Lecture 5: Learning Rate Schedules Neural Networks

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 5 - 1

Announcements

- Optional discussion this Friday, Sep 20, 11-12pm, CS142
- Topic: Reviewing the chain rule, Applying the chain rule to vectors

Lecture 5 - 2

Sep 17, 2024

• Homework 1 due Thursday, Sept 26, 11:55pm

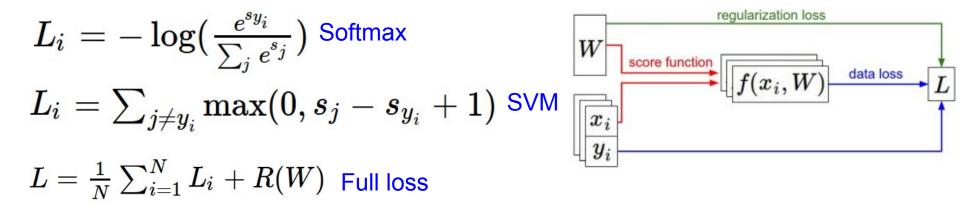
Recap

- We have some dataset of (x,y)
- We have a **score function**:
- We have a loss function:

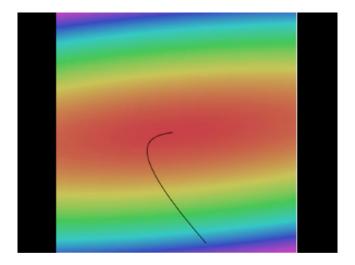
$$s=f(x;W) \stackrel{ ext{e.g.}}{=} Wx$$

Lecture 5 - 3

Sep 17, 2024



Finding the best W: Optimize with Gradient Descent



Vanilla Gradient Descent

while True:

Landscape image is <u>CC0 1.0</u> public domain Walking man image is <u>CC0 1.0</u> public domain weights_grad = evaluate_gradient(loss_fun, data, weights)
weights += - step_size * weights_grad # perform parameter update

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 5 - 4

Gradient descent

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Numerical gradient: slow :(, approximate :(, easy to write :) **Analytic gradient**: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

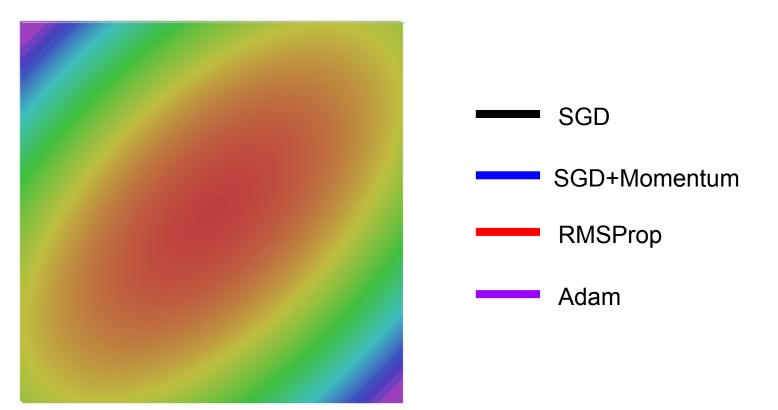
Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

Sep 17, 2024

```
# Vanilla Minibatch Gradient Descent
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Lecture 5 - 6

Last time: fancy optimizers



Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

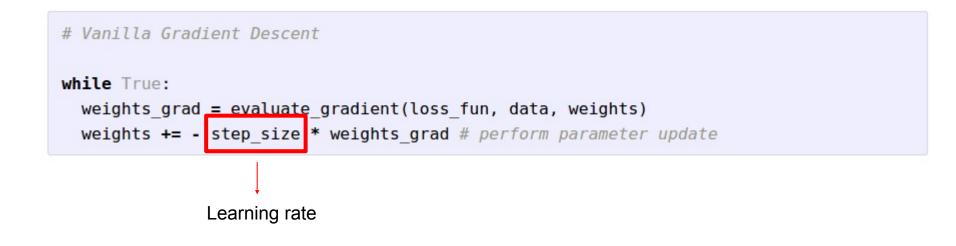
Lecture 5 - 7

Learning rate schedules

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 5 - 8

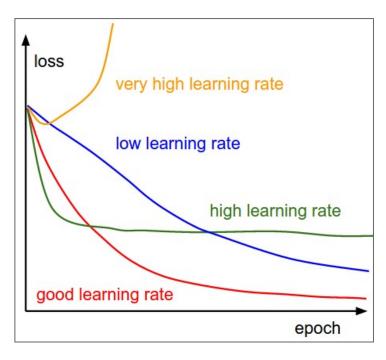
Learning rate schedules



Lecture 5 - 9

<u>Sep 17, 2024</u>

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.

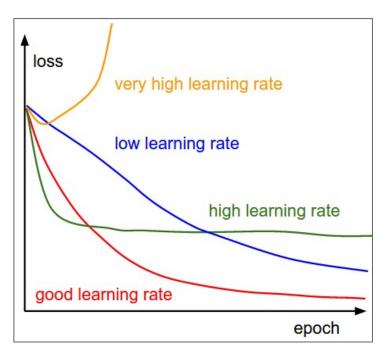


Q: Which one of these learning rates is best to use?

Sep 17, 2024

Lecture 5 - 10

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.



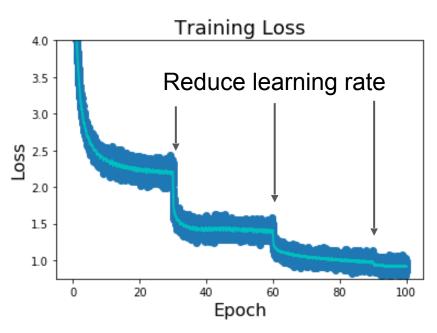
Q: Which one of these learning rates is best to use?

A: In reality, all of these are good learning rates.

Sep 17, 2024

Lecture 5 - 11

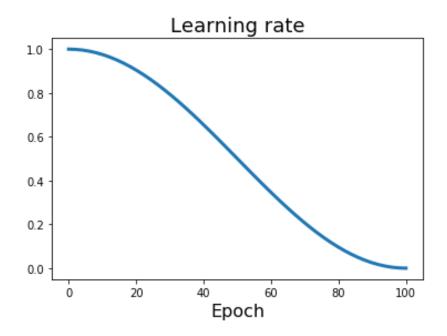
Learning rate decays over time



Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 5 - 12



Loshchilov and Hutter. "SGDR: Stochastic Gradient Descent with Warm Restarts". ICLR 2017 Radford et al, "Improving Language Understanding by Generative Pre-Training", 2018 Feichtenhofer et al, "SlowFast Networks for Video Recognition", arXiv 2018 Child at al. "Generating Long Sequences with Sparse Transformers". arXiv 2019

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:
$$\alpha_t = \frac{1}{2} \alpha_0 \left(1 + \cos(t\pi/T) \right)$$

Lecture 5 - 13

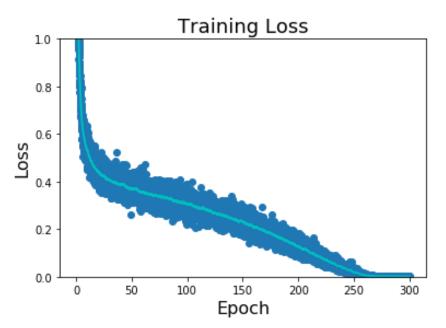
 α_0 : Initial learning rate

- α_t : Learning rate at epoch t $_{T}$: Total number of epochs

Sep 17, 2024

Subhransu Maji, Chuang Gan and TAs

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



Loshchilov and Hutter. "SGDR: Stochastic Gradient Descent with Warm Restarts". ICLR 2017 Radford et al, "Improving Language Understanding by Generative Pre-Training", 2018 Feichtenhofer et al, "SlowFast Networks for Video Recognition", arXiv 2018 Child at al. "Generating Long Sequences with Sparse Transformers". arXiv 2019

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:
$$\alpha_t = \frac{1}{2} \alpha_0 \left(1 + \cos(t\pi/T) \right)$$

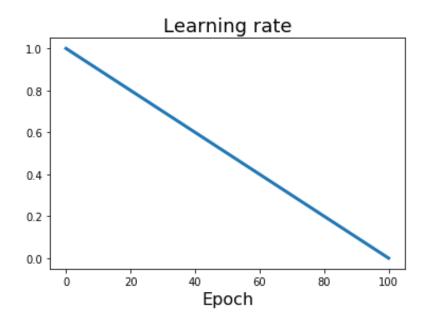
 α_0 : Initial learning rate

- α_t : Learning rate at epoch t T: Total number of epochs

Subhransu Maji, Chuang Gan and TAs

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 5 - 14



Devlin et al, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", 2018

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:
$$\alpha_t = \frac{1}{2} \alpha_0 \left(1 + \cos(t\pi/T)\right)$$

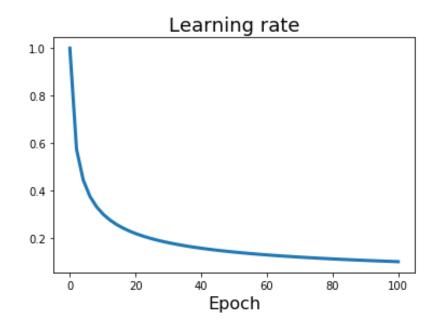
Linear: $\alpha_t = \alpha_0 (1 - t/T)$

 α_0 : Initial learning rate α_t : Learning rate at epoch t T: Total number of epochs

Subhransu Maji, Chuang Gan and TAs

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 5 - 15



Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:
$$\alpha_t = \frac{1}{2} \alpha_0 \left(1 + \cos(t\pi/T)\right)$$

Linear: $\alpha_t = \alpha_0 (1 - t/T)$
Inverse sqrt: $\alpha_t = \alpha_0 / \sqrt{t}$

Lecture 5 - 16

 α_0 : Initial learning rate α_t : Learning rate at epoch t T : Total number of epochs

Sep 17, 2024

Vaswani et al, "Attention is all you need", NIPS 2017

Subhransu Maji, Chuang Gan and TAs

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

In practice:

- Adam is a good default choice in many cases; it often works ok even with constant learning rate
- **SGD+Momentum** can outperform Adam but may require more tuning of LR and schedule

Lecture 5 - 17

Neural Networks

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 5 - 18

Neural networks: the original linear classifier

(**Before**) Linear score function:
$$f=Wx$$

$$x \in \mathbb{R}^D, W \in \mathbb{R}^{C \times D}$$

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 5 - 19

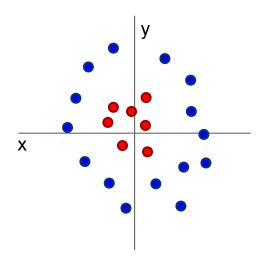
Neural networks: 2 layers

(Before) Linear score function: $egin{array}{cc} f = Wx \ ({
m Now})$ 2-layer Neural Network $egin{array}{cc} f = W_2\max(0,W_1x) \ x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H imes D}, W_2 \in \mathbb{R}^{C imes H} \end{array}$

(In practice we will usually add a learnable bias at each layer as well)

Sep 17, 2024

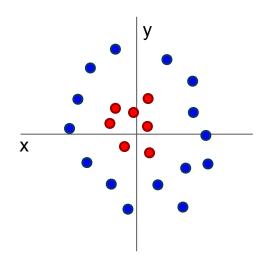
Why do we want non-linearity?



Cannot separate red and blue points with linear classifier

Why do we want non-linearity?

 $f(x, y) = (r(x, y), \theta(x, y))$



Cannot separate red and blue points with linear classifier After applying feature transform, points can be separated by linear classifier

θ

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 5 - 22

Neural networks: also called fully connected network

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1x)$ $x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$ "Neural Network" is a very broad term; these are more accurately called

"fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)

(In practice we will usually add a learnable bias at each layer as well)

Sep 17, 2024

Lecture 5 - 23

Neural networks: 3 layers

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1x)$ or 3-layer Neural Network $f = W_3 \max(0, W_2 \max(0, W_1x))$

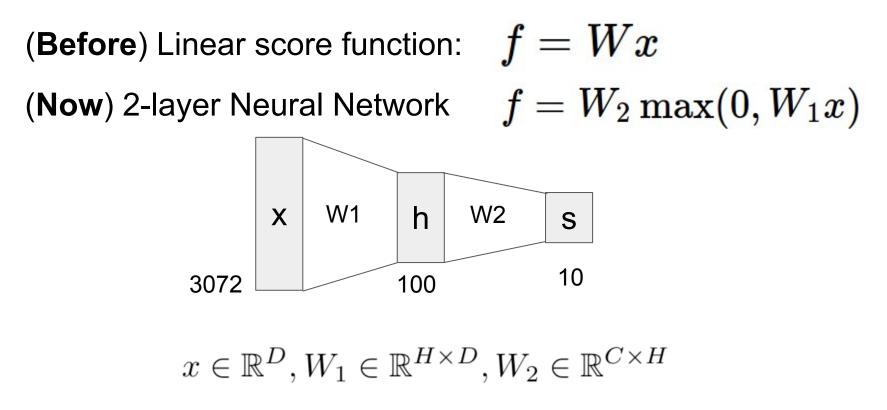
$$x \in \mathbb{R}^{D}, W_1 \in \mathbb{R}^{H_1 \times D}, W_2 \in \mathbb{R}^{H_2 \times H_1}, W_3 \in \mathbb{R}^{C \times H_2}$$

Lecture 5 - 24

(In practice we will usually add a learnable bias at each layer as well)

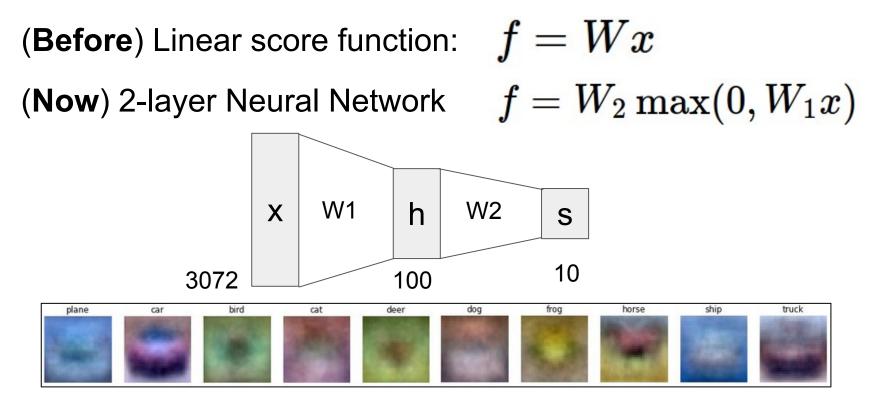
Sep 17, 2024

Neural networks: hierarchical computation



Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Neural networks: learning 100s of templates



Learn 100 templates instead of 10.

Share templates between classes

Sep 17, 2024

Lecture 5 - 26

Neural networks: why is max operator important?

(**Before**) Linear score function:
$$egin{array}{c} f = Wx \ ({f Now})$$
 2-layer Neural Network $egin{array}{c} f = W_2 oxdot \max(0, W_1x) \end{array}$

The function max(0, z) is called the **activation function**. **Q**: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Neural networks: why is max operator important?

(**Before**) Linear score function:
$$egin{array}{c} f = Wx \ ({f Now})$$
 2-layer Neural Network $egin{array}{c} f = W_2 egin{array}{c} \max(0, W_1x) \ \end{array}$

The function max(0, z) is called the **activation function**. **Q:** What if we try to build a neural network without one?

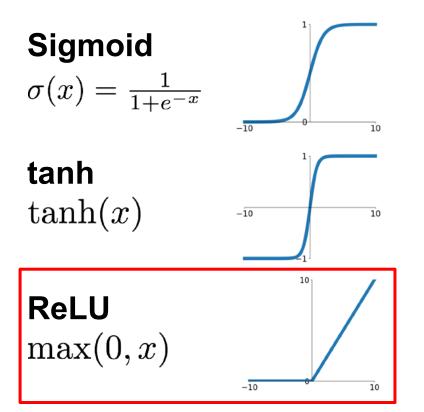
$$f = W_2 W_1 x \qquad W_3 = W_2 W_1 \in \mathbb{R}^{C \times H}, f = W_3 x$$

Lecture 5 - 28

Sep 17, 2024

A: We end up with a linear classifier again!

Activation functions

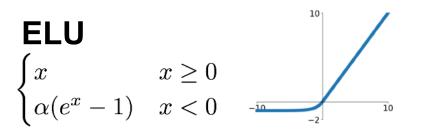


ReLU is a good default choice for most problems

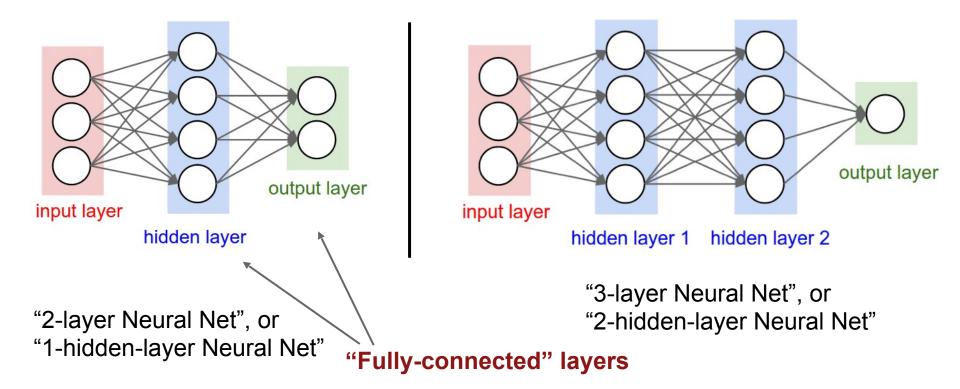
Sep 17, 2024

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Lecture 5 - 29



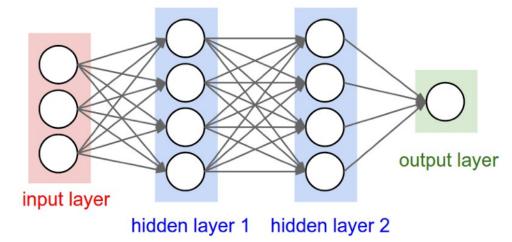
Neural networks: Architectures



Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 5 - 30

Example feed-forward computation of a neural network



forward-pass of a 3-layer neural network: f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid) x = np.random.randn(3, 1) # random input vector of three numbers (3x1) h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1) h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1) out = np.dot(W3, h2) + b3 # output neuron (1x1)

Lecture 5 - 31

Sep 17, 2024

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D_in, H, D_out = 64, 1000, 100, 10
 4
    x, y = randn(N, D in), randn(N, D out)
 5
    w1, w2 = randn(D_in, H), randn(H, D_out)
 6
 7
    for t in range(2000):
 8
 9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y_pred - y).sum()
       print(t, loss)
12
13
14
       grad_y pred = 2.0 * (y pred - y)
       grad_w2 = h.T.dot(grad_y_pred)
15
16
       grad_h = grad_y_pred.dot(w2.T)
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
19
      w1 -= 1e - 4 * grad_w1
      w^2 -= 1e^{-4} * grad w^2
20
```

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 5 - 32


```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D_in, H, D_out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D_in, H), randn(H, D_out)
 6
 7
    for t in range(2000):
 8
 9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
       loss = np.square(y_pred - y).sum()
       print(t, loss)
12
13
14
       grad_y pred = 2.0 * (y pred - y)
       grad_w2 = h.T.dot(grad_y_pred)
15
16
       grad_h = grad_y_pred.dot(w2.T)
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
19
      w1 = 1e-4 * grad_w1
      w^2 -= 1e^{-4} * qrad w^2
20
```

Define the network

Lecture 5 - 33

Sep 17, 2024

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D_in, H, D_out = 64, 1000, 100, 10
 4
    x, y = randn(N, D in), randn(N, D out)
 5
    w1, w2 = randn(D_in, H), randn(H, D_out)
 6
 7
 8
    for t in range(2000):
 9
       h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
       loss = np.square(y_pred - y).sum()
      print(t, loss)
12
13
14
       grad_y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
16
      grad_h = grad_y_pred.dot(w2.T)
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
19
      w1 = 1e-4 * grad_w1
      w^2 -= 1e^{-4} * grad w^2
20
```

Define the network

Forward pass

Lecture 5 - 34

Sep 17, 2024

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D_in, H, D_out = 64, 1000, 100, 10
 4
    x, y = randn(N, D in), randn(N, D out)
 5
    w1, w2 = randn(D_in, H), randn(H, D_out)
 6
 7
    for t in range(2000):
 8
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
      y_pred = h.dot(w2)
10
11
       loss = np.square(y_pred - y).sum()
       print(t, loss)
12
13
       grad_y_pred = 2.0 * (y_pred - y)
14
15
       grad_w2 = h.T.dot(grad_y_pred)
16
       grad_h = grad_y_pred.dot(w2.T)
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
19
      w1 = 1e-4 * grad_w1
      w^2 -= 1e^{-4} * grad w^2
20
```

Define the network

Forward pass

Calculate the analytical gradients

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

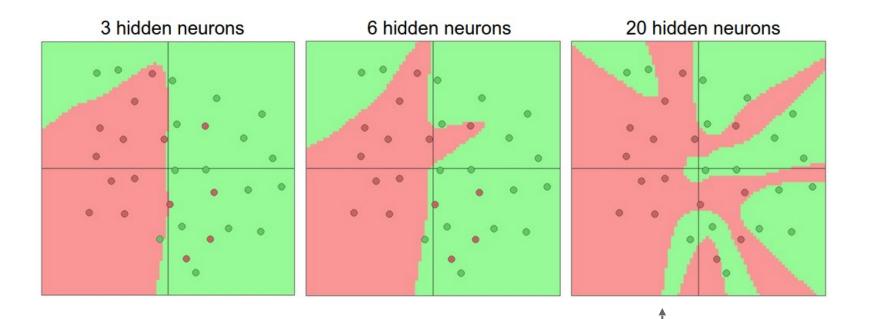
Lecture 5 - 35


```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D_in, H, D_out = 64, 1000, 100, 10
 4
                                                                 Define the network
    x, y = randn(N, D in), randn(N, D out)
 5
    w1, w2 = randn(D_in, H), randn(H, D_out)
 6
 7
    for t in range(2000):
 8
 9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
                                                                 Forward pass
11
      loss = np.square(y_pred - y).sum()
      print(t, loss)
12
13
14
      grad_y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
                                                                 Calculate the analytical gradients
16
      grad_h = grad_y_pred.dot(w2.T)
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 = 1e-4 * grad_w1
19
                                                                 Gradient descent
      w2 = 1e - 4 * grad w2
20
```

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 5 - 36

Setting the number of layers and their sizes



more neurons = more capacity

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 5 - 37

Sep 12, 2024

Do not use size of neural network as a regularizer. Use stronger regularization instead:

 $\lambda = 0.001$ $\lambda = 0.01$ $\lambda = 0.1$ 0 0 0 $L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$ (Web demo with ConvNetJS: <u>http://cs.stanford.edu/</u> people/karpathy/convnetjs/demo/classify2d.html)

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

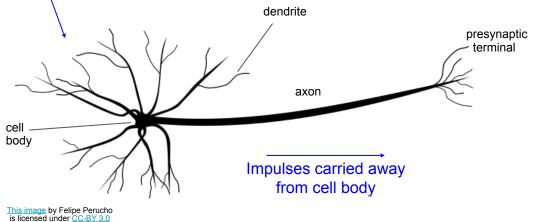
Lecture 5 - 38

Sep 12, 2024

This image by Fotis Bobolas is licensed under <u>CC-BY 2.0</u>

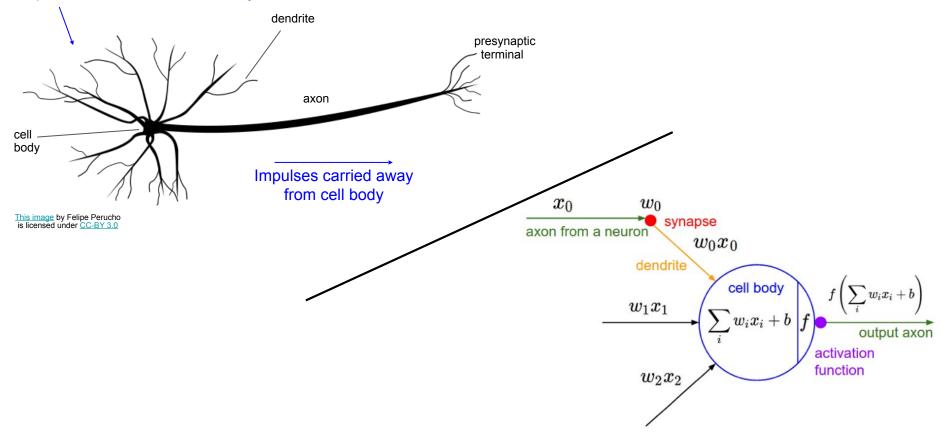
Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Impulses carried toward cell body



Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Impulses carried toward cell body

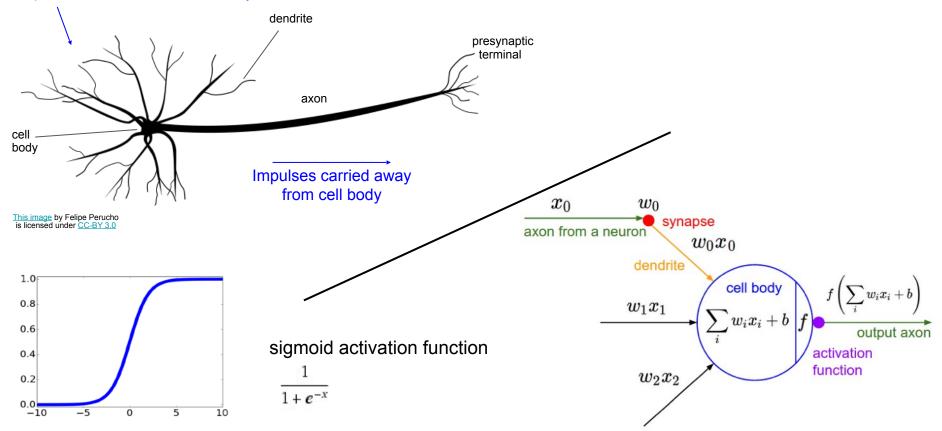


Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 5 - 41

Sep 17, 2024

Impulses carried toward cell body

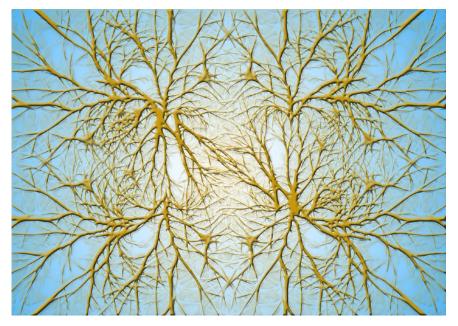


Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

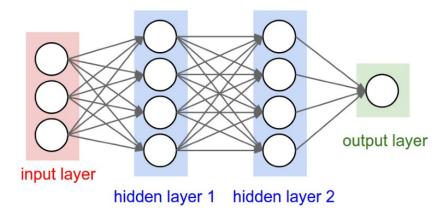
Lecture 5 - 42

Sep 17, 2024

Biological Neurons: Complex connectivity patterns



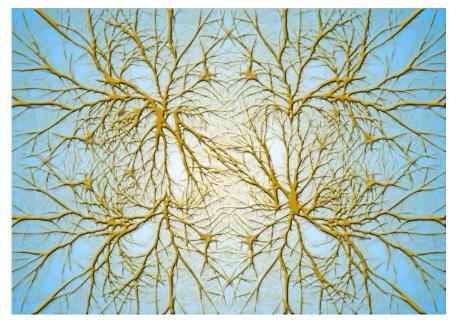
Neurons in a neural network: Organized into regular layers for computational efficiency



This image is CC0 Public Domain

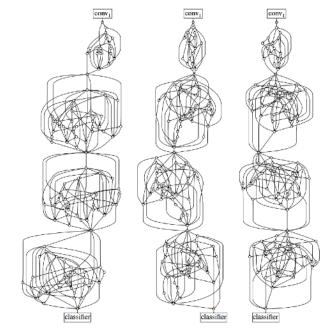
Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Biological Neurons: Complex connectivity patterns



This image is CC0 Public Domain

But neural networks with random connections can work too!



Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", arXiv 2019

Sep 17, 2024

Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Be very careful with your brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system

Lecture 5 - 45

Sep 17, 2024

[Dendritic Computation. London and Hausser]

Plugging in neural networks with loss functions

$$s = f(x; W_1, W_2) = W_2 \max(0, W_1 x)$$
Nonlinear score function
$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$
SVM Loss on predictions

$$\begin{split} R(W) &= \sum_k W_k^2 \text{ Regularization} \\ L &= \frac{1}{N} \sum_{i=1}^N L_i + \lambda R(W_1) + \lambda R(W_2) \text{Total loss: data loss + regularization} \end{split}$$

Problem: How to compute gradients?

$$\begin{split} s &= f(x; W_1, W_2) = W_2 \max(0, W_1 x) \quad \text{Nonlinear score function} \\ L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \quad \text{SVM Loss on predictions} \\ R(W) &= \sum_k W_k^2 \quad \text{Regularization} \\ L &= \frac{1}{N} \sum_{i=1}^N L_i + \lambda R(W_1) + \lambda R(W_2) \quad \text{Total loss: data loss + regularization} \\ \text{If we can compute} \quad \frac{\partial L}{\partial W_1}, \frac{\partial L}{\partial W_2} \quad \text{then we can learn } W_1 \text{ and } W_2 \end{split}$$

Lecture 5 - 47

Sep 17, 2024

(Bad) Idea: Derive $abla_W L$ on paper

$$s = f(x; W) = Wx$$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_{i} + \lambda \sum_{k} W_{k}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2}$$

$$\nabla_{W}L = \nabla_{W} \left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2} \right)$$

Problem: Very tedious: Lots of matrix calculus, need lots of paper

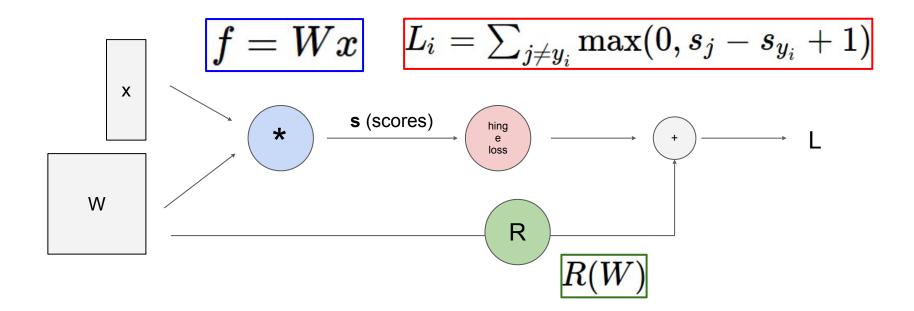
Problem: What if we want to change loss? E.g. use softmax instead of SVM? Need to rederive from scratch =(

Problem: Not feasible for very complex models!

Sep 17, 2024

Lecture 5 - 48

Next lecture: Computational graphs + Backpropagation



Subhransu Maji, Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

