Lecture 5:
Learning Rate Schedules
Neural Networks

Lecture 5 - 1 Sep 17, 2024

Announcements

e Optional discussion this Friday, Sep 20, 11-12pm, CS142
e Topic: Reviewing the chain rule, Applying the chain rule to vectors

e Homework 1 due Thursday, Sept 26, 11:55pm

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 2 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Recap

- We have some dataset of (x,y) eq.
- We have a score function: 5= f(z; W) = Wz
- We have a loss function:

regularization loss

b= — 10 Softmax B
7 g(J) W score functioni u_f-(;‘;L)l it I }I ’
L =3,,, max(0,s; — sy, + 1) SWM [= ’ ;
Yi

= % Zfil L; + R(W) Fullloss

Subhransu Maji, Chuang Ganand TAs | Lecture 5 - 3 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Finding the best W: Optimize with Gradient Descent

while True:
weights grad = evaluate gradient(loss fun, data, welghts)

weights += - step size * weights grad # per’

Landscape image is CCO 1.0 public domain
Walking man image is CCO 1.0 public domain

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 4 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/

Gradient descent

df(@) _ . f@+h) - f(@)

dx h —0 h

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your
Implementation with numerical gradient

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 5 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Stochastic Gradient Descent (SGD)

Full sum expensive
L(W Z L a:z, Yi, W —|—)\R(W) when N is large!

Approximate sum

1 using a minibatch of
VwL(W) = N Z VwLi(zi,yi, W) + AVw R(W) examples
i=1 32 /64 /128 common
while |

data batch = sample training data(data, 256) -)
weights grad = evaluate gradient(loss fun, data batch, welghts)
weights += - step size * weights grad # p«

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 6 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Last time: fancy optimizers

SGD

SGD+Momentum

RMSProp

Adam

Subhransu Maji, Chuang Gan and TAs Lecture 5-7 Sep 17. 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Learning rate schedules

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 8 Sep 12, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Learning rate schedules

while True:
weights grad = _gradient(loss fun, data, weights)
weights += -|step size|* weights grad # perform parameter

A\

Learning rate

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 9 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

low learning rate

high learning rate

good learning rate

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Q: Which one of these learning

rates is best to use?

Lecture 5- 10

Sep 17, 2024

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Q: Which one of these learning
N rates is best to use?

low learning rate

. | A: In reality, all of these are good
igh learning rate

\M learning rates.

good learning rate

Subhransu Maji, Chuang Gan and TAs _
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller LeCtU re 5 1 1 Sep 1 7’ 2024

Learning rate decays over time

Training Loss

07 Step: Reduce learning rate at a few fixed
35 Reduce learning rate points. E.g. for ResNets, multiply LR by 0.1
S0 after epochs 30, 60, and 90.

25+

S
2.0 1

0 20 40 60 80 100

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 12 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Learning Rate Decay

Learning rate

10 - Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
o8 after epochs 30, 60, and 90.
0.6 1 1
Cosine: ¢, — 500 (1 4 cos(tm/T))
0.4 1
0.2 1
0.0 1
0 20 10 60 80 100
Epoch
| o | Y(: Initial learning rate
Radlord ot ‘3|an‘$3§$}£ ffn?ui;?Biséﬁrﬁé?%'ﬁ’;tEyeéiiﬁréﬂﬁTevﬁ?éﬂZ?nﬁhagrf?2’8% R «v; - Learning rate at epoch t
Chitd at i, “Generating Long Sequences with Sparse Transformers® arXiv 2019 T - Total number of epochs

Subhransu Maji, Chuang Gan and TAs _
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller LeCtU re 5 1 3 Sep 1 7’ 2024

Learning Rate Decay

Training Loss

10 4 Step: Reduce learning rate at a few fixed

points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

Loss

: 1
Cosine: (o, — 500 (1 4 cos(tm/T))

E) Sb ldO 15'0 260 250 300
Epoch
(Y() : Initial learning rate

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017 . .

Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018 at - Learnlng rate at epOCh t
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018 .

Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019 T) TOtaI number Of epOChS

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 14 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Learning Rate Decay

Learning rate

10 Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
] after epochs 30, 60, and 90.
0.6 1 1
- Cosine: o, = 50 (1 + cos(tm/T))
02 Linear: ,, — ao(l —t/T)
0.0 1
0 20 20 60 80 100
Epoch

(Y() : Initial learning rate
«v; - Learning rate at epoch t

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for T . TOtal number Of epOChS
Language Understanding”, 2018

Subhransu Maji, Chuang Gan and TAs _
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller LeCtU re 5 1 5 Sep 1 7’ 2024

Learning Rate Decay

Learning rate

Lo Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
08 after epochs 30, 60, and 90.

0.6 1

: 1
Cosine: ¢, — 500 (1 4 cos(tm/T))

Linear: ,, — ao(l —t/T)

Inverse sqrt: o, — ao/\/z

0.2 1

0 20 a0 60 80 100
Epoch o _

(Y() : Initial learning rate
«v; - Learning rate at epoch t

T : Total number of epochs
Vaswani et al, “Attention is all you need”, NIPS 2017

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 16 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

In practice:

- Adam is a good default choice in many cases; it
often works ok even with constant learning rate

- SGD+Momentum can outperform Adam but may
require more tuning of LR and schedule

Subhransu Maji, Chuang Gan and TAs

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller LeCtU re 5 - 1 7 Sep 1 7’ 2024

Neural Networks

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 18 Sep 12, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Neural networks: the original linear classifier

(Before) Linear score function: f = Wz

reRP W e REXP

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 19 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Neural networks: 2 layers

(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network ~ f = W5 max(0, Wiz)

r e RP W, e REXP W, e RO*H

(In practice we will usually add a learnable bias at each layer as well)

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 20 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Why do we want non-linearity?

Cannot separate red
and blue points with
linear classifier

Subhransu Maji, Chuang Gan and TAs Lecture 5- 21 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Why do we want non-linearity?

o y 6 ©
° ¢ %
° ® o
¢ (] .. Y f(X’ y) - (r(X1 y)s e(X1 y)) (] ..
e © |0 ° > e 9
X ® e r o ®
® o ® ([
o | o ¢ o
Y o
o ¢ o o°
)
Cannot separate red After applying feature
and blue points with transform, points can
linear classifier be separated by linear
classifier

Subhransu Maji, Chuang Gan and TAs

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller LeCtU re 5 - 22 Sep 1 7’ 2024

Neural networks: also called fully connected network

(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network f = W5 max (0, Wix)

r e RP W, e REXP W, e RE*XH

“Neural Network” is a very broad term; these are more accurately called
“fully-connected networks” or sometimes “multi-layer perceptrons” (MLP)

(In practice we will usually add a learnable bias at each layer as well)

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 23 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Neural networks: 3 layers

(Before) Linear score function: f = Wz

(Now) 2-layer Neural Network f = W max(0, Wiz)
or 3-layer Neural Network

f — W3 maX(O, WZ maX(O) WlCB))

z € RP, Wy € RM*P W, € RYXH w3 € RO

(In practice we will usually add a learnable bias at each layer as well)

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 24 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Neural networks: hierarchical computation
(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network f = W max(0, Wiz)

X W1 |ph| W2 |g

3072 100 10

reRP W, e REXDP W, ¢ REXH

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 25 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Neural networks: learning 100s of templates
(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network ~ f = W5 max(0, Wiz)

X W1 |ph| W2 |g

3072 100
Learn 100 templates instead of 10. Share templates between classes

Subhransu Maji, Chuang Ganand TAs | Lecture 5 - 26 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Neural networks: why is max operator important?
(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network f = Walmax(0,|W1z)

The function max(0, z) is called the activation function.
Q: What if we try to build a neural network without one?

f — WQWliE

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 27 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Neural networks: why is max operator important?
(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network f = Wa/max(0,Wix)

The function max(0, z) is called the activation function.
Q: What if we try to build a neural network without one?

f=WoWix Wy=WoW; € R f =Wz

A: We end up with a linear classifier again!

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 28 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Activation functions

Sigmoid

o(z) =

l1+e—*=

tanh
tanh(z) s

10,

RelLU
max (0,)

-10 10

Subhransu Maji, Chuang Gan and TAs

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

RelLU is a good default
choice for most problems

Leaky ReLU

max(0.1z, x)

10

Maxout
max(wi z + by, wlz + by)

10,

ELU

T x>0
ale® —1) <0 - B

Lecture 5 - 29

Sep 17, 2024

Neural networks: Architectures

X
{/
X
;‘;‘

output layer

)
®
ér‘\«'»

V2
:

output layer
input layer input layer
hidden layer X hidden layer 1 hidden layer 2

“3-layer Neural Net”, or
“2-layer Neural Net”, or “2-hidden-layer Neural Net”

1-hidden-layer Neural Net “Fully-connected” layers

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 30 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Example feed-forward computation of a neural network

AN
X
’r‘;‘s&‘

4
\
.

output layer

)
®

input layer
hidden layer 1 hidden layer 2

f = lambda‘ x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid
X = np.random.randn(3, 1) # random input vector of three numbers (3xl

hl = f(np.dot(Wl, x) + bl) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, hl) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1xI

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 31 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out)
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/(1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)

grad_y_pred = 2.0 *x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h *x h x (1 - h))

wl —= le-4 x grad_wl
w2 —= le-4 x grad_w2

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 32 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/(1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)

grad_y_pred = 2.0 *x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h *x h x (1 - h))

wl —= le-4 x grad_wl
w2 —= le-4 x grad_w2

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 33 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/(1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2) Forward pass
loss = np.square(y_pred - y).sum()
print(t, loss)

grad_y_pred = 2.0 *x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h *x h x (1 - h))

wl —= le-4 x grad_wl
w2 —= le-4 x grad_w2

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 34 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/(1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2) Forward pass
loss = np.square(y_pred - y).sum()
print(t, loss)

grad_y_pred = 2.0 *x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h *x h x (1 - h))

Calculate the analytical gradients

wl —= le-4 x grad_wl
w2 —= le-4 x grad_w2

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 35 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/(1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2) Forward pass
loss = np.square(y_pred - y).sum()
print(t, loss)

grad_y_pred = 2.0 *x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h *x h x (1 - h))

Calculate the analytical gradients

wl —= le-4 x grad_wl

W2 -= le-4 x grad_w2 Gradient descent

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 36 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Setting the number of layers and their sizes

3 hidden neurons

6 hidden neurons

20 hidden neurons

e © Je¢ e © . o e © o
o o)
® ¢ @ ®) ©
© o)
® ® e ® O onl® @ ® o
© o o) © © °
® @ o ® @
v v v L 4
e © e © e ©
e © e © .QO
{k b
® o ® e ® o
© o @ © @ @
o ®
e} o ey ® o) ©
) ® @
e ° o)

Subhransu Maji, Chuang Gan and TAs

more neurons = more capacity

Lecture 5 - 37

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Sep 12, 2024

Do not use size of neural network as a regularizer. Use stronger regularization instead:

A =0.001 A=0.01 A=0.1
: o * o) e o
o © 1)
© o | o
) 3 1) ® < o} @ o 6]
® ® o & ® ® o it ® ® o i
© 4 ® ¢ ® o
© ® e ® o ®
® o e} ® o) ® O o
S e ® ® ~ ¢ 6]) ® o @ ®
® o) e ® e) ®

(Web demo with ConvNetJS: http://cs.stanford.edu/
people/karpathy/convnetjs/demo/classify2d.html) L(W) = Z Li(f(zi, W), yi) + AR(W)

Subhransu Maji, Chuang Ganand TAs | Lecture 5 - 38 Sep 12, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

This image by Fotis Bobolas is
licensed under CC-BY 2.0

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 39 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/

Impulses carried toward cell body

\ dendrite
presynaptic
terminal

axon

cell ——
body

Impulses carried away
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 40 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Impulses carried toward cell body

\ dendrite
presynaptic
terminal

axon

cell ———
body

Impulses carried away

from cell body 0 wo

*® s

axon from a neuron S
woT o

This image by Felipe Perucho
is licensed under CC-BY 3.0

cell body

7 (Z w;T; + b)
Zwizi +b :

output axon

activation
function

w1

Y

W2

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 41 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Impulses carried toward cell body

\ dendrite
presynaptic
terminal

axon

cell ———
body

Impulses carried away

from cell body 0 wo

*® s

axon from a neuron S
woT o

This image by Felipe Perucho
is licensed under CC-BY 3.0

cell body

7 (Z w;T; + b)
Zwizi +b :

output axon

activation
function

w1

Y

sigmoid activation function

1 W2
1+e>

-10 -5 0 5 10

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 42 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Biological Neurons:
Complex connectivity patterns

This image is CCO Public Domain

Subhransu Maji, Chuang Gan and TAs

Neurons in a neural network:
Organized into regular layers for
computational efficiency

)

e =N
R
. output layer

5

input layer

hidden layer 1 hidden layer 2

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 5 - 43

Sep 17, 2024

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Biological Neurons: But neural networks with random

Complex connectivity patterns connections can work too!
F 2] | :(w' = "‘;‘{ f W’
7 ~ RN\ (SR I~
e \ip 0l
i NN NN

This image is CCO Public Domain
Xie et al, “Exploring Randomly Wired Neural Networks for Image Recognition”, arXiv 2019

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 44 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Be very careful with your brain analogies!

Biological Neurons:
e Many different types
e Dendrites can perform complex non-linear computations
e Synapses are not a single weight but a complex non-linear dynamical system

[Dendritic Computation. London and Hausser]

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 45 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Plugging in neural networks with loss functions

s = f(x; W1, Ws) = Wy max(0, Wiz)Nonlinear score function
L; = Z max(0,s; — sy, +1) SVM Loss on predictions
JFYi

R(W) = Z W} Regularization
k

N
L = % Z L; + A\AR(W) +)\R(W2)Total loss: data loss + regularization
i=1

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 46 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Problem: How to compute gradients?

s = f(x; Wy, W3) = Woymax(0, Wiz) Nonlinear score function

L, = Z max(0,s; —s,, +1) SVM Loss on predictions
JFYi

R(W) = Z W7 Regularization
k

N
L = % Z L; + AR(W;) + AR(W,) Total loss: data loss + regularization
i=1

oL OL
(9W1 ’ 5W2

If we can compute then we can learn W, and W,

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 47 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

(Bad) Idea: Derive Vs L on paper

s= f(z; W) = Wa Problem: Very tedious: Lots of

matrix calculus, need lots of paper
L, = z max (0, s; — s, + 1) pap

i#Yi Problem: What if we want to
= max(0, W, -a+ W, .-z +1) change loss? E.g. use softmax
iy instead of SVM? Need to re-
N derive from scratch =(
1
L=—=Y Li+AY W} _
N = . Problem: Not feasible for very
| N complex models!
=N Z Z max(0,W;.-a+W,,.-x+1)+ A Z W
i=1j#yi k

i=1 j#y,

N
1
VwL =Vw (F E E max(0,W;.-a+W,, . x+1)+ A E I»'V,f)
k

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 48 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Next lecture: Computational graphs + Backpropagation

f=Wgz| [Li =), max(0,s; — sy, +1)

I

/ @ s (scores) - @—]
e

\/R(W)

Subhransu Maji, Chuang Gan and TAs Lecture 5 - 49 Sep 17, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

