Lecture 4: **Optimization:** Stochastic Gradient Descent Momentum, AdaGrad, Adam Learning Rate Schedules

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 4 - 1

Sep 12, 2024

Reminders

- Homework 1 due Thursday, Sept 26,11:55pm via Gradescope
 - Upload homework well in advance
 - Check late day policy
- Optional **discussion section** this Friday, Sept 13, 11-12am, CS 142
 - Python setup, Google collab, Basics of Python & Numpy will discuss array indexing and slicing

Lecture 4 - 2

Sep 12, 2024

- Schedule for the remaining discussion sections listed on the lectures page

Recap

- We have some dataset of (x,y)
- We have a **score function**:
- We have a loss function:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Full loss

$$s=f(x;W) \stackrel{ ext{e.g.}}{=} Wx$$

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 4 - 3 Sep 12, 2024

Strategy #1: A first very bad idea solution: Random search

```
# assume X train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
 W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
 loss = L(X train, Y train, W) # get the loss over the entire training set
 if loss < bestloss: # keep track of the best solution</pre>
   bestloss = loss
   bestW = W
 print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 4 - 4

Sep 12, 2024

Let's see how well this works on the test set...

Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
returns 0.1555

15.5% accuracy! not bad! (SOTA is ~95%)

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 4 - 5

<u>Sep 12, 2024</u>

Strategy #2: Follow the slope

Random search

Follow the slope

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 3 - 6 Sep 10, 2024

Strategy #2: Follow the slope

Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the gradient is the vector of (partial derivatives).

Lecture 4 - 8

Sep 12, 2024

Numerical evaluation of the gradient...

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 4 - 9

Sep 12, 2024

current W:	
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5,	
0.33,…] loss 1.25347	

gradient dW:

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 4 - 10 Sep 12, 2024

current W:	W + h (first dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] loss 1.25347	[0.34 + 0.0001 , -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25322	[?, ?, ?, ?, ?, ?, ?, ?,]

Lecture 4 - 11 Sep 12, 2024

current W:	W + h (first dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25347	[0.34 + 0.0001 , -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25322	$[-2.5, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?,]$ $(1.25322 - 1.25347)/0.0001 = -2.5$ $\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $?,]$

Lecture 4 - 12 Sep 12, 2024

current W:	W + h (second dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	[0.34, -1.11 + 0.0001 , 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	[-2.5, ?, ?, ?, ?, ?, ?, ?, ?, ?,]

Lecture 4 - 13 Sep 12, 2024

current W:	W + h (second dim):	
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1,	[0.34, -1.11 + 0.0001 , 0.78, 0.12, 0.55, 2.81, -3.1,	(1
-1.5, 0.33,…] loss 1.25347	-1.5, 0.33,…] loss 1.25353	

Lecture 4 - 14 Sep 12, 2024

0.12,0.12,0.55,0.55,2.81,2.81,-3.1,-3.1,-1.5,0.33,]	current W:	W + h (th
loss 1.25347 loss 1.2	-1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5,	-1.11, 0.78 + 0.0 0.12, 0.55, 2.81, -3.1, -1.5,
	loss 1.25347	loss 1.25

nird dim): 0001, 5347

gradient dW:

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 4 - 15 Sep 12, 2024

current W:	W + h (third dim):
[0.34,	[0.34,
-1.11,	-1.11,
0.78,	0.78 + 0.0001 ,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25347

Lecture 4 - 16 Sep 12, 2024

current W:

[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25347

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 4 - 17 Sep 12, 2024

gradient dW:

Evaluating the gradient numerically

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

```
def eval_numerical_gradient(f, x):
    """
    a naive implementation of numerical gradient of f at x
    - f should be a function that takes a single argument
    - x is the point (numpy array) to evaluate the gradient at
    """
```

fx = f(x) # evaluate function value at original point
grad = np.zeros(x.shape)
h = 0.00001

iterate over all indexes in x

it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:

evaluate function at x+h

ix = it.multi_index
old_value = x[ix]
x[ix] = old_value + h # increment by h
fxh = f(x) # evalute f(x + h)
x[ix] = old value # restore to previous value (very important!)

compute the partial derivative
grad[ix] = (fxh - fx) / h # the slope
it.iternext() # step to next dimension

Lecture 4 - 18

return grad

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Sep 12, 2024

Evaluating the gradient numerically

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

- approximate
- very slow to evaluate

```
def eval_numerical_gradient(f, x):
    """
    a naive implementation of numerical gradient of f at x
    - f should be a function that takes a single argument
    - x is the point (numpy array) to evaluate the gradient at
    """
```

fx = f(x) # evaluate function value at original point
grad = np.zeros(x.shape)
h = 0.00001

iterate over all indexes in x

it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:

evaluate function at x+h

ix = it.multi_index
old_value = x[ix]
x[ix] = old_value + h # increment by h
fxh = f(x) # evalute f(x + h)
x[ix] = old value # restore to previous value (very important!)

compute the partial derivative
grad[ix] = (fxh - fx) / h # the slope
it.iternext() # step to next dimension

return grad

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 4 - 19 Sep 12, 2024

The loss is just a function of W:

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= f(x; W) = Wx \end{aligned}$$

want $\nabla_W L$

Use calculus to compute an analytic gradient

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 4 - 20 Sep 12, 2024

Retropolis

During a pandemic, Isaac Newton had to work from home, too. He used the time wisely.

A later portrait of Sir Isaac Newton by Samuel Freeman. (British Library/National Endowment for the Humanities)

By Gillian Brockell

March 12, 2020 at 2:18 p.m. EDT

Isaac Newton was in his early 20s when the Great Plague of London hit. He wasn't a "Sir" yet, didn't

- 1. Developed calculus
- 2. Fundamentals of optics
- 3. Theory of gravity

...not too shabby!

In summary:

- Numerical gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

Lecture 4 - 22

Sep 12, 2024

Gradient Descent

```
# Vanilla Gradient Descent
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 4 - 23 Sep 12, 2024

negative gradient direction

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 4 - 24 Sep 12, 2024

Lecture 4 - 25

Sep 12, 2024

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

Sep 12, 2024

Lecture 4 - 26

```
# Vanilla Minibatch Gradient Descent
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```


Example of optimization progress while training a neural network.

(Loss over mini-batches goes down over time.)

Lecture 4 - 27

Sep 12, 2024

What if loss changes quickly in one direction and slowly in another? What does gradient descent do?

Aside: Loss function has high **condition number**: ratio of largest to smallest singular value of the Hessian matrix is large

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 3 - 28 April 05, 2022

What if loss changes quickly in one direction and slowly in another? What does gradient descent do?

Very slow progress along shallow dimension, jitter along steep direction

Loss function has high **condition number**: ratio of largest to smallest singular value of the Hessian matrix is large

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 3 - 29

April 05, 2022

What if the loss function has a **local minima** or **saddle point**?

What if the loss function has a **local minima** or **saddle point**?

Zero gradient, gradient descent gets stuck

What if the loss function has a **local minima** or **saddle point**?

Saddle points much more common in high dimension

Dauphin et al, "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization", NIPS 2014

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 3 - 32

April 05, 2022

saddle point in two dimension

$$f(x,y) = x^2 - y^2$$

$$rac{\partial}{\partial x}(x^2-y^2)=2x
ightarrow 2(0)=0$$

$$rac{\partial}{\partial oldsymbol{y}}(x^2-oldsymbol{y}^2)=-2y
ightarrow-2(oldsymbol{0})=0$$

Image source: <u>https://en.wikipedia.org/wiki/Saddle_point</u>

April 05, 2022

Lecture 3 - 33

Our gradients come from minibatches so they can be noisy!

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^N \nabla_W L_i(x_i, y_i, W)$$

SGD + Momentum

Local Minima Saddle points **Poor Conditioning**

Gradient Noise

SGD+Momentum

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 3 - 35 April 05, 2022

SGD

SGD: the simple two line update code

SGD

$$x_{t+1} = x_t - \alpha \nabla f(x_t)$$

while True: dx = compute_gradient(x) x -= learning_rate * dx

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

April 05, 2022

SGD + Momentum:continue moving in the general direction as the previous iterationsSGDSGD+Momentum

$$x_{t+1} = x_t - \alpha \nabla f(x_t)$$

 $v_{t+1} = \rho v_t + \nabla f(x_t)$ $x_{t+1} = x_t - \alpha v_{t+1}$

April 05, 2022

Lecture 3 - 37

while True:

dx = compute_gradient(x)
x -= learning_rate * dx

- Build up "velocity" as a running mean of gradients
- Rho gives "friction"; typically rho=0.9 or 0.99

Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

SGD + Momentum: continue moving in the general direction as the previous iterations SGD SGD+Momentum

$$x_{t+1} = x_t - \alpha \nabla f(x_t)$$

while True: dx = compute_gradient(x) x -= learning_rate * dx $v_{t+1} = \rho v_t + \nabla f(x_t)$ $x_{t+1} = x_t - \alpha v_{t+1}$ vx = 0
while True:
dx = compute_gradient(x)
vx = rho * vx + dx
x -= learning_rate * vx

April 05, 2022

Lecture 3 - 38

- Build up "velocity" as a running mean of gradients
- Rho gives "friction"; typically rho=0.9 or 0.99

Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

grad_squared = 0
while True:
 dx = compute_gradient(x)
 grad_squared += dx * dx
 x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)

Added element-wise scaling of the gradient based on the historical sum of squares in each dimension

Lecture 3 -

- 39

April 05, 2022

"Per-parameter learning rates" or "adaptive learning rates"

Duchi et al, "Adaptive subgradient methods for online learning and stochastic optimization", JMLR 2011

grad_squared = 0
while True:
 dx = compute_gradient(x)
 grad_squared += dx * dx
 x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)

Lecture 3 -

40

April 05, 2022

Q: What happens with AdaGrad?

Q: What happens with AdaGrad?

Progress along "steep" directions is damped; progress along "flat" directions is accelerated

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 3 - 41 April 05, 2022

Lecture 3 - 42

April 05, 2022

Q2: What happens to the step size over long time?

Q2: What happens to the step size over long time? Decays to zero

Lecture 3 -

43

April 05, 2022

RMSProp: "Leaky AdaGrad"

Lecture 3 - 44

April 05, 2022

Tieleman and Hinton, 2012

RMSProp

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 3 - 45

April 05, 2022

Adam (almost)

```
first_moment = 0
second_moment = 0
while True:
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))
```

Lecture 3 - 46

April 05, 2022

Kingma and Ba, "Adam: A method for stochastic optimization", ICLR 2015

Adam (almost)

Lecture 3 - 47

April 05, 2022

Sort of like RMSProp with momentum

Q: What happens at first timestep?

Kingma and Ba, "Adam: A method for stochastic optimization", ICLR 2015

Adam (full form)

Lecture 3 -

48

April 05, 2022

Bias correction for the fact that first and second moment estimates start at zero

Kingma and Ba, "Adam: A method for stochastic optimization", ICLR 2015

Adam (full form)

Bias correction for the fact that first and second moment estimates start at zero

Adam with beta1 = 0.9, beta2 = 0.999, and learning_rate = 1e-3 or 5e-4 is a great starting point for many models!

49

April 05, 2022

Lecture 3 -

Kingma and Ba, "Adam: A method for stochastic optimization", ICLR 2015

Adam

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 3 - 50

April 05, 2022

Learning rate schedules

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 451

Sep 12, 2024

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.

Q: Which one of these learning rates is best to use?

Lecture 3 - 52

April 05, 2022

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.

Q: Which one of these learning rates is best to use?

A: In reality, all of these are good learning rates.

-53

April 05, 2022

Lecture 3 -

Learning rate decays over time

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 3 - 54 April 05, 2022