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Lecture 3:

Loss function

Regularization

Optimization
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Announcements (also on Piazza)
- Homework 1 released, due Thursday, Sept 26,11:55pm via Gradescope 

- Upload homework well in advance 
- Check late day policy 

- Optional discussion section this Friday, Sept 13, 11-12am, CS 142 
- Python setup, Google collab, Basics of Python & Numpy 
- Schedule for the remaining discussion sections listed on the 

lectures page 

- Change in Oindrila’s office hours, Fridays 9-11am, CS 207 

- Reminder to read course policies https://cvl-umass.github.io/
compsci682-fall-2024/policies/ and course page in general

https://cvl-umass.github.io/compsci682-fall-2024/policies/
https://cvl-umass.github.io/compsci682-fall-2024/policies/
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Recall from last time ...   Linear classifier

[32x32x3] 
array of numbers 0...1 
(3072 numbers total)

f(x,W)
image parameters 10 numbers, indicating 

class scores
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Loss function/Optimization

 -3.45 
-8.87 
0.09 
2.9 
4.48 
8.02 
3.78 
1.06 
-0.36 
-0.72 

-0.51 
6.04 
5.31 
-4.22 
-4.19 
3.58 
4.49 
-4.37 
-2.09 
-2.93 

3.42 
4.64 
2.65 
5.1 
2.64 
5.55 
-4.34 
-1.5 
-4.79 
6.14 

• Define a loss function 
that quantifies our 
unhappiness with the 
scores across the training 
data. 

• Come up with a way of 
efficiently finding the 
parameters that minimize 
the loss function. 
(optimization)

Goals:
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Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

0Losses: 2.9 12.9

Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

Multiclass SVM loss:

Given an example 
where        is the image and 
where       is the (integer) label, 

and using the shorthand for the 
scores vector: 

the SVM loss has the form: 

and the full training loss is the mean 
over all examples in the training data:

L = (2.9 + 0 + 12.9)/3  
   = 5.3
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Example numpy code:
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Coding tip: Keep track of dimensions:
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.  

cat

frog

car

3.2
5.1
-1.7
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.  

cat

frog

car

3.2
5.1
-1.7

where
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.  

cat

frog

car

3.2
5.1
-1.7

where

Softmax function
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.  

Want to maximize the log likelihood, or (for a loss function)  
to minimize the negative log likelihood of the correct class: cat

frog

car

3.2
5.1
-1.7

where
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.  

Want to maximize the log likelihood, or (for a loss function)  
to minimize the negative log likelihood of the correct class: cat

frog

car

3.2
5.1
-1.7 in summary:

where
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp

unnormalized probabilities
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities 
>0, sum to 1 
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities

L_i = -log(0.13) 
      = 0.89



Lecture 2 - Sept. 7. 2021Erik Learned-Miller and TAs 
Some slides kindly provided by Fei-Fei Li, Andrej Karpathy, Justin Johnson
Subhransu Maji, Chuang Gan and TAs 
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 3 - Sep 10, 202419

Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities

L_i = -log(0.13) 
      = 0.89
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities

L_i = -log(0.13) 
      = 0.89

Q: What is the min/max 
possible loss L_i?
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities

L_i = -log(0.13) 
      = 0.89

Q2: usually at 
initialization W are small 
numbers, so all s ~= 0. 
What is the loss? 
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Softmax vs. SVM



Lecture 2 - Sept. 7. 2021Erik Learned-Miller and TAs 
Some slides kindly provided by Fei-Fei Li, Andrej Karpathy, Justin Johnson
Subhransu Maji, Chuang Gan and TAs 
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 3 - Sep 10, 202423



Lecture 2 - Sept. 7. 2021Erik Learned-Miller and TAs 
Some slides kindly provided by Fei-Fei Li, Andrej Karpathy, Justin Johnson
Subhransu Maji, Chuang Gan and TAs 
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 3 - Sep 10, 202424

Softmax vs. SVM

assume scores: 
[10, -2, 3] 
[10, 9, 9] 
[10, -100, -100] 
and 

Q: Suppose I take a datapoint 
and I jiggle a bit (changing its 
score slightly). What happens to 
the loss in both cases?
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Coming up: 

- Regularization 

- Optimization

f(x,W) = Wx + b
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Regularization
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There is a “bug” with the loss:

E.g. Suppose that we found a W such that L = 0.  
Is this W unique?
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Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

= max(0, 1.3 - 4.9 + 1)  
   +max(0, 2.0 - 4.9 + 1) 
= max(0, -2.6) + max(0, -1.9) 
= 0 + 0 
= 0

0Losses: 2.9

Before:

With W twice as large:
= max(0, 2.6 - 9.8 + 1)  
   +max(0, 4.0 - 9.8 + 1) 
= max(0, -6.2) + max(0, -4.8) 
= 0 + 0 
= 012.9
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cat

frog

car 2.5
1.3

2.0
Loss:

An example: 
 What is the loss? (POLL)
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cat

frog

car 2.5
1.3   

2.0
0.5Loss:

An example: 
 What is the loss? 
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cat

frog

car 2.5
1.3   

2.0
0.5Loss:

An example: 
 What is the loss? 
 
 
How could we change W to eliminate  
the loss?  (POLL)
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cat

frog

car 2.5 5.0
1.3 2.6  

2.0 4.0
0.5 0 Loss:

An example: 
 What is the loss? 
 
 
How could we change W to eliminate  
the loss?  (POLL) 
 
Multiply W (and b) by 2!
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cat

frog

car 2.5 5.0
1.3 2.6  

2.0 4.0
0.5 0 Loss:

An example: 
 What is the loss? 
 
 
How could we change W to eliminate  
the loss?  (POLL) 
 
Multiply W (and b) by 2! 
 
 
Wait a minute! Have we done anything 
useful???
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cat

frog

car 2.5 5.0
1.3 2.6  

2.0 4.0
0.5 0 Loss:

An example: 
 What is the loss? 
 
 
How could we change W to eliminate  
the loss?  (POLL) 
 
Multiply W (and b) by 2! 
 
 
Wait a minute! Have we done anything 
useful??? 
 
No!  Any example that used to be wrong 
is still wrong (on the wrong side of the 
boundary). Any example that is right is 
still right (on the correct side of the 
boundary).
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Regularization: Prevent the model 
from having too much flexibility.
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Regularization: Prevent the model 
from having too much flexibility.
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Regularization pushes against fitting the data with too much flexibility. If you are going to 
use a complex function to fit the data, you should be doing based on a lot of data!



y = f(x) + ✏ f(x) = sin(⇡x)

✏ = N(0,�2)

gn(x) = ✓0 + ✓1x+ ✓2x
2 + . . .+ ✓nx

n

50 samples

� = 0.1

figures from https://theclevermachine.wordpress.com/tag/estimator-variance/

(high bias, low variance)

(low bias, high variance)

Bias Variance Tradeoff

https://theclevermachine.wordpress.com/tag/estimator-variance/
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figures from https://theclevermachine.wordpress.com/tag/estimator-variance/

Bias Variance Tradeoff for Polynomials

https://theclevermachine.wordpress.com/tag/estimator-variance/
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But things can be complicated!

Double descent

Source: https://en.wikipedia.org/wiki/Double_descent
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Optimization
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Recap
- We have some dataset of (x,y) 
- We have a score function:  
- We have a loss function: 

e.g.

Softmax

SVM

Full loss
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Strategy #1: A first very bad idea solution: Random search
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Let’s see how well this works on the test set...

15.5% accuracy! not bad! 
(SOTA is ~95%)
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How often will a random search succeed?
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p1

p2

p5 p6

⌘1 p3

⌘2 p4
⌘3

step size

local optima = global optima

pk+1  pk � ⌘kg
(k)

take a step down the gradient

g(k)  rpF (p)|pk

compute gradient at the current location

Strategy #2: Follow the slope
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Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

In multiple dimensions, the gradient is the vector of (partial derivatives).



Don’t care about this

Do care about this

15

A sneak “preview” of the motivation for backpropagation
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Numerical evaluation of the gradient...
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current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

gradient dW: 

[?, 
?, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…]
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current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

W + h (first dim): 

[0.34 + 0.0001, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25322

gradient dW: 

[?, 
?, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…]
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gradient dW: 

[-2.5, 
?, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…]

(1.25322 - 1.25347)/0.0001 
= -2.5

current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

W + h (first dim): 

[0.34 + 0.0001, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25322
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gradient dW: 

[-2.5, 
?, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…]

current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

W + h (second dim): 

[0.34, 
-1.11 + 0.0001, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25353
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gradient dW: 

[-2.5, 
0.6, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…]

current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

W + h (second dim): 

[0.34, 
-1.11 + 0.0001, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25353

(1.25353 - 1.25347)/0.0001 
= 0.6
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gradient dW: 

[-2.5, 
0.6, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…]

current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

W + h (third dim): 

[0.34, 
-1.11, 
0.78 + 0.0001, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347
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gradient dW: 

[-2.5, 
0.6, 
0, 
?, 
?, 
?, 
?, 
?, 
?,…]

current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

W + h (third dim): 

[0.34, 
-1.11, 
0.78 + 0.0001, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

(1.25347 - 1.25347)/0.0001 
= 0
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gradient dW: 

[-2.5, 
0.6, 
0, 
0.2, 
0.7, 
-0.5, 
1.1, 
1.3, 
-2.1,…]

current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

dW = ... 
(some function of 
data and W)
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Evaluating the  
gradient numerically
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Evaluating the  
gradient numerically

- approximate 
- very slow to evaluate


