Lecture 4:
Optimization:
Stochastic Gradient Descent
Momentum, AdaGrad, Adam
Learning Rate Schedules

Lecture 4 - 1 Sep 12, 2024



Reminders

- Homework 1 due Thursday, Sept 26,11:55pm via Gradescope
- Upload homework well in advance
- Check late day policy

- Optional discussion section this Friday, Sept 13, 11-12am, CS 142
- Python setup, Google collab, Basics of Python & Numpy — will
discuss array indexing and slicing
- Schedule for the remaining discussion sections listed on the
lectures page

Subhransu Maji, Chuang Gan and TAs Lecture 4 - 2 Sep 12, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



Recap

- We have some dataset of (x,y) eq.
- We have a score function: 5= f(z; W) = Wz
- We have a loss function:

Softmax

L; = —log(<=

Z e SVM regularization loss
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Strategy #1: A first very bad idea solution: Random search

bestloss = float("inf")
for num in xrange(1000):
W = np.random.randn(10, 3073) * 0.0001
loss = L(X train, Y_train, W) # get the 1
if loss < bestloss:
bestloss = loss
bestW = W
print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
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Let’'s see how well this works on the test set...

scores = Wbest.dot(Xte_cols) # 10 x 10000, the
Yte predict = np.argmax(scores, axis = 0)

a i CadLll

np.mean(Yte predict == Yte)

15.5% accuracy! not bad!
(SOTA is ~95%)
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Strategy #2: Follow the slope

Random search Follow the slope
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Strategy #2: Follow the slope

g(k) <~ Vo F(p)lp,

compute gradient at the current location

Pk+1 < Pk — ng(k)

take a step down the gradient

T local optima = global optima
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Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

df(z) _ . fl@+h) - f(a)

dx h —0 h

In multiple dimensions, the gradient is the vector of (partial derivatives).
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Numerical evaluation of the gradient...
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current W: gradient dW:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347
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current W: W + h (first dim): gradient dW:
[0.34, [0.34 + 0.0001, [?,
-1.11, -1.11, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.95, 0.95, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 loss 1.25322
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current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25322

Subhransu Maji, Chuang Gan and TAs

gradient dW:

[-2.5,

o

(1.25322 - 1.25347)/0.0001
=-2.5

df(z) = lim

dx h —0

f(z +h) — f(=z)
h

?,..]
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current W: W + h (second dim): gradient dW:
[0.34, [0.34, [-2.5,
-1.11, -1.11 + 0.0001, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25353
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current W: W + h (second dim): gradient dW:
[0.34, [0.34, [-2.5,

RRLY -1.11 + 0.0001, 0.6, .

0.78, 0.78, 2, \

0.12, 0.12, ?,

0.95, 0.99, (1.25353 - 1.25347)/0.0001
2.81, 2.81, =0.6

-3.1, -3.1, af(z) _ . f@+h) - f@)
-1.5, -1.5, & % h
0.33,...] 0.33,...] 7]

loss 1.25347 | loss 1.25353
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current W: W + h (third dim): gradient dW:
[0.34, [0.34, [-2.5,
-1.11, -1.11, 0.6,
0.78, 0.78 + 0.0001, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25347
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current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Subhransu Maji, Chuang Gan and TAs

gradient dW:

[-2.5,
0.6,
0,

?,\
n

(1.25347 - 1.25347)/0.0001

=0
af(z) _ . fe+h) - f)
dzx h —0 h
I |
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current W gradient dW:
[0.34, [-2.5,
111, dw = ... 06
0.78, (some function of 0

0.12, data and W) 0.2
0.55, 07
2.81, T s
31, 1.1,
1.9, 1.3,
0.33,...] 211
loss 1.25347

Subhransu Maji, Chuang Gan and TAs Lecture 4 - 17 Sep 12, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



Eva I U ati N g th e def eval_numerical gradient(f, x):

a naive implementation of numerical gradient of f at x

L ] n
radlent numerl CaII - f should be a function that takes a single argument
- X is the point (numpy array) to evaluate the gradient at

fx = f(x) # evaluate function value at original point
grad = np.zeros(x.shape)

df(a:) | =ze f(:[,’ - h) — f(x) h = 0.00001
& asb h

it = np.nditer(x, flags=['multi index'], op flags=['readwrite'])
while not it.finished:

ix = it.multi index

old value = x[ix]

x[ix] = old value + h # ir
fxh = f(x)

x[ix] = old_value # restor

grad[ix] = (fxh = fx) / h # th
it.iternext() # step t ext dimensi

return grad
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Eva I U ati N g th e def eval_numerical gradient(f, x):

a naive implementation of numerical gradient of f at x

gradient numerica”y f should be a function that takes a single argument

X is the point (numpy array) to evaluate the gradient at

fx = f(x) # eval
grad = np.zeros(x.shape)
df() _ . fl@+h) - f()
dz h —0 h

it = np.nditer(x, flags=['multi index'], op flags=['readwrite'])
while not it.finished:

ix = it.multi index
old value = x[ix]
x[ix] = old value + h # ir

- apprOXimate fxh = £(x) #
x[ix] = old_value #
- very slow to evaluate

grad[ix] = (fxh - fx) / h #
it.iternext() # o x 1

return grad

Subhransu Maji, Chuang Gan and TAs
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The loss is just a function of W:
L= %Ef\;Li + 3 Wi

Li =), max(0,s; — sy, +1)

s= f(z; W) =Wz
want VL

Use calculus to compute an
analytic gradient
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Retropolis

During a pandemic, Isaac Newton had to work from home,
too. He used the time wisely.

1. Developed calculus
2. Fundamentals of optics
3. Theory of gravity

...not too shabby!

A later portrait of Sir Isaac Newton by Samuel Freeman. (British Library/National Endowment for the Humanities)

By Gillian Brockell

March 12, 2020 at 2:18 p.m. EDT S 1 2 2024
Isaac Newton was in his early 20s when the Great Plague of London hit. He wasn’t a “Sir” yet, didn’t p :




In summary:

- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check
Implementation with numerical gradient. This is called a

gradient check.
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Gradient Descent

while True:
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad # perform parameter update
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original W

o

negative gradient direction
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Stochastic Gradient Descent (SGD)

Full sum expensive
L(W Z L a:z, Yi, W —|— )\R(W) when N is large!

Approximate sum

1 using a minibatch of
VwL(W) = N Z Vw L (xia Yi W) + )‘VWR(W) examples
i=1 32 /64 /128 common
while |

data batch = sample training data(data, 256) - )
weights grad = evaluate gradient(loss fun, data batch, welghts)
weights += - step size * weights grad # p«
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25

Example of optimization progress while
training a neural network.

20}

(Loss over mini-batches goes down
over time.)

Loss

0 0 1 1 1 1
0 20 40 60 80 100
Epoch >
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Optimization: Problem #1 with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

—

Aside: Loss function has high condition number: ratio of largest to
smallest singular value of the Hessian matrix is large

w2

w1

Subhransu Maji, Chuang Gan and TAs .
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Optimization: Problem #1 with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large
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Optimization: Problem #2 with SGD

What if the loss
function has a
local minima or
saddle point?

loss

Subhransu Maji, Chuang Gan and TAs -
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Optimization: Problem #2 with SGD

A

loss

What if the loss
function has a
local minima or
saddle point?

Zero gradient,
gradient descent
gets stuck
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Optimization: Problem #2 with SGD

What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014
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Optimization: Problem #2 with SGD

saddle point in two dimension
f(z,y) = z° — ¢’
%(wz —y?) =2z — 2(0) =0

—_— 2—2:— — —
ay(“’ y*) =2y — —2(0)=0

Image source: https://en.wikipedia.org/wiki/Saddle_point
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https://en.wikipedia.org/wiki/Saddle_point

Optimization: Problem #3 with SGD

Our gradients come from
minibatches so they can be noisy!

| N
L(W) = NZL‘(%,%,W)

N
1
Vw L(W) = + ; Li(zi,yi, W)
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Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller LeCture 3 - 34 Aprll O5a 2022



SGD + Momentum Gradient Noise

Local Minima  Saddle points

e N\

Poor Conditioning

m “nﬁmm

= |r
: wl’ ‘
A N

m— SGD s SGD+Momentum
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SGD: the simple two line update code

SGD

Tiy1 = T — O/vf(Tf)

while True:
dx = compute_gradient(x)
x —= learning_rate * dx

Subhransu Maji, Chuang Gan and TAs -
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SGD + Momentum:

continue moving in the general direction as the previous iterations
SGD SGD+Momentum

vir1 = pog + V f(xy)
Li4+1 — Tt — AVt41

Tip1 = 14 — aVf(xy)

while True:
dx = compute_gradient(x)
x —= learning_rate * dx

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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SGD + Momentum:

continue moving in the general direction as the previous iterations
SGD SGD+Momentum

vir1 = pog + V f(xy)
Li4+1 — Tt — AVt41

Tip1 = 14 — aVf(xy)

while True: VX'= 0
dx = compute_gradient(x) while True:
x —= learning_rate * dx dx = compute_gradient(x)

rho * vx + dx
learning_rate *x vXx

VX
X_

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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AdaGrad

grad_squared = 0

while True:

dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sqgrt(grad_squared) + 1le-7)

Added element-wise scaling of the gradient based
on the historical sum of squares in each dimension

“‘Per-parameter learning rates”
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(Xx)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqgrt(grad_squared) + le-7)

Q: What happens with AdaGrad?

Subhransu Maji, Chuang Gan and TAs -
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(Xx)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqgrt(grad_squared) + le-7)

Q: What happens with AdaGrad? Progress along “steep” directions is damped;

progress along “flat” directions is accelerated

Subhransu Maji, Chuang Gan and TAs -
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(Xx)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqgrt(grad_squared) + le-7)

—

Q2: What happens to the step size over long time?

Subhransu Maji, Chuang Gan and TAs -
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(Xx)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqgrt(grad_squared) + le-7)

—

Q2: What happens to the step size over long time? Decays to zero

Subhransu Maji, Chuang Gan and TAs -
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RMSProp: “Leaky AdaGrad”

grad_squared = 0
while True:

AdaGrad dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)
v

grad_squared = 0
while True:
RMSPrOp dx = compute_gradient(x)
grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
x -= learning_rate * dx / (np.sqrt(grad_squared) + le-7)

Tieleman and Hinton, 2012
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RMSProp

—— SGD+Momentum

m—— RMSProp

mems - AdaGrad

(stuck due to
decaying Ir)
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Adam (almost)

first_moment = 0
second_moment = 0
while True:
dx = compute_gradient(x)
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (almost)

first_moment = 0

second_moment = 0

while True:

dx = compute_gradient(x)

first_moment = betal * first_moment + (1 - betal) * dx Momentum
second_moment = beta second_moment + - beta X * dx
x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1le-7)) AdaGrad / RMSPrOp

Sort of like RMSProp with momentum

Q: What happens at first timestep?

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (full form)

first_moment = 0

second_moment = 0

for t in range(1, num_iterations):
dx = compute_gradient(x) Momentum
first_moment = betal * first_moment + (1 - betal) * dx

| second_moment = beta2 * second_moment + (1 - beta2) * dx * dx |

first_unbias = first_moment / (1 - betal ** t) . .
second_unbias = second_moment / (1 - beta2 ** t) Bias correction

| x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + le-7)) |
AdaGrad / RMSProp

Bias correction for the fact that
first and second moment
estimates start at zero

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (full form)

first_moment = 0

second_moment = 0

for t in range(1, num_iterations):
dx = compute_gradient(x) Momentum
first_moment = betal * first_moment + (1 - betal) * dx

| second_moment = beta2 * second_moment + (1 - beta2) * dx * dx |

first_unbias = first_moment / (1 - betal ** t)

second_unbias = second_moment / (1 - beta2 ** t) Bias correction
| x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + le-7)) | AdaGrad / RMSProp
Bias correction for the fact that Adam with beta1 = 0.9,
first and second moment beta2 = 0.999, and learning_rate = 1e-3 or 5e-4

estimates start at zero is a great starting point for many models!

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam

SGD

SGD+Momentum

RMSProp

Adam
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Learning rate schedules

while rue:

weights grad = _gradient(loss fun, data, weights)
weights += -|step size]* weights grad # perform parameter u

A\

Learning rate

Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 64 Sep 12, 2024



SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Q: Which one of these learning
N rates is best to use?

low learning rate

high learning rate

good learning rate
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Q: Which one of these learning
N rates is best to use?

low learning rate

. | A: In reality, all of these are good
igh learning rate

\M learning rates.

good learning rate
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Learning rate decays over time

_ Training Loss
40 Step: Reduce learning rate at a few fixed

35 - Reduce learning rate points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

0 20 40 60 80 100
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