Lecture 2: Image Classification, Nearest Neighbor and Linear Classifiers

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 1

Image classification

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

cat

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 2

Challenges: Semantic gap

Images are represented as 3D arrays of numbers, with integers between [0, 255].

E.g. 300 x 100 x 3

(3 for 3 color channels RGB)

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 3

Challenges: Viewpoint Variation

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 4

Challenges: Illumination

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 5 Sep 5, 2024

Challenges: Deformation

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 6

Challenges: Occlusion

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 7 Sep 5, 2024

Challenges: Background clutter

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 8

Challenges: Intraclass variation

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 9

Writing an image classifier

def predict(image):
 # ????
 return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hand-code the algorithm for recognizing a cat, or other classes.

Lecture 2 - 10

Sep 5. 2024

Attempts have been made

Lecture 2 - 11

Sep 5, 2024

John Canny, "A Computational Approach to Edge Detection", IEEE TPAMI 1986

Machine Learning: Data Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning algorithms to train a classifier
- 3. Evaluate the classifier on new images

```
def train(train_images, train_labels):
    # build a model for images -> labels...
    return model
```

```
def predict(model, test_images):
    # predict test_labels using the model...
    return test_labels
```

Example training set

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 12 Sep 5, 2024

Nearest Neighbor Classifier

k-Nearest Neighbor find the k nearest images, have them vote on the label

http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 14 Sep 5, 2024

Example dataset: **CIFAR-10 10** labels **50,000** training images **10,000** test images

airplane	🚧 🐹 🖊 📈 🏏 🐂 🛃 🔐 🛶 💒
automobile	an a
bird	R 🗾 💋 🕺 🎥 🔍 🦻 😒 💓
cat	in i
deer	M 🐨 🖌 🥽 🎬 🧐 🕅 🗱 🌌
dog	🕅 🔬 臧 💥 🎘 🎑 🧑 🕥 🎎
frog	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
horse	🕌 🙈 🏠 👘 📷 🕋 🎉 🕷
ship	😂 🌌 📥 🚢 🚘 🌽 🖉 🜌 🚈
truck	🥥 🌆 🚛 🕵 👹 💳 🐋 🛵 🔤 🚮

For every test image (first column), examples of nearest neighbors in rows

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 15 Sep 5, 2024

NN classifier

5-NN classifier

Sep 5. 2024

Lecture 2 - 16

Q: what is the accuracy of the nearest neighbor classifier on the training data, when using the Euclidean distance?

NN classifier

5-NN classifier

Sep 5, 2024

Lecture 2 - 17

Q: what is the accuracy of the **k**-nearest neighbor classifier on the training data?

What is the best **distance** to use? What is the best value of **k** to use?

i.e. how do we set the hyperparameters?

Lecture 2 - 18

Sep 5, 2024

What is the best **distance** to use? What is the best value of **k** to use?

i.e. how do we set the hyperparameters?

Lecture 2 - 19

<u>Sep 5, 2024</u>

Very problem-dependent. Must try them all out and see what works best.

Trying out what hyperparameters work best on test set.

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 20 Sep 5, 2024

Trying out what hyperparameters work best on test set: Very bad idea. The test set is a proxy for the generalization performance! Use only **VERY SPARINGLY**, at the end.

Lecture 2 - 21

train data

test data

Sep 5, 2024

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 22

is the validation fold, average results.

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 23

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

<u>Lecture 2 - 24</u> Sep 5, 2024

k-Nearest Neighbor on *raw* images is **never used**.

- terrible performance at test time
- distance metrics on level of whole images can be very unintuitive

(all 3 images have same L2 distance to the one on the left)

Lecture 2 - 25

Sep 5, 2024

Linear Classification

airplane	🛁 🔊 😹 📈 🍬 🐂 🛃 🔐 🛶 🍛
automobile	an a
bird	in the second
cat	💱 😻 💱 🔊 🎇 🗶 🜌 🥪 蒙
deer	
dog	1976 🔬 👟 💽 🎑 🥘 💽 🔊 🎉
frog	N N N N N N N N N N N N N N N N N N N
horse	🐳 🐟 淤 🚵 👘 📷 🕋 🐝 🕷
ship	😂 🍻 🔤 🚢 🖕 💋 🖉 👛
truck	🚄 🎑 💒 🎆 🚝 🥁 🚵 🕌

Example dataset: CIFAR-10 10 labels 50,000 training images each image is 32x32x3 10,000 test images.

Sep 5, 2024

Lecture 2 - 27

Parametric approach

image parameters f(x,W)

10 numbers, indicating class scores

Sep 5, 2024

Lecture 2 - 28

[32x32x3] array of numbers 0...1 (3072 numbers total)

Parametric approach: Linear classifier

f(x,W) = Wx

10 numbers, indicating class scores

Sep 5, 2024

Lecture 2 - 29

[32x32x3] array of numbers 0...1

Parametric approach: Linear classifier

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 30 Sep 5, 2024

Parametric approach: Linear classifier

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 31 Sep 5

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

Lecture 2 - 32

Sep 5, 2024

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 33 Sep 5, 2024

$$f(x_i, W, b) = W x_i + b$$

Q: what does the linear classifier do, in English?

Sep 5, 2024

Lecture 2 - 34

$$f(x_i, W, b) = W x_i + b$$

Lecture 2 - 35

[32x32x3] array of numbers 0...1 (3072 numbers total)

Sep 5, 2024

 $f(x_i, W, b) = Wx_i + b$

Sep 5. 2024

Example trained weights of a linear classifier trained on CIFAR-10:

Lecture 2 - 36

$$f(x_i, W, b) = W x_i + b$$

Q2: what would be a very hard set of classes for a linear classifier to distinguish?

Lecture 2 - 37

Sep 5, 2024

Hard cases for a linear classifier

Class 1: First and third quadrants

Class 2: Second and fourth quadrants Class 1: 1 <= L2 norm <= 2

Class 2: Everything else Class 1: Three modes

Class 2: Everything else

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 38 Sep 5, 2024

So far: We defined a (linear) <u>score function</u>: $f(x_i, W, b) = Wx_i + b$

really affine

Example class scores for 3 images, with a random W:

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
nog	1.06	-4.37	-1.5
norse	-0.36	-2.09	-4.79
ship	-0.72	-2.93	6.14
truck			

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 39

Coming up: - Loss function - Optimization - Neural nets!

f(x,W) = Wx

(quantifying what it means to have a "good" W)

(start with random W and find a W that minimizes the loss)

(tweak the functional form of f)

Sep 5, 2024

Lecture 2 - 40

Summary so far ... Linear classifier

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 41 Sep 5, 2024

Loss function/Optimization

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
nog	1.06	-4.37	-1.5
norse	-0.36	-2.09	-4.79
ship	-0.72	-2.93	6.14
truck			

TODO:

- 1. Define a **loss function** that quantifies our unhappiness with the scores across the training data.
- Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 42 Sep 5, 2024

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 43 Sep 5, 2024

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Sep 5, 2024

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - <u>44</u>

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

$$\begin{aligned} L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\ &= \max(0, 5.1 - 3.2 + 1) \\ &+ \max(0, -1.7 - 3.2 + 1) \\ &= \max(0, 2.9) + \max(0, -3.9) \\ &= 2.9 + 0 \\ &= 2.9 \end{aligned}$$

Sep 5, 2024

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 45 _____

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

$$\begin{split} L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\ &= \max(0, 1.3 - 4.9 + 1) \\ &+ \max(0, 2.0 - 4.9 + 1) \\ &= \max(0, -2.6) + \max(0, -1.9) \\ &= 0 + 0 \\ &= 0 \end{split}$$

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 46 Sep 5, 2024

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

$$\begin{split} L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\ &= \max(0, 2.2 - (-3.1) + 1) \\ &+ \max(0, 2.5 - (-3.1) + 1) \\ &= \max(0, 6.3) + \max(0, 6.6) \\ &= 6.3 + 6.6 \\ &= 12.9 \end{split}$$

Sep 5, 2024

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 47

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

and the full training loss is the mean over all examples in the training data:

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 48 Sep 5, 2024

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

 $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$ Q: what if the sum was instead over all classes? (including j = y_i)

Sep 5, 2024

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 49

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

Lecture 2 - 50

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q2: what if we used a mean instead of a sum here?

Sep 5, 2024

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q3: what if we used

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 51 Sep 5, 2024

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q4: what is the min/ max possible loss?

Sep 5, 2024

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 2 - 52

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

Lecture 2 - 53

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q5: usually at initialization W are small numbers, so all s ~= 0. What is the loss?

Sep 5, 2024

Example numpy code:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

```
def L_i_vectorized(x, y, W):
    scores = W.dot(x)
    margins = np.maximum(0, scores - scores[y] + 1)
    margins[y] = 0
    loss_i = np.sum(margins)
    return loss_i
```

Lecture 2 - 54

<u>Sep 5, 2024</u>

Coding tip: Keep track of dimensions:

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller