image Captioning using transformers

- Perhaps we don't need convolutions at all?

Lecture 17 - 96 14 Nov 2024 Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Image Captioning using transformers

- Transformers from pixels to language

Subhransu Maji, Chuang Gan and TAs

2024 Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Vision Transformers vs. ResNets

Figure 5: Performance versus cost for different architectures: Vision Transformers, ResNets, and hybrids. Vision Transformers generally outperform ResNets with the same computational budget. Hybrids improve upon pure Transformers for smaller model sizes, but the gap vanishes for larger models.

Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ArXiv 2020 [Colab](https://colab.research.google.com/github/google-research/vision_transformer/blob/master/vit_jax.ipynb) link to an implementation of vision transformers

Vision Transformers

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 17-99 14 Nov 2024**

ConvNets strike back!

ImageNet-1K Acc.

Lecture 17 - 100 14 Nov 2024 Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

DeiT III: Revenge of the ViT

Lecture 17 - 101 14 Nov 2024 Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Summary

- Adding **attention** to RNNs allows them to "attend" to different parts of the input at every time step
- The **general attention layer** is a new type of layer that can be used to design new neural network architectures
- **Transformers** are a type of layer that uses **self-attention** and layer norm.
	- It is highly **scalable** and highly **parallelizable**
	- **Faster** training, **larger** models, **better** performance across vision and language tasks
	- They are quickly replacing RNNs, LSTMs, and may(?) even replace convolutions.

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 17-102 14 Nov 2024**