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Lecture 4:

Optimization:  

Stochastic Gradient Descent

Momentum, AdaGrad, Adam


Learning Rate Schedules



Sep 12, 2024Subhransu Maji, Chuang Gan and TAs 
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 4 -

Reminders
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- Homework 1 due Thursday, Sept 26,11:55pm via Gradescope 
- Upload homework well in advance 
- Check late day policy 

- Optional discussion section this Friday, Sept 13, 11-12am, CS 142 
- Python setup, Google collab, Basics of Python & Numpy — will 

discuss array indexing and slicing  
- Schedule for the remaining discussion sections listed on the 

lectures page
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Recap
- We have some dataset of (x,y) 
- We have a score function:  
- We have a loss function: 

e.g.

Softmax

SVM

Full loss
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Strategy #1: A first very bad idea solution: Random search
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Let’s see how well this works on the test set...

15.5% accuracy! not bad! 
(SOTA is ~95%)
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Lecture 3 - Sep 10, 20246

Strategy #2: Follow the slope

Random search Follow the slope
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p1

p2

p5 p6

⌘1 p3

⌘2 p4
⌘3

step size

local optima = global optima

pk+1  pk � ⌘kg
(k)

take a step down the gradient

g(k)  rpF (p)|pk

compute gradient at the current location

Strategy #2: Follow the slope
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Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

In multiple dimensions, the gradient is the vector of (partial derivatives).
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Numerical evaluation of the gradient...
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current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

gradient dW: 

[?, 
?, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…]
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current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

W + h (first dim): 

[0.34 + 0.0001, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25322

gradient dW: 

[?, 
?, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…]
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gradient dW: 

[-2.5, 
?, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…]

(1.25322 - 1.25347)/0.0001 
= -2.5

current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

W + h (first dim): 

[0.34 + 0.0001, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25322
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gradient dW: 

[-2.5, 
?, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…]

current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

W + h (second dim): 

[0.34, 
-1.11 + 0.0001, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25353
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gradient dW: 

[-2.5, 
0.6, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…]

current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

W + h (second dim): 

[0.34, 
-1.11 + 0.0001, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25353

(1.25353 - 1.25347)/0.0001 
= 0.6
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gradient dW: 

[-2.5, 
0.6, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…]

current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

W + h (third dim): 

[0.34, 
-1.11, 
0.78 + 0.0001, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347
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gradient dW: 

[-2.5, 
0.6, 
0, 
?, 
?, 
?, 
?, 
?, 
?,…]

current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

W + h (third dim): 

[0.34, 
-1.11, 
0.78 + 0.0001, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

(1.25347 - 1.25347)/0.0001 
= 0
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gradient dW: 

[-2.5, 
0.6, 
0, 
0.2, 
0.7, 
-0.5, 
1.1, 
1.3, 
-2.1,…]

current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

dW = ... 
(some function of 
data and W)
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Evaluating the  
gradient numerically



Lecture 4 - Sep 12, 2024Subhransu Maji, Chuang Gan and TAs 
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller 19

Evaluating the  
gradient numerically

- approximate 
- very slow to evaluate
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The loss is just a function of W:

want

Use calculus to compute an 
analytic gradient
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1. Developed calculus 
2. Fundamentals of optics 
3. Theory of gravity 

 
...not too shabby!
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In summary: 
- Numerical gradient: approximate, slow, easy to write 

- Analytic gradient: exact, fast, error-prone 

In practice: Always use analytic gradient, but check 
implementation with numerical gradient. This is called a 
gradient check.
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Gradient Descent
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original W

negative gradient direction
W_1

W_2
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Stochastic Gradient Descent (SGD)
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Full sum expensive 
when N is large! 

Approximate sum 
using a minibatch of 
examples 
32 / 64 / 128 common
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Example of optimization progress while 
training a neural network.  

(Loss over mini-batches goes down 
over time.)
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Optimization: Problem #1 with SGD
What if loss changes quickly in one direction and slowly in another? 
What does gradient descent do? 

Aside: Loss function has high condition number: ratio of largest to 
smallest singular value of the Hessian matrix is large

w2

w1
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Optimization: Problem #1 with SGD
What if loss changes quickly in one direction and slowly in another? 
What does gradient descent do? 
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest 
singular value of the Hessian matrix is large



Lecture 3 - April 05, 2022Subhransu Maji, Chuang Gan and TAs 
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller 30

Optimization: Problem #2 with SGD

What if the loss 
function has a 
local minima or 
saddle point?

lo
ss

w
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Optimization: Problem #2 with SGD

What if the loss 
function has a 
local minima or 
saddle point? 

Zero gradient, 
gradient descent 
gets stuck

lo
ss

w
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Optimization: Problem #2 with SGD

What if the loss 
function has a 
local minima or 
saddle point? 

Saddle points much 
more common in 
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014
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Optimization: Problem #2 with SGD

Image source: https://en.wikipedia.org/wiki/Saddle_point

saddle point in two dimension

https://en.wikipedia.org/wiki/Saddle_point
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Optimization: Problem #3 with SGD

Our gradients come from 
minibatches so they can be noisy!
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SGD + Momentum

Local Minima Saddle points

Poor Conditioning

Gradient Noise

SGD SGD+Momentum
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SGD: the simple two line update code 

SGD
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SGD + Momentum: 
continue moving in the general direction as the previous iterations

SGD

- Build up “velocity” as a running mean of gradients 
- Rho gives “friction”; typically rho=0.9 or 0.99 

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum
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SGD + Momentum: 
continue moving in the general direction as the previous iterations

SGD

- Build up “velocity” as a running mean of gradients 
- Rho gives “friction”; typically rho=0.9 or 0.99 

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum
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AdaGrad

Added element-wise scaling of the gradient based 
on the historical sum of squares in each dimension 

“Per-parameter learning rates”  
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
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AdaGrad

Q: What happens with AdaGrad?
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AdaGrad

Q: What happens with AdaGrad? Progress along “steep” directions is damped; 
progress along “flat” directions is accelerated
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AdaGrad

Q2: What happens to the step size over long time?
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AdaGrad

Q2: What happens to the step size over long time? Decays to zero
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RMSProp: “Leaky AdaGrad”

AdaGrad

RMSProp

Tieleman and Hinton, 2012
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RMSProp
SGD

SGD+Momentum

RMSProp

AdaGrad 
(stuck due to 
decaying lr)
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Adam (almost)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (almost)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Sort of like RMSProp with momentum

Q: What happens at first timestep?
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Adam (full form)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that 
first and second moment 
estimates start at zero
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Adam (full form)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that 
first and second moment 
estimates start at zero

Adam with beta1 = 0.9,  
beta2 = 0.999, and learning_rate = 1e-3 or 5e-4 
is a great starting point for many models! 
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Adam 

SGD

SGD+Momentum

RMSProp

Adam
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Learning rate schedules

51

Learning rate
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Q: Which one of these learning 
rates is best to use? 



Lecture 3 - April 05, 2022Subhransu Maji, Chuang Gan and TAs 
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller 53

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Q: Which one of these learning 
rates is best to use? 

A: In reality, all of these are good 
learning rates. 
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Learning rate decays over time

Reduce learning rate
Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90. 


