Lecture 2;
Image Classification,
Nearest Neighbor and Linear
Classifiers
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Image classification

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}
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What the computer sees

E.g.
300 x100x 3

(3 for 3 color channels RGB)
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Challenges: Viewpoint Variation
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Challenges: lllumination
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Challenges: Deformation
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Challenges: Occlusion
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Challenges: Background clutter

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller LeCture 2 - 8 Sep 5’ 2024



Challenges: Intraclass variation
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Writing an image classifier

def predict(image):
return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hand-code the algorithm for
recognizing a cat, or other classes.
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Attempts have been made

Find edges Find corners

VA D
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Machine Learning: Data Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning algorithms to train a classifier
3. Evaluate the classifier on new images

Example training set

def train(train_images, train_labels): dog mug hat

# build a model for images -> labels... ﬂmg .’«g _‘,é é_!. m.
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return model

def predict(model, test_images):
# predict test_labels using the model...

return test_labels
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Nearest Neighbor Classifier
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k-Nearest Neighbor

find the k nearest images, have them vote on the label

the data NN classifier 5-NN classifier
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http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
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Example dataset: CIFAR-10

10 labels : ,
50,000 training images For ev?ry tefst image (flrlsth(;olumn),
10,000 test images examples of nearest neighbors in rows
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the data NN classifier 5-NN classifier
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Q: what is the accuracy of the nearest
neighbor classifier on the training data,
when using the Euclidean distance?
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the data NN classifier 5-NN classifier
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Q: what is the accuracy of the k-nearest
neighbor classifier on the training data?
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What is the best distance to use?
What is the best value of k to use?

l.e. how do we set the hyperparameters?
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What is the best distance to use?
What is the best value of k to use?

l.e. how do we set the hyperparameters?

Very problem-dependent.
Must try them all out and see what works best.

Subhransu Maji, Chuang Gan and TAs

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller LeCtU re 2 . 1 9 Sep 5’ 2024



Trying out what hyperparameters work best on test set.

v

train data test data
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Trying out what hyperparameters work best on test set:
Very bad idea. The test set is a proxy for the generalization performance!
Use only VERY SPARINGLY, at the end.

v

train data test data
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train data test data

v
fold 1 fold 2 fold 3 fold 4 fold 5 test data

use to tune hyperparameters
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train data test data

v
fold 1 fold 2 fold 3 fold 4 fold 5 test data

\ \ ‘
Cross-validation

cycle through the choice of which fold
is the validation fold, average results.
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120

Example of
5-fold cross-validation
for the value of k.

Each point: single
outcome.

The line goes

through the mean, bars
indicated standard
deviation

(Seems that k ~= 7 works best
for this data)
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k-Nearest Neighbor on raw images is never used.

- terrible performance at test time
- distance metrics on level of whole images can be
very unintuitive

original shifted messed up darkened

) (aIIA3 images have same L2 dlstance to the one on the Ieft)
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Linear Classification
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Example dataset: CIFAR-10

10 labels

50,000 training images
each image is 32x32x3

10,000 test images.

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller
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Parametric approach

Image parameters

f(x,W)

10 numbers,

iIndicating class
- scores

[32x32x3]

array of numbers 0...1

(3072 numbers total)
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Parametric approach: Linear classifier
flz, W) =Wz

10 numbers,

iIndicating class
- scores

[32x32x3]

array of numbers 0...1
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Parametric approach: Linear classifier

f(a:, W) _ WE' 3072x1

10x1 10x3072
\ 10 numbers,

iIndicating class
- scores

[32x32x3]

array of numbers 0...1

parameters, or “weights”
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Parametric approach: Linear classifier

f(z, W)|=[Wg 39721 |(+b)|10x1

10x1 10x3072
\ 10 numbers,

iIndicating class
- scores

[32x32x3]

array of numbers 0...1

parameters, or “weights”
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

56

231

24

Input image
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

stretch pixels into single column

02 |-05| 01| 20 56 5 -96.8 | cat score

ISR ROS NOON| | 231 | 4. [B2M . EGTGN . o

— 0 (1025 | 0.2 11-0.3 -1.2 :
input image 24 61.95 ship score
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Interpreting a Linear Classifier
airplane M.-y o ..-:-ﬁz f(mz, W, b) _ sz 1B

automobile
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S S do, in English?
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ship 2 H,ﬂ

truck -
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Interpreting a Linear Classifier

LN

car classifier

airplane classifier &

deer classifier

Subhransu Maji, Chuang Gan and TAs

f(zi,W,b) = Wz; + b

[32x32x3]
array of numbers 0O...1
(3072 numbers total)

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller
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Interpreting a Linear Classifier
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Interpreting a Linear Classifier
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Hard cases for a linear classifier

Class 1: Class 1: Class 1:
First and third quadrants 1<=L2 norm <=2 Three modes
Class 2: Class 2:
I 2:
Class Everything else Everything else

Second and fourth quadrants
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So far: We defined a (linear) score function: f(z:,w,b) = Wa; +b

really affine

Example class
scores for 3
Images, with a
random W.:

Subhransu Maji, Chuang Gan and TAs

/

airplane -3.45
automobile -8.87
bird 0.09
2.9
cat
s 4.48
8.02
dog
3.78
frog
) 1.006
o -0.36
shiP ~0.72

truck

-0.51
6.04
5.31

-4.22

-4.19
3.58
4.49

-4 .37

-2.09

-2.93

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller
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| flx, W) =Wx
Coming up:

" (quantifying what it means to
- Loss function et s

- Opt| m|Zat|On (start with random W and find a
W

that minimizes the loss)

- Neu ral netS! (tweak the functional form of f)
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Summary so far ... Linear classifier

Image parameters 10 numbers, indicating

f(x,W) class scores

[32x32x3]
array of numbers 0...1
(3072 numbers total)

v
stretch pixels into single column = lassif
‘ l car classifier
02 (-05| 01| 20 56 1.1 -96.8 | catscore airplane classifie/ &
15 | 1.3 | 21|00 | 231 | 4| 32 | — | 437.9 | gog score ‘

0 |025| 0.2 | -0.3 -1.2 -
input image 24 61.95 ship score

plane car bird cat deer dog frog horse ship truck
L ‘ |

Subhransu Maji, Chuang Gan and TAs Lecture 2 - 41 Sep 5, 2024

deer classifier
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Loss function/Optimization

1. Define a loss function
that quantifies our

irotane 34t o0 51 3 a2 unhappiness with the
automobile 8- 87 6.04 4.64 scores across the training
- 0.09 5.31 2.65 data.
cat 2.9 -4.22 5.1
i 4.48 —4.19 2.64 1. Come up with a way of
it 6.02 3.58 2:93 efficiently finding the
f 3.78 4.49 -4.34 o
rog L o6 43 . parameters that minimize
s 0.36 5 09 _4.79 the loss fur]ction.
e ~0.72 ~2.93 6.14 (optimization)
truck
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) = Wax are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog '17 20 '3.1

Subhransu Maji, Chuang Gan and TAs Lecture 2 - 43 Sep 5, 2024
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) = Wax are:
Given an example (wi, yz)
where I; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s; = f(x;, W)

the SVM loss has the form:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 20 '3.1

Li =3, max(0,s; — sy, + 1)|

Subhransu Maji, Chuang Gan and TAs
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) = Wax are:
Given an example (Z;,¥;)
where g, is the image ana
where Y; is the (integer) label,

and using the shorthand for the
scores vector: s; = f(x;, W)

the SVM loss has the form:

ca 32 | 13 22 | oot
car 51 4-9 25 = max(0, 5.1 -3.2+1)

+max(0, -1.7 - 3.2 + 1)
frog -1.7 20 '31 = max(0, 2.9) + max(0, -3.9)

=29+0
Losses: 2.9 =29
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) = Wax are:
Given an example (Z;,¥;)
where g, is the image ana
where Y; is the (integer) label,

and using the shorthand for the
scores vector: s; = f(x;, W)

the SVM loss has the form:

ca 32 | 13| 22 | oo
car 51 4-9 25 =max(0,1.3-4.9+1)

+max(0, 2.0 -4.9 + 1)
frog -1.7 20 '31 = max(0, -2.6) + max(0, -1.9)

=0+0
Losses: 2.9 0 o
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) = Wax are:
Given an example (Z;,¥;)
where g, is the image ana
where Y; is the (integer) label,

and using the shorthand for the
scores vector: s; = f(x;, W)

the SVM loss has the form:

Li =3, max(0,s; — sy, + 1)|

car 5.1 4.9 2.5 = max(0, 2.2 - (-3.1) + 1)

+max(0, 2.5 - (-3.1) + 1)
frog -1.7 2.0 -3.1 = max(0, 6.3) + max(0, 6.6)

Losses: 2.9 0 12.9 ~63+66
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) = Wax are:

Given an example (Z;,¥;)
where g, is the image ana
where Y; is the (integer) label,

and using the shorthand for the
scores vector: s; = f(x;, W)

the SVM loss has the form:

cat 3.2 13 2 92 Li =3;,, max(0,s; — sy, + 1)

and the full training loss is the mean

over all examples in the training data:
car 5.1 4.9 2.5

L:%Z?;l[’i

frog '17 20 '3.1
L=(29+0+12.9)/3
losses. 2.9 0 120 |'I%& )

Subhransu Maji, Chuang Gan and TAs
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) = Wax are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 20 '3.1

Losses: 2.9 0 12.9

Subhransu Maji, Chuang Gan and TAs

Multiclass SVM loss:

Given an example (Z;,¥;)
where g, is the image ana
where Y; is the (integer) label,

and using the shorthand for the
scores vector: s; = f(x;, W)

the SVM loss has the form:

g = Z#yi max(0,s; — sy, + 1)
Q: what if the sum
was instead over all
classes?

(including j =y i)

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) = Wax are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 20 '3.1

Losses: 2.9 0 12.9

Subhransu Maji, Chuang Gan and TAs

Multiclass SVM loss:

Given an example (Z;,¥;)
where g, is the image ana
where Y; is the (integer) label,

and using the shorthand for the
scores vector: s; = f(x;, W)

the SVM loss has the form:
B = Zj#yi max(0, s; — sy, + 1)

Q2: what if we used a
mean instead of a
sum here?

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) = Wax are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 20 '3.1

Losses: 2.9 0 12.9

Subhransu Maji, Chuang Gan and TAs

Multiclass SVM loss:

Given an example (Z;,¥;)
where g, is the image ana
where Y; is the (integer) label,

and using the shorthand for the
scores vector: s; = f(x;, W)

the SVM loss has the form:
B = Zj#yi max(0, s; — sy, + 1)

Q3: what if we used

By = Zj;éyi max(0, s — sy, + 1)

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) = Wax are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 20 '3.1

Losses: 2.9 0 12.9

Subhransu Maji, Chuang Gan and TAs

Multiclass SVM loss:

Given an example (Z;,¥;)
where g, is the image ana
where Y; is the (integer) label,

and using the shorthand for the
scores vector: s; = f(x;, W)

the SVM loss has the form:
B = Zj#yi max(0, s; — sy, + 1)

Q4: what is the min/
max possible loss?

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) = Wax are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 20 '3.1

Losses: 2.9 0 12.9

Subhransu Maji, Chuang Gan and TAs

Multiclass SVM loss:

Given an example (:I:i, yz)
where z; is the image ana
where g; is the (integer) label,

and using the shorthand for the scores
vector: si = flx;, W)
the SVM loss has the form:

B = Zj#yi max(0, s; — sy, + 1)

Q5: usually at
initialization W are small
numbers, so all s ~= 0.
What is the loss?
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Example numpy code:

L = Zj?éyi maX(O, Sj — Sy, T 1)

def L_i vectorized(x, y, W):
scores = W.dot(x)
margins = np.maximum(©, scores - scores[y] + 1)
margins[y] = 0
loss 1 = np.sum(margins)
return loss i
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Coding tip: Keep track of dimensions:

X.shape[0]
X.shape[1]
W.shape[1]

scores=X.dot(W) # (N,DY*(D,0)=(N,O)
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