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Neural networks: the original linear classifier

(Before) Linear score function: f — W

r e RP W e REXP
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Neural networks: 2 layers

(Before) Linear score function: f — Wx
(Now) 2-layer Neural Network £ — W, max(0, Wiz)

e B2, Wy € RE®P W & RO*H

(In practice we will usually add a learnable bias at each layer as well)
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Neural networks: also called fully connected network

(Before) Linear score function: f — Wa

(Now) 2-layer Neural Network f — W, maX(O, W1:B)

e BY, Wy e REIRE L, & RO

“Neural Network™ is a very broad term; these are more accurately called
“fully-connected networks” or sometimes “multi-layer perceptrons” (MLP)

(In practice we will usually add a learnable bias at each layer as well)
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Neural networks: 3 layers

(Before) Linear score function:  f — Wy

(Now) 2-layer Neural Network f — W, maX(O, W1:l:)
or 3-layer Neural Network

f = W3 max(0, Wy max(0, Wiz))

z € R?, Wy € R*P W, € R¥2H W3 € RO

(In practice we will usually add a learnable bias at each layer as well)
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Neural Networks: Architectures

)

5

g
®

OS2 X~
e
output layer \ ’

tput layer
input layer input layer

hidden layer hidden layer 1 hidden layer 2

'z\\
(N
NP
X
L

)

“3-layer Neural Net’, or
“2-layer Neural Net”, or “2-hidden-layer Neural Net”

“1-hidden-layer Neural Net’ “Fully-connected” layers
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Neural networks: Architectures
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Example feed-forward computation of a neural network
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f = 1lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)

X = np.random.randn(3, 1) # random input vector of three numbers (3x1)

hl = f(np.dot(Wl, x) + bl) # calculate first hidden layer activations (4xl)
h2 = f(np.dot(W2, hl) + b2) # calculate second hidden layer activations (4x1)
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Neural networks: hierarchical computation
(Before) Linear score function: f — Wax

(Now) 2-layer Neural Network  f — T¥/, max (0, Wiz)

X| WL | h| W2 |g

3072 _— 100 10

e RY, Wy e RERP Wh & REOXHE
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Neural networks: learning 100s of templates

(Before) Linear score function:

(Now) 2-layer Neural Network

X | W1

h

= W
f = Wamax(0, Wix)

W2 S

3072 /100
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Biological Neurons: Neurons in a neural network:
Organized into regular layers for
computational efficiency
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https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Biological Neurons: But neural networks with random
Complex connectivity patterns connections can work too!

\ NiA

This image is CCO Public Domain

Xie et al, “Exploring Randomly Wired Neural Networks for Image Recognition”, arXiv 2019
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https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
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Training Neural Networks

A bit of history...
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A bit of history

The Mark | Perceptron machine was the first

Implementation of the perceptron algorithm. '

i

The machine was connected to a camera that used i

20x20 cadmium sulfide photocells to produce a 400- i

pixel image. 5

1 fw-z+56>0 L

. f(I) — : "
recognized 0 otherwise

letters of the alphabet

¥ sy ey
y v

update rule:
wi(t + 1) = wi(t) + ald; — y;(t))

W A S e em DT R D BN e IR BT W0 W D

Frank Rosenblatt, ~1957: Perceptron
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A bit of history
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d's are adjustable

Widrow and Hoff, ~1960: Adaline/Madaline
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A bit of history

Internal
Representation
Units

Input Patterns

To be more specific, then, let
1 )
E,= 32(:,,, - 0y)?
J

be our measure of the error on input/ output pattern p and let E = XE, be our
overall measure of the error. We wish to show that the delta rule implements a gra-
dient descent in E when the units are linear. We will proceed by simply showing
that

. a—

] Wi
which is proportional to A, w;; as prescribed by the delta rule. When there are no
hidden units it is straightforward to compute the relevant derivative. For this purpose
we use the chain ‘rule to write the derivative as the product of two parts: the deriva-

tive of the error with respect to the outpurt of the unit times the derivative of the out-
put with respect to the weight. .

OE, _ O, 8oy 3)
w90y dw;

The first part tells how the error changes with the output of the jth unit and the
second part teils how much changing Wj; changes that output. Now, the derivatives
are easy to compute. First, from Equation 2

3L,
80y

(€2

== (1 = 0y) = —3,.

Not surprisingly, the contribution of unit u; to the error is simply proportional to & pj+
Moreover, since we have linear units,

Oy = Zwﬁi’" 5)
i

from which we conclude that
90,
Ow;

= b

Thus, substituting back into Equation 3, we see that

oE, )
- 6_505 =8, . ()

—

recognizable maths

Rumelhart et al. 1986: First time back-propagation became popular
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A bit of history T .;
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NOT NEURAL
NETWORKS!

RBM
Pretraining Unrolling Fine-tuning
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~~ Transition Probabilities

First strong results in neural nets = LR N

HMM

Context-Dependent Pre-trained Deep Neural Networks
for Large Vocabulary Speech Recognition
George Dahl, Dong Yu, Li Deng, Alex Acero, 2010

~ Observation
“,-” Probabilities

Imagenet classification with deep convolutional LA
neural networks g.x e L...- i‘ = {ﬁ e_“ imm“""
Alex Krizhevsky, llya Sutskever, Geoffrey E Hinton, 2012
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First strong results

Dropout training and RelLU’s...

Imagenet classification with deep convolutional
neural networks
Alex Krizhevsky, llya Sutskever, Geoffrey E Hinton, 2012
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Overview

1. One time setup
activation functions, preprocessing, weight
Initialization, regularization, gradient checking
1. Training dynamics
babysitting the learning process,
parameter updates, hyperparameter optimization
1. Evaluation
model ensembles
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Activation Functions
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Activation Function: Non-linearities
(Before) Linear score function: f = Wzx
(Now) 2-layer Neural Network  f = Walmax(0,W;x)

The function max(0, z) is called the activation function.
Q: What if we try to build a neural network without one?

f — WQWl.fC
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Activation Function: Non-linearities
(Before) Linear score function: f = Wzx
(Now) 2-layer Neural Network  f = Walmax(0,W;x)

The function max(0, z) is called the activation function.
Q: What if we try to build a neural network without one?

J = WelWix Wy = WoW; € RE*H | f = Wax

A: We end up with a linear classifier again!
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Why do we want non-linearity?

Cannot separate red
and blue points with
linear classifier
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Why do we want non-linearity?
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Cannot separate red After applying feature
and blue points with transform, points can
linear classifier be separated by linear

classifier
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Activation Functions

Sigmoid A
o(z)=1/(1+e%) _ //

J
tanh tanh(x) //

ReLU max(0,x)

Subhransu Maji, Chuang Gan and TAs

Leaky RelLU
max(0.1x, X)

10k

xT ifz >0
a(exp(z) —1) ifz<0
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Activation Functions o(z) =1/(1+e77)

- Squashes numbers to range [0,1]

i - Historically popular since they
have nice interpretation as a

L saturating “firing rate” of a neuron

04F

i

d—y " " PR S ST T S N T T S T_— |

1 "
=10 -5 5 10

Sigmoid
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Activation Functions o(z) =1/(1+e77)

- Squashes numbers to range [0,1]

i - Historically popular since they
have nice interpretation as a

: saturating “firing rate” of a neuron

04F

/ 3 problems:

d—y " " PR S ST T S N T T S T_— |

1 "
=10 -5 5 10

1. Saturated neurons “kill” the
Sigmoid gradients
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What happens when x = -10?
What happens when x = 0?
What happens when x = 10?7
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1
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Activation Functions o(z) =1/(1+e77)

- Squashes numbers to range [0,1]

i - Historically popular since they
have nice interpretation as a

: saturating “firing rate” of a neuron

04F

/ 3 problems:
5 ) 1. Saturated neurons “kill” the
Sigmoid gradients
2. Sigmoid outputs are not zero-
centered
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Consider what happens when the input to a neuron (x)
IS always positive:

Zo wo

>@® synapse
axon from a neuron

wWoTo

output axon

activation
function

f Z’wz‘ﬂ?i +b

What can we say about gradients with
respectto w?
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Let y:Zwéxz—.
f Zwiwier o _of oy
)

ow Oy Ow
af Then g_i — 7.
ow % of _afdy _of

dw  Oyow Oy
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Consider what happens when the input to a neuron is
always positive...

allowed
gradient
update
directions

f E wz CEZ _'_ b allowed "\ 219 zag path
. gradient \
? update N

directions

hypothetical

What can we say about the gradients on w? optimal w

Always all positive or all negative :( vector

(this is also why you want zero-mean data!)
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Activation Functions o(z) =1/(1+e77)

- Squashes numbers to range [0,1]
- - Historically popular since they
have nice interpretation as a

; saturating “firing rate” of a neuron

/»/ 3 problems:

d—y " " "

1 "
=10 -5 5 10

..........

1. Saturated neurons “kill” the
Sigmoid gradients
2. Sigmoid outputs are not zero-
centered
3. exp() is a bit compute expensive
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Activation Functions

/ - Squashes numbers to range [-1,1]
.......... T - zero centered (nice)
- ‘ - still kills gradients when saturated :(

[LeCun et al., 1991]
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Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very little computation

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

..........

RelLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]
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Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

..........

- Not zero-centered output
el U - An annoyance:

(Rectified Linear Unit)

hint: what is the gradient when x < 0?
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Oo| RelLU
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833 gate
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dr O Oo

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?7
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active RelLLU
> DATA CLOUD

/\NA\

dead RelLU
will never activate
=> never update
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active RelLLU
> DATA CLOUD

=> people like to initialize

ReLU neurons with slightly dead RelLU

positive biases (e.g. 0.01) will never activate
=> never update
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. . . Mass et al., 2013
ACtIV&tIOn FunCtIOnS EHe et al., 2015] ]

- Does not saturate
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Leaky RelLU
f(z) = max(0.01z, x)
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Activation Functions

- Make up your own parametric
rectifier! (Project ideal!!)
- How about shifting the hinge?
- How about shifting the slope?
- How about changing the
shape of the right side?
- How about a diversity of

Leaky ReLU RelLU’s. What are pros and
f(z) = max(0.01z, z) cons?
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Activation Functions [Clevertetal., 2015]

Exponential Linear Units (ELU)

They; - Most benefits of ReLU
: - Does not die
ﬂ - Closer to zero mean outputs
’ ? o if“m .o - Computation requires exp()
fz) =9, (exp(z) —1) ifz <0
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MaXOUt “Neuron” [Goodfellow et al., 2013]
- Generalizes RelLU and Leaky RelLU
- Linear Regime! Does not saturate! Does not die!

max(w! z + by, wl z + by)

Problem: doubles the number of parameters/neuron :(
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TLDR: In practice:

- Use RelU. Be careful with your learning rates
- Try out Leaky RelLU / Maxout / ELU

- Try out tanh but don’t expect much

- Don’t use sigmoid

Subhransu Maji, Chuang Gan and TAs Lecture 7 - 49 Sep. 24, 2024

Some slides kindly provided by Fei-Fei Li, Jigjun Wu, Erik Learned-Miller



	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Neural networks: Architectures
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Biological Neurons: Complex connectivity patterns
	Slide 13: Biological Neurons: Complex connectivity patterns
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Activation Function: Non-linearities
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

