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Lecture 2:

Image Classification,


Nearest Neighbor and Linear 
Classifiers
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cat

(assume given set of discrete labels) 
{dog, cat, truck, plane, ...}

Image classification
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Images are represented as 
3D arrays of numbers, with 
integers between [0, 255]. 

E.g.  
300 x 100 x 3  

(3 for 3 color channels RGB)

Challenges: Semantic gap
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Challenges: Viewpoint Variation
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Challenges: Illumination
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Challenges: Deformation
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Challenges: Occlusion
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Challenges: Background clutter
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Challenges: Intraclass variation
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Unlike e.g. sorting a list of numbers, 
  
no obvious way to hand-code the algorithm for 
recognizing a cat, or other classes.

Writing an image classifier
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John Canny, “A Computational Approach to Edge Detection”, IEEE TPAMI 1986

Find edges Find corners

?

Attempts have been made
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Example training set

Machine Learning: Data Driven Approach
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Nearest Neighbor Classifier
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k-Nearest Neighbor 
find the k nearest images, have them vote on the label

the data NN classifier 5-NN classifier

http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
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For every test image (first column), 
examples of nearest neighbors in rows

Example dataset: CIFAR-10 
10 labels  
50,000 training images 
10,000 test images
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Q: what is the accuracy of the nearest 
neighbor classifier on the training data, 
when using the Euclidean distance?

the data NN classifier 5-NN classifier
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Q: what is the accuracy of the k-nearest 
neighbor classifier on the training data?

the data NN classifier 5-NN classifier
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What is the best distance to use? 
What is the best value of k to use? 

i.e. how do we set the hyperparameters?
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What is the best distance to use? 
What is the best value of k to use? 

i.e. how do we set the hyperparameters? 

Very problem-dependent.  
Must try them all out and see what works best. 
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Trying out what hyperparameters work best on test set. 
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Trying out what hyperparameters work best on test set: 
Very bad idea. The test set is a proxy for the generalization performance! 
Use only VERY SPARINGLY, at the end.
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      Validation data 
use to tune hyperparameters 
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Cross-validation 
cycle through the choice of which fold 
is the validation fold, average results.
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Example of 
5-fold cross-validation 
for the value of k. 

Each point: single 
outcome.  

The line goes 
through the mean, bars 
indicated standard 
deviation 

(Seems that k ~= 7 works best 
for this data)
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k-Nearest Neighbor on raw images is never used.

- terrible performance at test time 
- distance metrics on level of whole images can be 

very unintuitive

(all 3 images have same L2 distance to the one on the left)
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Linear Classification
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Example dataset: CIFAR-10 
10 labels  
50,000 training images 
   each image is 32x32x3 
10,000 test images.
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Parametric approach

[32x32x3] 
array of numbers 0...1 
(3072 numbers total)

f(x,W)
image parameters

10 numbers, 
indicating class 
scores
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Parametric approach: Linear classifier

[32x32x3] 
array of numbers 0...1

10 numbers, 
indicating class 
scores
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Parametric approach: Linear classifier

[32x32x3] 
array of numbers 0...1

10 numbers, 
indicating class 
scores

3072x1

10x1 10x3072

parameters, or “weights”
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Parametric approach: Linear classifier

[32x32x3] 
array of numbers 0...1

10 numbers, 
indicating class 
scores

3072x1

10x1 10x3072

parameters, or “weights”

(+b) 10x1
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Input image

56

231

24

2

56 231

24 2

Flatten tensors into a vector
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)
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Interpreting a Linear Classifier

Q: what does the 
linear classifier 
do, in English?
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Interpreting a Linear Classifier

[32x32x3] 
array of numbers 0...1 
(3072 numbers total)
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Interpreting a Linear Classifier

Example trained weights 
of a linear classifier 
trained on CIFAR-10:
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Interpreting a Linear Classifier

Q2: what would be 
a very hard set of 
classes for a linear 
classifier to 
distinguish?
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Class 1:  
First and third quadrants 

Class 2:  
Second and fourth quadrants

Class 1:  
1 <= L2 norm <= 2 

Class 2: 
Everything else

Class 1:  
Three modes 

Class 2: 
Everything else

Hard cases for a linear classifier
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So far: We defined a (linear) score function: 

Example class  
scores for 3 
images, with a  
random W:

 -3.45 
-8.87 
0.09 
2.9 
4.48 
8.02 
3.78 
1.06 
-0.36 
-0.72 

-0.51 
6.04 
5.31 
-4.22 
-4.19 
3.58 
4.49 
-4.37 
-2.09 
-2.93 

3.42 
4.64 
2.65 
5.1 
2.64 
5.55 
-4.34 
-1.5 
-4.79 
6.14 

really affine
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Coming up: 
- Loss function 

- Optimization 

- Neural nets!

(quantifying what it means to 
have a “good” W)
(start with random W and find a 
W that minimizes the loss)

(tweak the functional form of f)
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Summary so far ...   Linear classifier

[32x32x3] 
array of numbers 0...1 
(3072 numbers total)

f(x,W)
image parameters 10 numbers, indicating 

class scores
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Loss function/Optimization

 -3.45 
-8.87 
0.09 
2.9 
4.48 
8.02 
3.78 
1.06 
-0.36 
-0.72 

-0.51 
6.04 
5.31 
-4.22 
-4.19 
3.58 
4.49 
-4.37 
-2.09 
-2.93 

3.42 
4.64 
2.65 
5.1 
2.64 
5.55 
-4.34 
-1.5 
-4.79 
6.14 

1. Define a loss function 
that quantifies our 
unhappiness with the 
scores across the training 
data. 

1. Come up with a way of 
efficiently finding the 
parameters that minimize 
the loss function. 
(optimization)

TODO:
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Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2
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Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Multiclass SVM loss:

Given an example 
where        is the image and 
where       is the (integer) label, 

and using the shorthand for the 
scores vector: 

the SVM loss has the form: 
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Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Multiclass SVM loss:

Given an example 
where        is the image and 
where       is the (integer) label, 

and using the shorthand for the 
scores vector: 

the SVM loss has the form: 

= max(0, 5.1 - 3.2 + 1)  
   +max(0, -1.7 - 3.2 + 1) 
= max(0, 2.9) + max(0, -3.9) 
= 2.9 + 0 
= 2.92.9Losses:
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Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Multiclass SVM loss:

Given an example 
where        is the image and 
where       is the (integer) label, 

and using the shorthand for the 
scores vector: 

the SVM loss has the form: 

= max(0, 1.3 - 4.9 + 1)  
   +max(0, 2.0 - 4.9 + 1) 
= max(0, -2.6) + max(0, -1.9) 
= 0 + 0 
= 00Losses: 2.9



Lecture 2 - Sep 5, 2024Subhransu Maji, Chuang Gan and TAs 
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller 47

Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Multiclass SVM loss:

Given an example 
where        is the image and 
where       is the (integer) label, 

and using the shorthand for the 
scores vector: 

the SVM loss has the form: 

= max(0, 2.2 - (-3.1) + 1)  
   +max(0, 2.5 - (-3.1) + 1) 
= max(0, 6.3) + max(0, 6.6) 
= 6.3 + 6.6 
= 12.90Losses: 2.9 12.9
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

0Losses: 2.9 12.9

Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

Multiclass SVM loss:

Given an example 
where        is the image and 
where       is the (integer) label, 

and using the shorthand for the 
scores vector: 

the SVM loss has the form: 

and the full training loss is the mean 
over all examples in the training data:

L = (2.9 + 0 + 12.9)/3  
   = 5.3
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

0Losses: 2.9 12.9

Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

Multiclass SVM loss:

Given an example 
where        is the image and 
where       is the (integer) label, 

and using the shorthand for the 
scores vector: 

the SVM loss has the form: 

Q: what if the sum 
was instead over all 
classes?  
(including j = y_i)
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

0Losses: 2.9 12.9

Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

Multiclass SVM loss:

Given an example 
where        is the image and 
where       is the (integer) label, 

and using the shorthand for the 
scores vector: 

the SVM loss has the form: 

Q2: what if we used a 
mean instead of a 
sum here?
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

0Losses: 2.9 12.9

Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

Multiclass SVM loss:

Given an example 
where        is the image and 
where       is the (integer) label, 

and using the shorthand for the 
scores vector: 

the SVM loss has the form: 

Q3: what if we used
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

0Losses: 2.9 12.9

Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

Multiclass SVM loss:

Given an example 
where        is the image and 
where       is the (integer) label, 

and using the shorthand for the 
scores vector: 

the SVM loss has the form: 

Q4: what is the min/
max possible loss?
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

0Losses: 2.9 12.9

Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

Multiclass SVM loss:

Given an example 
where        is the image and 
where       is the (integer) label, 

and using the shorthand for the scores 
vector: 

the SVM loss has the form: 

Q5: usually at 
initialization W are small 
numbers, so all s ~= 0. 
What is the loss?
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Example numpy code:
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Coding tip: Keep track of dimensions:


