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Where we are ...

§ = f(fc, W) =Wz scores function
Lig — Zj;éyi maX(O, 8j — Sy. + 1) SVM loss

_ 1N 7. 2 izati
= W Zi:l L; + Zk Wk data loss + regularization
want VwL
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Optimization

X = SGD
{ — Momentum
we  NAG

- Adagrad
Adadelta
Rmsprop

TTTrrTTTT

# Vanilla Gradient Descent

(image credits

weights grad = evaluate gradient(loss fun, data, weights) tO AleC Radford)
weights += - step size * weights grad # perform parameter update

while True:
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Gradient Descent

df(z) _ . fl@+h) - f(a)

dx h —0 h

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your
Implementation with numerical gradient
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Overview of where we’re going

e \We want to evaluate the gradient of a Loss function
L(x,W,...), with respect to the parameters (weights) of a
neural network, at the “point” represented by the
arguments to the function (x,W,...).

o We are not interested in an algebraic expression
for the gradient, but rather only in the evaluation of
that gradient at the current value of the function
arguments.
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Subhransu

Some slides ki

Consider the function
2(z,y) = 2° + 97,

and suppose we are interested in evaluating the gradient of this function at the point

(8.5) = (5,3):
Evaluate the gradient:
0z 5
— = 2.
ox
0z
— =2y.
oy o
The algebraic expression of the gradient is just the collection of these partials into a “vector”:
Vz = B"’] S Don'’t care about this
)

The evaluation of this gradient at the point (z,y) = (5, 3) is simply
Do care about this

V2(5,3) = E ’ g] - [160] L




Convolutional Network SN=
(AlexNet) " LY

input image/v il _
 » o

loss
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Neural Turing Machine / 3

iInput tape

loss

\
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Computational Graph

f = Wax| [Li =>4, max(0,s; — sy, +1)

@ s (scores) ‘ ? L
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f(z,y,2) = (z + y)z ~
eg.x=-2,y=95,z=-4 y 5 _—

Forward pass: evaluating each expression in
the computational graph from the inputs to the

final output (or outputs). The results of
each forward step are shown in green.
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# set some inputs

X =-2; y=5; z= -4

# perform the forward pass
= x + y # g becomes 3

H Q
I

=q * z # f becomes -12

# perform the backward pass (backpropagation) in reverse order:

# first backprop through f = g * z

dfdz = q # df/dz = q, so gradient on z becomes 3

dfdq = z # df/dqg = z, so gradient on g becomes -4

# now backprop through q = x + y

dfdx 1.0 * dfdg # dq/dx 1. And the multiplication here is the chain rule!
dfdy 1.0 * dfdg # dqg/dy il

Il
I
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flz,y,2) = (¢ +y)z bl
eg.x=-2,y=95,z=-4 +

Backward pass: evaluating the partial derivative of i )
each parameter or intermediate result in the

computational graph from the outputs back to the
inputs.The results of each backward step are z 4
shown in red.

Goal is to calculate

of of Of
Ox’ Oy’ 0z

evaluated at the point

|2 = —2, =35, 2= —4].

Subhransu Maji, Chuang Gan and TAs Lecture 6 - 12 Sept_ 19, 2024

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



f(z,y,2) = (z +y)z DQ .
eg.Xx=-2,y=95,z=-4 y 5

f -12
g=c+y g:v_lc'}y 1| 5=
of of
f=4qz 0= %5 =4
of Of of
Want: ) By Bz
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f(z,y,2) = (z +y)z 8
+
eg.x=-2,y=95,z=-4 y 5 -
_ — - A

qg=zty L=1,3=1]""

Important: name the intermediate quantities

aF . 0F

f=qz o 2o 1

Compute some local partial derivatives.
0 f 0 f 0 f These are derivatives of the outputs of a node

Want: with respect to the inputs....
ant: 5.5 3y Bz
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f(a:,y,z)z(:chy)z ng
eg.Xx=-2,y=95,z=-4 y 5

f-12
_ 9  , 0q z -4 /
=@ty o Sl =1 ,
of
of of 9
f=a 3 =% =4 2l
. Of of Oof
Want: 5z By 02
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f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=-4

o Ay
of of
f=4qz 0= %5 =4
~ of of of
Want: 5z By 02
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f(a:,y,z)z(:chy)z ng
eg.Xx=-2,y=95,z=-4 y 5

f~12
1
_ 9  , 0q z -4
of
of of o
f=gqz % %5 — 4 0z
. Oof 0of of
Want: 5z By 02
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f(a:,y,z)z(:chy)z ng
eg.Xx=-2,y=95,z=-4 y 5

f -12
1
o dqg dqg z -4
q_w_l—y %—175_1 3 —
of
of of ot
f=qz % %5 — 4 0z
. Of of Oof
Want: 5z By 02
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f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=-4

o Ay
of of
f=4qz 0= %5 =4
~ of of of
Want: 5z By 02
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f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=-4

o Ay
of of
f=4qz 0= %5 =4
~ of of of
Want: 5z By 02
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f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=-4

ox Ay
of of
f =gz O_q = Z, E =q By
~ @9f of o
Want: 5z By 02
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f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=-4

_ o . 0q
of of
f=qz g~ 4 Chain rule: 9y
vl 0 Bo
~ Of of of Oy dq Oy
Want: 5z By 02
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f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=-4

oz dy
of of
f — qz O_q — z’ E — q Or
- of of Of
Want: 5z By 02
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f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=-4

_ 9 _ . 0q9 _
q=+Y 5—1,@—1
of of
f=qz g~ 4 Chain rule: Oz
of _ of &
~9f of oFf dr ~ 0q Oz
Want: T
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# set some inputs

X =-2; y=5; z= -4

# perform the forward pass
= x + y # g becomes 3

H Q
I

=q * z # f becomes -12

# perform the backward pass (backpropagation) in reverse order:

# first backprop through f = g * z

dfdz = q # df/dz = q, so gradient on z becomes 3

dfdq = z # df/dqg = z, so gradient on g becomes -4

# now backprop through q = x + y

dfdx 1.0 * dfdg # dq/dx 1. And the multiplication here is the chain rule!
dfdy 1.0 * dfdg # dqg/dy il

Il
I
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-] activations
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-] activations

“local gradient”
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-] activations

“local gradient”

0z
ox f >
% oL
% =
gradients
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-] activations

@ “local gradient”
~> oy 0z

O, f ‘
10 oL
% By 0z
gradients
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-] activations

@ “local gradient”
~> oy 0z

X .o e
9z oL
e OL
T = 0z
ol =, .
4 o~ gradients
§
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-] activations

@ “local gradient”
~> oy 0z

\ —_—
Li. oL
Oy 0z

4 oz OY gradients
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_ 1 “sigmoid function”
f(w,m) e e e—(w0m0+w1m1+w2)

Another example:

w0 2.00
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1

_ 1 +e—(w0:c0+w1:c1+w2)

Another example:  f(w,z)

w0 2.00
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1
- 1 + e (wozo+wizy+wy)

Another example:  f(w,z)

w0 2.00
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1
— 1.1 e—(w0$0+w1$1+w2)

Another example:  f(w,z)

w0 2.00

(—5:2)(1.00) = —-0.53

1.00 @ -1.00 @ 0.37 @ 1.37 @ 0.73
N \9 _/ |05 . 100
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1
- 1 + e (wozo+wizy+wy)

Another example:  f(w,z)

w0 2.00
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1
— 1.1 e—(w0$0+w1$1+w2)

Another example:  f(w,z)

w0 2.00

1.00 @ -1.00 @ 0.37 @ 1.37 @ 0.73
N \9 053 \__/ -053 1.00
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1
— 1.1 e—(w0$0+w1$1+w2)

Another example:  f(w,z)

w0 2.00

1.00 @ -1.00 @ 0.37 @ 1.37 @ 0.73
N \& -0.53 053 \_J 100
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1
— 1.1 e—(w0$0+w1$1+w2)

Another example:  f(w,z)

w0 2.00

(e~1)(—0.53) = —0.20

1.00 @ -1.00 @ 0.37 @ 1.37 @ 0.73
_ |-020 \& -0.53 053 \_J 100
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1
- 1 + e (wozo+wizy+wy)

Another example:  f(w,z)

w0 2.00
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1
— 1.1 e—(w0$0+w1$1+w2)

Another example:  f(w,z)

w0 2.00

(-1) * (-0.20) = 0.20

‘:po @ -1.00 @ 0.37 @ 1.37 @ 0.73
020 \_/ -020 053 \__/ 053 . 1.00
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1
- 1 + e (wozo+wizy+wy)

Another example:  f(w,z)

w0 2.00
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1
- 1 + e (wozo+wizy+wy)

Another example:  f(w,z)

w0 2.00

[local gradient] x [its gradient]
[1] x[0.2] = 0.2
[1] x [0.2] = 0.2 (both inputs!)

1.00 @ -1.00 @ 0.37 /H\ 1:37 @ 0.73
AN/ A N5y BS \o A% ./ 1

w2 -3.00
0.20
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1
- 1 + e (wozo+wizy+wy)

Another example:  f(w,z)

w0 2.00

0.20
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1

_ 1 +e—(w0:c0+w1:c1+w2)

Another example:  f(w,z)

w0 2.00
020 20 [local gradient] x [its gradient]
x0 -1.00 ' x0: [2] X [02] =0.4

wO: [-1] x [0.2] = -0.2

‘spo (*1)_.1.00 @ 037 (7). 137 @ 0.73
020 \_/ -020 U 053 \_/ 053 \_J 1.00

0.20
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B 1 1
flw,z) = 1 + e—(Womo+wizi+wy) o(z) = 1+e-2| sigmoid function

do(z) e’ (1 i 1) (%) = (1-o(z))o(x)

dr (1+e®)? 1+e® 1+e”

sigmoid gate

1.00 | A7) 100 N 037 N 137 /ﬁx\ 0.73
020 | \__/ -020 \9 053 \__/ -053 \ | 1.00
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B 1 1
flw,z) = 1 + e—(Womo+wizi+wy) o(z) = 1+e-2| sigmoid function

do(z) e’ (1 e = 1) (#> = (1-o(z))o(x)

dr (1—|—e“””)2 1-4€ % i-le "

sigmoid gate

1.00 | A7) 100 N 037 N 137 m |o_73 ‘
020 | \__/ -020 \9 053 \__/ -053 1.00

\

(0.73)* (1-0.73) = 0.2
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w = [2,-3,-3] # assume some random weights and data
["11 "'2]

ES
I

# forward pass
dot = w[0]*x[0] + w[l]*x[1] + W[2]
f=1.0/ (1 + math.exp(-dot)) # sigmoid function

# backward pass through the neuron (backpropagation)

ddot = (1 - £) * £ # gradient on dot variable, using the sigmoid gradient derivation
dx = [w[0] * ddot, w[l] * ddot] # backprop into x

dw = [x[0] * ddot, x[1] * ddot, 1.0 * ddot] # backprop into w

# we 're done! we have the gradients on the inputs to the circuit
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Patterns in backward flow

add gate: gradient distributor x 3.00
max gate: gradient router -8.00
mul gate: gradient... “switcher”?

-12.00
y -4.00

_10.00 /%> -20.00
2.00 < ) 1.00
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Gradients add at branches

_

_
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Implementation: forward/backward API

Graph (or Net) object. (Rough pseudo code)

class ComputationalGraph(object):

(i) 13 73
QD 05 X100 #wn

def forward(inputs):
# 1. [pass inputs to input gates...]
# 2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():
gate.forward()
return loss # the final gate in the graph outputs the loss
def backward():
for gate in reversed(self.graph.nodes topologically sorted()):
gate.backward() # little piece of backprop (chain rule applied)

return inputs gradients
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Implementation: forward/backward API

class MultiplyGate(object):

X
def forward(x,y):
Z
Z = X*y
return z
Y def backward(dz):
e e #to;;\\\\\\\
# dy = ... #todo OL
return [dx, dy] )
(X,y,z are scalars) ~ 2
OL
ox
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Implementation: forward/backward API

class MultiplyGate(object):
def forward(x,y):

X zZ = X*y
7 self.x = x # must keep these around!
self.y =y
return z
3/ def backward(dz):

dx = self.y * dz # [dz/dx * dL/dz]
dy = self.x * dz # [dz/dy * dL/dz]
return [dx, dy]

(Xx,y,z are scalars)
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Example: Torch Layers
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Example: Torch Layers

@ waten-
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local MulConstant, parent = torch.class('nn.MulConstant', 'nn.Module')

Example: Torch MulConstant

parent.__init(self)
assert(type(constant_scalar) == 'number', 'input is not scalar!')

self.constant_scalar = constant_scalar X X

self.inplace = ip or false
if (ip and type(ip) ~= 'boolean') then
error('in-place flag must be boolean')
end
end n ltl I | } tl
function MulConstant:updateQutput(input) I n I I a Iza IO n
if self.inplace then
input:mul(self.constant_scalar)
self.output = input
else

self.output:resizeAs(input) \
o orwar

:mul(self.constant_scalar)

return self.output
end

function MulConstant:updateGradInput(input, gradOutput)
if self.gradInput then
if self.inplace then
gradOutput:mul(self.constant_scalar)
self.gradInput = gradOutput

input:aiv( t:rlf.constént_scélér) / b a C kwa rd
else

elf.gradInput:resizeAs(gradOutput)
f.gradInput:copy(gradOutput)

self.gradInput:mul(self.constant_scalar)
end
return self.gradInput
end
end
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Gradients for vectorized code (x.y.z are now This is now the
vectors) Jacobian matrix

T (derivative of each
element of z w.r.t. each
element of x)

“local gradient”

e

Da 5
oL
0z
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[slides]

[backprop notes]

[Efficient BackProp] (optional)
related: [1], [2], [3] (optional)

[slides]
» handout 1: Vector, Matrix, and Tensor Derivatives
-p» handout 2: Derivatives, Backpropagation, and
Vectorization
Deep Learning [Nature] (optional)

[slides]
tips/tricks: [1], [2] (optional)
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Vectorized operations

4096-d — f(x) = max(0,x) —— 4096-d
inputvector  — (elementwise) ——  output vector
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Vectorized operations OL __ |0F)|oL

ox  |0x|Of

Jacobian matrix

4096-d — f(x) = max(0,x) —— 4096-d
inputvector  — (elementwise) ——  output vector
Q: what is the
size of the

Jacobian matrix?
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Vectorized operations OL __ |0F)|oL

ox  |0x|Of
Jacobian matrix
4096-d . f(x) = max((),x) > 4096-d
inputvector  — (elementwise) ——  output vector
Q: what is the Q2: what does it
size of the look like?
Jacobian matrix?
[4096 x 4096!]
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Vectorized operations

in practice we process an
entire minibatch (e.g. 100)
of examples at one time:

1004096-d — f(x) = max(0,x) ———~ 100 4096-d
input vectors  — (elementwise) ——  output vectors

i.e. Jacobian would technically be a
[409,600 x 409,600] matrix :\
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Assignment: Writing SVM/Softmax
Stage your forward/backward computation!

E.g. for the SVM:

# receive W (weights),

# forward pass (we hg#e 8A1ines)

(scores)
scores = #... /////
margins = #... W

data loss = #... \\‘//

reg loss = #...

[\\t:Wa: i = Dy, max(0,5; — sy, +1)

R(W)

loss = data loss + reg loss

# backward pass (we have 5 lines)

dmargins = # ... (optionally, we go direct to dscores)
dscores = #...

dw = #. ..
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Summary so far

- neural nets will be very large: no hope of writing down gradient formula by
hand for all parameters

- backpropagation = recursive application of the chain rule along a
computational graph to compute the gradients of all
inputs/parameters/intermediates

- implementations maintain a graph structure, where the nodes implement
the forward() / backward() API.

- forward: compute result of an operation and save any intermediates
needed for gradient computation in memory

- backward: apply the chain rule to compute the gradient of the loss
function with respect to the inputs.
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