Lecture 5:
Learning Rate Schedules
Neural Networks

Lecture 5 - 1 Sep 17, 2024



Announcements

e Optional discussion this Friday, Sep 20, 11-12pm, CS142
e Topic: Reviewing the chain rule, Applying the chain rule to vectors

e Homework 1 due Thursday, Sept 26, 11:55pm
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Recap

- We have some dataset of (x,y) eq.
- We have a score function: 5= f(z; W) = Wz
- We have a loss function:

regularization loss

b= — 10 Softmax B
7 g( J ) W score functioni u_f-(;‘;L)l it I }I ’
L =3,,, max(0,s; — sy, + 1) SWM [= ’ ;
Yi

= % Zfil L; + R(W) Fullloss
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Finding the best W: Optimize with Gradient Descent

while True:
weights grad = evaluate gradient(loss fun, data, welghts)

weights += - step size * weights grad # per’

Landscape image is CCO 1.0 public domain
Walking man image is CCO 1.0 public domain
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http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/

Gradient descent

df(@) _ . f@+h) - f(@)

dx h —0 h

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your
Implementation with numerical gradient
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Stochastic Gradient Descent (SGD)

Full sum expensive
L(W Z L a:z, Yi, W —|— )\R(W) when N is large!

Approximate sum

1 using a minibatch of
VwL(W) = N Z VwLi(zi,yi, W) + AVw R(W) examples
i=1 32 /64 /128 common
while |

data batch = sample training data(data, 256) - )
weights grad = evaluate gradient(loss fun, data batch, welghts)
weights += - step size * weights grad # p«
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Last time: fancy optimizers

SGD

SGD+Momentum

RMSProp

Adam
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Learning rate schedules
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Learning rate schedules

while True:
weights grad = _gradient(loss fun, data, weights)
weights += -|step size|* weights grad # perform parameter

A\

Learning rate
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

low learning rate

high learning rate

good learning rate
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Q: Which one of these learning

rates is best to use?
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Q: Which one of these learning
N rates is best to use?

low learning rate

. | A: In reality, all of these are good
igh learning rate

\M learning rates.

good learning rate
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Learning rate decays over time

Training Loss

07 Step: Reduce learning rate at a few fixed
35 Reduce learning rate points. E.g. for ResNets, multiply LR by 0.1
S0 after epochs 30, 60, and 90.

25+

S
2.0 1

0 20 40 60 80 100
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Learning Rate Decay

Learning rate

10 - Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
o8 after epochs 30, 60, and 90.
0.6 1 1
Cosine: ¢, — 500 (1 4 cos(tm/T))
0.4 1
0.2 1
0.0 1
0 20 10 60 80 100
Epoch
| o | Y( : Initial learning rate
Radlord ot ‘3|an‘$3§$}£ ffn?ui;?Biséﬁrﬁé?%'ﬁ’;tEyeéiiﬁréﬂﬁTevﬁ?éﬂZ?nﬁhagrf?2’8% R «v; - Learning rate at epoch t
Chitd at i, “Generating Long Sequences with Sparse Transformers® arXiv 2019 T - Total number of epochs
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Learning Rate Decay

Training Loss

10 4 Step: Reduce learning rate at a few fixed

points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

Loss

: 1
Cosine: (o, — 500 (1 4 cos(tm/T))

E) Sb ldO 15'0 260 250 300
Epoch
(Y() : Initial learning rate

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017 . .

Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018 at - Learnlng rate at epOCh t
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018 .

Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019 T ) TOtaI number Of epOChS
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Learning Rate Decay

Learning rate

10 Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
] after epochs 30, 60, and 90.
0.6 1 1
- Cosine: o, = 50 (1 + cos(tm/T))
02 Linear: ,, — ao(l —t/T)
0.0 1
0 20 20 60 80 100
Epoch

(Y() : Initial learning rate
«v; - Learning rate at epoch t

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for T . TOtal number Of epOChS
Language Understanding”, 2018
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Learning Rate Decay

Learning rate

Lo Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
08 after epochs 30, 60, and 90.

0.6 1

: 1
Cosine: ¢, — 500 (1 4 cos(tm/T))

Linear: ,, — ao(l —t/T)

Inverse sqrt: o, — ao/\/z

0.2 1

0 20 a0 60 80 100
Epoch o _

(Y() : Initial learning rate
«v; - Learning rate at epoch t

T : Total number of epochs
Vaswani et al, “Attention is all you need”, NIPS 2017
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In practice:

- Adam is a good default choice in many cases; it
often works ok even with constant learning rate

- SGD+Momentum can outperform Adam but may
require more tuning of LR and schedule
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Neural Networks
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Neural networks: the original linear classifier

(Before) Linear score function: f = Wz

reRP W e REXP
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Neural networks: 2 layers

(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network ~ f = W5 max(0, Wiz)

r e RP W, e REXP W, e RO*H

(In practice we will usually add a learnable bias at each layer as well)
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Why do we want non-linearity?

Cannot separate red
and blue points with
linear classifier
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Why do we want non-linearity?

o y 6 ©
° ¢ %
° ® o
¢ (] .. Y f(X’ y) - (r(X1 y)s e(X1 y)) (] ..
e © |0 ° > e 9
X ® e r o ®
® o ® ([
o | o ¢ o
Y o
o ¢ o o°
)
Cannot separate red After applying feature
and blue points with transform, points can
linear classifier be separated by linear
classifier
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Neural networks: also called fully connected network

(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network  f = W5 max (0, Wix)

r e RP W, e REXP W, e RE*XH

“Neural Network” is a very broad term; these are more accurately called
“fully-connected networks” or sometimes “multi-layer perceptrons” (MLP)

(In practice we will usually add a learnable bias at each layer as well)
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Neural networks: 3 layers

(Before) Linear score function: f = Wz

(Now) 2-layer Neural Network  f = W max(0, Wiz)
or 3-layer Neural Network

f — W3 maX(O, WZ maX(O) WlCB))

z € RP, Wy € RM*P W, € RYXH w3 € RO

(In practice we will usually add a learnable bias at each layer as well)

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 24 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



Neural networks: hierarchical computation
(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network  f = W max(0, Wiz)

X W1 |ph| W2 |g

3072 100 10

reRP W, e REXDP W, ¢ REXH
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Neural networks: learning 100s of templates
(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network ~ f = W5 max(0, Wiz)

X W1 |ph| W2 |g

3072 100
Learn 100 templates instead of 10. Share templates between classes
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Neural networks: why is max operator important?
(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network  f = Walmax(0,|W1z)

The function max(0, z) is called the activation function.
Q: What if we try to build a neural network without one?

f — WQWliE
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Neural networks: why is max operator important?
(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network  f = Wa/max(0,Wix)

The function max(0, z) is called the activation function.
Q: What if we try to build a neural network without one?

f=WoWix  Wy=WoW; € R f =Wz

A: We end up with a linear classifier again!
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Activation functions

Sigmoid

o(z) =

l1+e—*=

tanh
tanh(z) s

10,

RelLU
max (0, )

-10 10
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RelLU is a good default
choice for most problems

Leaky ReLU

max(0.1z, x)

10

Maxout
max(wi z + by, wlz + by)

10,

ELU

T x>0
ale® —1) <0 - B
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Neural networks: Architectures

X
{/
X
;‘;‘

output layer

)
®
ér‘\«'»

V2
:

output layer
input layer input layer
hidden layer X hidden layer 1 hidden layer 2

“3-layer Neural Net”, or
“2-layer Neural Net”, or “2-hidden-layer Neural Net”

1-hidden-layer Neural Net “Fully-connected” layers
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Example feed-forward computation of a neural network

AN
X
’r‘;‘s&‘

4
\
.

output layer

)
®

input layer
hidden layer 1 hidden layer 2

f = lambda‘ x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid
X = np.random.randn(3, 1) # random input vector of three numbers (3xl

hl = f(np.dot(Wl, x) + bl) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, hl) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1xI
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out)
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/(1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)

grad_y_pred = 2.0 *x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h *x h x (1 - h))

wl —= le-4 x grad_wl
w2 —= le-4 x grad_w2
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/(1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)

grad_y_pred = 2.0 *x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h *x h x (1 - h))

wl —= le-4 x grad_wl
w2 —= le-4 x grad_w2
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/(1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2) Forward pass
loss = np.square(y_pred - y).sum()
print(t, loss)

grad_y_pred = 2.0 *x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h *x h x (1 - h))

wl —= le-4 x grad_wl
w2 —= le-4 x grad_w2
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/(1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2) Forward pass
loss = np.square(y_pred - y).sum()
print(t, loss)

grad_y_pred = 2.0 *x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h *x h x (1 - h))

Calculate the analytical gradients

wl —= le-4 x grad_wl
w2 —= le-4 x grad_w2
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/(1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2) Forward pass
loss = np.square(y_pred - y).sum()
print(t, loss)

grad_y_pred = 2.0 *x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h *x h x (1 - h))

Calculate the analytical gradients

wl —= le-4 x grad_wl

W2 -= le-4 x grad_w2 Gradient descent
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Setting the number of layers and their sizes

3 hidden neurons

6 hidden neurons

20 hidden neurons
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more neurons = more capacity
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Do not use size of neural network as a regularizer. Use stronger regularization instead:

A =0.001 A=0.01 A=0.1
: o * o) e o
o © 1)
© o | o
) 3 1) ® < o} @ o 6]
® ® o & ® ® o it ® ® o i
© 4 ® ¢ ® o
© ® e ® o ®
® o e} ® o ) ® O o
S e ® ® ~ ¢ 6] ) ® o @ ®
® o) e ® e) ®

(Web demo with ConvNetJS: http://cs.stanford.edu/
people/karpathy/convnetjs/demo/classify2d.html) L(W) = Z Li(f(zi, W), yi) + AR(W)
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http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

This image by Fotis Bobolas is
licensed under CC-BY 2.0
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Impulses carried toward cell body

\ dendrite
presynaptic
terminal

axon

cell ——
body

Impulses carried away
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0
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Impulses carried toward cell body
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presynaptic
terminal
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This image by Felipe Perucho
is licensed under CC-BY 3.0
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Biological Neurons:
Complex connectivity patterns

This image is CCO Public Domain

Subhransu Maji, Chuang Gan and TAs

Neurons in a neural network:
Organized into regular layers for
computational efficiency

)

e =N
R
. output layer

5

input layer

hidden layer 1 hidden layer 2

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller
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https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Biological Neurons: But neural networks with random

Complex connectivity patterns connections can work too!
F 2] | :(w' = "‘;‘{ f W’
7 ~ RN\ (SR I~
e \ip 0l
i NN NN

This image is CCO Public Domain
Xie et al, “Exploring Randomly Wired Neural Networks for Image Recognition”, arXiv 2019
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https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Be very careful with your brain analogies!

Biological Neurons:
e Many different types
e Dendrites can perform complex non-linear computations
e Synapses are not a single weight but a complex non-linear dynamical system

[Dendritic Computation. London and Hausser]
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Plugging in neural networks with loss functions

s = f(x; W1, Ws) = Wy max(0, Wiz )Nonlinear score function
L; = Z max(0,s; — sy, +1) SVM Loss on predictions
JFYi

R(W) = Z W} Regularization
k

N
L = % Z L; + A\AR(W) + )\R(W2)Total loss: data loss + regularization
i=1
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Problem: How to compute gradients?

s = f(x; Wy, W3) = Woymax(0, Wiz) Nonlinear score function

L, = Z max(0,s; —s,, +1) SVM Loss on predictions
JFYi

R(W) = Z W7 Regularization
k

N
L = % Z L; + AR(W;) + AR(W,) Total loss: data loss + regularization
i=1

oL OL
(9W1 ’ 5W2

If we can compute then we can learn W, and W,
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(Bad) Idea: Derive Vs L on paper

s= f(z; W) = Wa Problem: Very tedious: Lots of

matrix calculus, need lots of paper
L, = z max (0, s; — s, + 1) pap

i#Yi Problem: What if we want to
= max(0, W, -a+ W, .-z +1) change loss? E.g. use softmax
iy instead of SVM? Need to re-
N derive from scratch =(
1
L=—=Y Li+AY W} _
N = . Problem: Not feasible for very
| N complex models!
=N Z Z max(0,W;.-a+W,,.-x+1)+ A Z W
i=1j#yi k

i=1 j#y,

N
1
VwL =Vw (F E E max(0,W;.-a+W,, . x+1)+ A E I»'V,f)
k
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Next lecture: Computational graphs + Backpropagation

f=Wgz| [Li =), max(0,s; — sy, +1)

I

/ @ s (scores) - @— ]
e

\/R(W)
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