Lecture 5: Learning Rate Schedules Neural Networks

Subhransu Maji, Chuang Gan and TAs Subfitansu Maji, Chuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 5 - 1** Sep 17, 2024

Announcements

- Optional discussion this Friday, Sep 20, 11-12pm, CS142
- Topic: Reviewing the chain rule, Applying the chain rule to vectors

● Homework 1 due Thursday, Sept 26, 11:55pm

Recap

- We have some dataset of (x,y)
- We have a **score function:**
- We have a **loss function**:

$$
s=f(x;W)\overset{\mathrm{e.g.}}{=} Wx
$$

Subhransu Maji, Chuang Gan and TAs Subfiratisu Maji, Criuarig Gari and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 3 Sep 17, 2024

Finding the best W: Optimize with Gradient Descent

Vanilla Gradient Descent

while True:

[Landscape image](http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369) is [CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/) public domain [Walking man image i](http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man)s [CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/) public domain weights grad = evaluate gradient(loss fun, data, weights) weights $+=$ - step size * weights grad # perform parameter update

Subhransu Maji, Chuang Gan and TAs Subfitansu Maji, Unuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 4 Sep 17, 2024

Gradient descent

$$
\frac{df(x)}{dx}=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}
$$

Numerical gradient: slow :(, approximate :(, easy to write :) **Analytic gradient**: fast :), exact :), error-prone :(

1 ecture 5 - 5

In practice: Derive analytic gradient, check your implementation with numerical gradient

Subhransu Maji, Chuang Gan and TAs Subfit aftsu Maji, Criuariy Gari and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 5

Stochastic Gradient Descent (SGD)

$$
L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)
$$

$$
\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)
$$

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent
while True:
  data batch = sample training data(data, 256) # sample 256 examples
 weights grad = evaluate gradient(\text{loss fun}, data batch, weights)weights += - step size * weights grad # perform parameter update
```
Subhransu Maji, Chuang Gan and TAs Subfinalisu Maji, Criuariy Gari anu TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 6

Last time: fancy optimizers

Subhransu Maji, Chuang Gan and TAs Subhransu Maji, Chuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 7

Learning rate schedules

Subhransu Maji, Chuang Gan and TAs Subhransu Maji, Chuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 8

Learning rate schedules

Subhransu Maji, Chuang Gan and TAs Subfiratisu Maji, Unuariy Gari and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 9

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.

Q: Which one of these learning rates is best to use?

Subhransu Maji, Chuang Gan and TAs Subfitansu Maji, Chuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 10 Sep 17, 2024

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.

Q: Which one of these learning rates is best to use?

A: In reality, all of these are good learning rates.

Subhransu Maji, Chuang Gan and TAs Subfitansu Maji, Chuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 11 Sep 17, 2024

Learning rate decays over time

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Subhransu Maji, Chuang Gan and TAs Subfitansu Maji, Chuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 12 Sep 17, 2024

Loshchilov and Hutter, "SGDR: Stochastic Gradient Descent with Warm Restarts", ICLR 2017 Radford et al, "Improving Language Understanding by Generative Pre-Training", 2018 Feichtenhofer et al, "SlowFast Networks for Video Recognition", arXiv 2018 Child at al, "Generating Long Sequences with Sparse Transformers", arXiv 2019

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:
$$
\alpha_t = \frac{1}{2}\alpha_0 \left(1 + \cos(t\pi/T)\right)
$$

 α_0 : Initial learning rate

- : Learning rate at epoch t
- : Total number of epochs

Subhransu Maji, Chuang Gan and TAs Subfitansu Maji, Unuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 13 Sep 17, 2024

Loshchilov and Hutter, "SGDR: Stochastic Gradient Descent with Warm Restarts", ICLR 2017 Radford et al, "Improving Language Understanding by Generative Pre-Training", 2018 Feichtenhofer et al, "SlowFast Networks for Video Recognition", arXiv 2018 Child at al, "Generating Long Sequences with Sparse Transformers", arXiv 2019

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:
$$
\alpha_t = \frac{1}{2}\alpha_0 \left(1 + \cos(t\pi/T)\right)
$$

 α_0 : Initial learning rate

- : Learning rate at epoch t
- : Total number of epochs

Subhransu Maji, Chuang Gan and TAs Subfitansu Maji, Chuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 14 Sep 17, 2024

Devlin et al, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", 2018

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:

\n
$$
\alpha_t = \frac{1}{2}\alpha_0 \left(1 + \cos(t\pi/T)\right)
$$
\nLinear:

\n
$$
\alpha_t = \alpha_0 (1 - t/T)
$$

 α_0 : Initial learning rate α_t : Learning rate at epoch t : Total number of epochs

Subhransu Maji, Chuang Gan and TAs Subfitansu Maji, Chuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 15 Sep 17, 2024

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:

\n
$$
\alpha_t = \frac{1}{2}\alpha_0 \left(1 + \cos(t\pi/T)\right)
$$
\n**Linear:**

\n
$$
\alpha_t = \alpha_0 (1 - t/T)
$$
\n**Inverse sqrt:**

\n
$$
\alpha_t = \alpha_0 / \sqrt{t}
$$

 α_0 : Initial learning rate : Learning rate at epoch t Vaswani et al, "Attention is all you need", NIPS 2017 T \cdots Γ

Subhransu Maji, Chuang Gan and TAs

Subfitansu Maji, Chuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 16 Sep 17, 2024

In practice:

- Adam is a good default choice in many cases; it often works ok even with constant learning rate
- **SGD+Momentum** can outperform Adam but may require more tuning of LR and schedule

Neural Networks

Subhransu Maji, Chuang Gan and TAs Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 5 - 18** Sep 12, 2024

Neural networks: the original linear classifier

(Before) Linear score function: $f = Wx$

$$
x \in \mathbb{R}^D, W \in \mathbb{R}^{C \times D}
$$

Subhransu Maji, Chuang Gan and TAs Subfiratisu Maji, Unuariy Gari and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 19

Neural networks: 2 layers

(Before) Linear score function: $f = Wx$ (**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ $x \in \mathbb{R}^D$, $W_1 \in \mathbb{R}^{H \times D}$, $W_2 \in \mathbb{R}^{C \times H}$

(In practice we will usually add a learnable bias at each layer as well)

Subhransu Maji, Chuang Gan and TAs Subfiratisu Maji, Unuarig Gari and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 20 Sep 17, 2024

Why do we want non-linearity?

Cannot separate red and blue points with linear classifier

Subhransu Maji, Chuang Gan and TAs Subfitansu Maji, Unuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 21 Sep 17, 2024

Why do we want non-linearity?

 $f(x, y) = (r(x, y), \theta(x, y))$

Cannot separate red and blue points with linear classifier

After applying feature transform, points can be separated by linear classifier

θ

Subhransu Maji, Chuang Gan and TAs Subfitansu Maji, Unuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 22 Sep 17, 2024

Lecture $5 - 22$

r

Neural networks: also called fully connected network

(**Before**) Linear score function: $f = Wx$ (**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ $x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$ "Neural Network" is a very broad term; these are more accurately called

"fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)

(In practice we will usually add a learnable bias at each layer as well)

Subhransu Maji, Chuang Gan and TAs Subfiratisu Maji, Unuarig Gari and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 23 Sep 17, 2024

Neural networks: 3 layers

(**Before**) Linear score function: $f = Wx$ (**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ or 3-layer Neural Network $f = W_3 \max(0, W_2 \max(0, W_1 x))$

$$
x \in \mathbb{R}^{D}, W_1 \in \mathbb{R}^{H_1 \times D}, W_2 \in \mathbb{R}^{H_2 \times H_1}, W_3 \in \mathbb{R}^{C \times H_2}
$$

(In practice we will usually add a learnable bias at each layer as well)

Subhransu Maji, Chuang Gan and TAs Subfiratisu Maji, Criuarig Gari and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 24 Sep 17, 2024

Neural networks: hierarchical computation

Subhransu Maji, Chuang Gan and TAs Subfiratisu Maji, Criuarig Gari and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 25 Sep 17, 2024

Neural networks: learning 100s of templates

Learn 100 templates instead of 10. Share templates between classes

Subhransu Maji, Chuang Gan and TAs Subfitansu Maji, Unuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 26 Sep 17, 2024

Neural networks: why is max operator important?

(**Before**) Linear score function:
$$
f = Wx
$$

(**Now**) 2-layer Neural Network $f = W_2 \boxed{\max(0, W_1x)}$

The function $\max(0, z)$ is called the **activation function. Q:** What if we try to build a neural network without one?

$$
f = W_2 W_1 x
$$

Subhransu Maji, Chuang Gan and TAs Subfiratisu Maji, Unuarig Gari and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 27 Sep 17, 2024 Neural networks: why is max operator important?

(Before) Linear score function: $f = Wx$ (**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function $\max(0, z)$ is called the **activation function. Q:** What if we try to build a neural network without one?

$$
f = W_2 W_1 x \qquad W_3 = W_2 W_1 \in \mathbb{R}^{C \times H}, f = W_3 x
$$

A: We end up with a linear classifier again!

Subhransu Maji, Chuang Gan and TAs Subfiratisu Maji, Criuarig Gari and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 28 Sep 17, 2024

Activation functions

ReLU is a good default choice for most problems

Maxout
max($w_1^T x + b_1, w_2^T x + b_2$)

Subhransu Maji, Chuang Gan and TAs Subfiratisu Maji, Unuarig Gari and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 29 Sep 17, 2024

Neural networks: Architectures

Subhransu Maji, Chuang Gan and TAs Subfiratisu Maji, Unuarig Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 30 Sep 17, 2024

Example feed-forward computation of a neural network

forward-pass of a 3-layer neural network: $f =$ **lambda x:** 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid) $x = np.random.randn(3, 1) # random input vector of three numbers (3x1)$ $h1 = f(np.dot(W1, x) + b1)$ # calculate first hidden layer activations (4x1) $h2 = f(np.dot(W2, h1) + b2)$ # calculate second hidden layer activations (4x1) out = $np.dot(W3, h2) + b3 # output neuron (1x1)$

Subhransu Maji, Chuang Gan and TAs Subfiransu Maji, Criuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 5 - 31** Sep 17, 2024

```
import numpy as np
 \mathbf{1}from numpy.random import randn
 2
 3
     N, D_in, H, D_out = 64, 1000, 100, 10
 4
     x, y = randn(N, D in), randn(N, D out)
 5.
     w1, w2 = \text{randn}(D \text{ in}, H), randn(H, D_out)
 6
 \overline{7}for t in range(2000):
 8
 9
       h = 1 / (1 + np \cdot exp(-x \cdot dot(w1)))10
       y pred = h.dot(w2)
11loss = np \cdot square(y_{pred} - y) \cdot sum()print(t, loss)
12 \overline{ }13
14
       grad y pred = 2.0 * (y pred - y)
       grad_w2 = h.T.dot(grad_y_pred)15
       grad h = grad y pred.dot(w2.T)16
       grad_w1 = x.T.dot(grad_h * h * (1 - h))17
18
       w1 - 1e-4 * grad_w119
20
       w2 = 1e-4 * grad w2
```
Subhransu Maji, Chuang Gan and TAs Subfitansu Maji, Chuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 32 Sep 17, 2024

```
import numpy as np
 \mathbf{1}from numpy.random import randn
 2
 3
    N, D_in, H, D_out = 64, 1000, 100, 10
 4
     x, y = \text{randn}(N, D_in), \text{randn}(N, D.out)5
    w1, w2 = randn(D_in, H), randn(H, D_out)
 6
 \overline{7}for t in range(2000):
 8
 9
       h = 1 / (1 + np.exp(-x.dot(w1)))10
      y pred = h.dot(w2)
11loss = np \cdot square(y_{pred} - y) \cdot sum()print(t, loss)
12 \overline{ }13
14
       grad y pred = 2.0 * (y pred - y)
       grad_w2 = h.T.dot(grad_y_pred)15
       grad_h = grad_y pred.dot(w2.T)16
       grad_w1 = x.T.dot(grad_h * h * (1 - h))17
18
       w1 - 1e-4 * grad_w119
20
       w2 = 1e-4 * grad w2
```
Define the network

Subhransu Maji, Chuang Gan and TAs Subfitansu Maji, Chuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 33 Sep 17, 2024

```
import numpy as np
 \mathbf{1}from numpy.random import randn
 \mathcal{P}3
     N, D_in, H, D_out = 64, 1000, 100, 10
 \Deltax, y = randn(N, D in), randn(N, D out)
 5
     w1, w2 = \text{randn}(D \text{ in}, H), randn(H, D_out)
 6
 7
 8
     for t in range(2000):
 9
       h = 1 / (1 + np.exp(-x.dot(w1)))10
       y_{\text{pred}} = h \cdot \text{dot}(w2)11loss = np \cdot square(y_{pred} - y) \cdot sum()print(t, loss)1213
14
       grad y pred = 2.0 * (y pred - y)
       grad_w2 = h.T.dot(grad_y_pred)15
       grad h = grad y pred.dot(w2.T)16
       grad_w1 = x.T.dot(grad_h * h * (1 - h))17
18
       w1 - 1e-4 * grad_w1
19
20
       w2 = 1e-4 * grad w2
```
Define the network

Forward pass

Subhransu Maji, Chuang Gan and TAs Subfitansu Maji, Chuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 34 Sep 17, 2024

```
import numpy as np
 \mathbf{1}from numpy.random import randn
 \mathcal{P}3
     N, D_in, H, D_out = 64, 1000, 100, 10
 \Deltax, y = randn(N, D in), randn(N, D out)
 5
     w1, w2 = \text{randn}(D \text{ in}, H), randn(H, D_out)
 6
 \overline{7}for t in range(2000):
 8
 9
       h = 1 / (1 + np.exp(-x.dot(w1)))10
       y pred = h.dot(w2)
11loss = np \cdot square(y_{pred} - y) \cdot sum()print(t, loss)
12 \overline{ }13
       grad y pred = 2.0 * (y pred - y)
14
       grad_w2 = h.T.dot(grad_y_pred)15
       grad_h = grad_y pred.dot(w2.T)16
17
       grad_w1 = x.T.dot(grad_h * h * (1 - h))18
       w1 - 1e-4 * grad_w1
19
20
       w2 = 1e-4 * grad w2
```
Define the network

Forward pass

Calculate the analytical gradients

Subhransu Maji, Chuang Gan and TAs Subfiratisu Maji, Unuarig Gari and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 35 Sep 17, 2024

```
import numpy as np
 \mathbf{1}from numpy.random import randn
 2
 3
    N, D_in, H, D_out = 64, 1000, 100, 10
 \Deltax, y = randn(N, D in), randn(N, D out)
 5
     w1, w2 = \text{randn}(D \text{ in}, H), randn(H, D_out)
 6
 7
     for t in range(2000):
 8
 9
       h = 1 / (1 + np.exp(-x.dot(w1)))10
      y pred = h.dot(w2)
11loss = np \cdot square(y_{pred} - y) \cdot sum()print(t, loss)
12 \overline{ }13
14
       grad y pred = 2.0 * (y pred - y)
       grad_w2 = h.T.dot(grad_y_pred)15
       grad_h = grad_y pred.dot(w2.T)16
       grad_w1 = x.T.dot(grad_h * h * (1 - h))17
18
19
       w1 - 1e-4 * grad_w120
       w2 = 1e-4 * grad_w2
```
Subhransu Maji, Chuang Gan and TAs Subritatisu Maji, Chuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 5 - 36**

Define the network

Forward pass

Calculate the analytical gradients

Gradient descent

Setting the number of layers and their sizes

more neurons = more capacity

Subhransu Maji, Chuang Gan and TAs Subfitansu Maji, Unuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 37 Sep 12, 2024

Do not use size of neural network as a regularizer. Use stronger regularization instead:

 $\lambda = 0.001$ λ = 0.01 $\lambda = 0.1$ \bullet Ô \bullet ø $L(W)=\frac{1}{N}\sum_{i=1}^N L_i(f(x_i,W),y_i)+\lambda R(W)$ (Web demo with ConvNetJS: [http://cs.stanford.edu/](http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html) [people/karpathy/convnetjs/demo/classify2d.html\)](http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

Subhransu Maji, Chuang Gan and TAs Subfitansu Maji, Unuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 38 Sep 12, 2024

[This image](https://www.flickr.com/photos/fbobolas/3822222947) by [Fotis Bobolas](https://www.flickr.com/photos/fbobolas) is licensed under [CC-BY 2.0](https://creativecommons.org/licenses/by/2.0/)

Subhransu Maji, Chuang Gan and TAs Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 5 - 39** Sep 17, 2024

Impulses carried toward cell body

Subhransu Maji, Chuang Gan and TAs Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 5 - 40** Sep 17, 2024

Impulses carried toward cell body

Subhransu Maji, Chuang Gan and TAs Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 41 Sep 17, 2024

Impulses carried toward cell body

Subhransu Maji, Chuang Gan and TAs Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller **Lecture 5 - 42** Sep 17, 2024

Biological Neurons: Complex connectivity patterns

Neurons in a neural network: Organized into regular layers for computational efficiency

[This image](https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052) is [CC0 Public Domain](https://creativecommons.org/publicdomain/zero/1.0/deed.en)

Subhransu Maji, Chuang Gan and TAs Subfitansu Maji, Chuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 43 Sep 17, 2024

Biological Neurons: Complex connectivity patterns

[This image](https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052) is [CC0 Public Domain](https://creativecommons.org/publicdomain/zero/1.0/deed.en)

But neural networks with random connections can work too!

Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", arXiv 2019

Subhransu Maji, Chuang Gan and TAs Subfitansu Maji, Chuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 44 Sep 17, 2024

Be very careful with your brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system

<u>l</u> ecture 5 - 45

[Dendritic Computation. London and Hausser]

Subhransu Maji, Chuang Gan and TAs Subfinalisu Maji, Criuariy Gari and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 45

Plugging in neural networks with loss functions

$$
s = f(x; W_1, W_2) = W_2 \max(0, W_1 x)
$$
Nonlinear score function

$$
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$
SVM Loss on predictions

$$
R(W) = \sum_{k} W_k^2
$$
 Regularization

$$
L = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda R(W_1) + \lambda R(W_2)
$$
Total loss: data loss + regularization

Subhransu Maji, Chuang Gan and TAs Subfitansu Maji, Unuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 46 Sep 17, 2024

46

Problem: How to compute gradients?

$$
s = f(x; W_1, W_2) = W_2 \max(0, W_1 x)
$$
 Nonlinear score function
\n
$$
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$
 SVM Loss on predictions
\n
$$
R(W) = \sum_{k} W_k^2
$$
 Regularization
\n
$$
L = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda R(W_1) + \lambda R(W_2)
$$
 Total loss: data loss + regularization
\nIf we can compute $\frac{\partial L}{\partial W_1}$, $\frac{\partial L}{\partial W_2}$ then we can learn W_1 and W_2

Subhransu Maji, Chuang Gan and TAs Subhransu Maji, Chuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 47 Sep 17, 2024

47

(Bad) Idea: Derive $\nabla_W L$ on paper

$$
s = f(x; W) = Wx
$$

\n
$$
L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)
$$

\n
$$
= \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i,:}} \cdot x + 1)
$$

\n
$$
L = \frac{1}{N} \sum_{i=1}^{N} L_{i} + \lambda \sum_{k} W_{k}^{2}
$$

\n
$$
= \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i,:}} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2}
$$

\n
$$
\nabla_{W} L = \nabla_{W} \left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i,:}} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2} \right)
$$

Problem: Very tedious: Lots of matrix calculus, need lots of paper

Problem: What if we want to hange loss? E.g. use softmax stead of SVM? Need to reerive from scratch =(

roblem: Not feasible for very omplex models!

Lecture 5 - 48

Subhransu Maji, Chuang Gan and TAs Subfinalisu Maji, Criuariy Gari anu TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 48 Sep 17, 2024

Next lecture: Computational graphs + Backpropagation

Subhransu Maji, Chuang Gan and TAs Subfitansu Maji, Chuang Gan and TAS
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Lecture 5 - 49