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Projects as a mini-conference

1. You will write a paper with your team.
a. A suggested format will make sure you cover
the right kinds of topics.
2. Everyone will participate in “paper reviewing”.
a. These will be highly structured so you know
what to comment on.
3. Subhransu and | will grade all the final write-ups at
the same time as the reviews. We will not use the
review scores directly
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Project ldeas

TA will give presentations
on Oct. 1 (Next Tuesday )!!
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Overview

1. One time setup
activation functions, preprocessing, weight
Initialization, regularization, gradient checking
1. Training dynamics
babysitting the learning process,
parameter updates, hyperparameter optimization
1. Evaluation
model ensembles
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Activation Functions o(z) =1/(1+e77)

- Squashes numbers to range [0,1]

i - Historically popular since they
have nice interpretation as a

: saturating “firing rate” of a neuron

04F

/ 2 problems:
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1. Saturated neurons “kill” the
Sigmoid gradients
2. exp() is a bit compute expensive
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Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very little computation

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

..........

RelLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]
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What happens when x = -10?
What happens when x = 0?
What happens when x = 10?7
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%A/

active RelLLU
> DATA CLOUD

dead RelLU
will never activate
=> never update
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active RelLLU
> DATA CLOUD

=> people like to initialize

ReLU neurons with slightly dead RelLU

positive biases (e.g. 0.01) will never activate
=> never update

Subhransu Maji, Chuang Gan and TAs Lecture 7 - 9 Sep 26. 2023
Some slides kindly provided by Fei-Fei Li, Jigjun Wu, Erik Learned-Miller i ’



. . . Mass et al., 2013
ACtIV&tIOn FunCtIOnS EHe et al., 2015] ]

- Does not saturate
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Leaky RelLU
f(z) = max(0.01z, x)

Subhransu Maji, Chuang Gan and TAs Lecture 7 - 10 Sep_ 26, 2023

Some slides kindly provided by Fei-Fei Li, Jigjun Wu, Erik Learned-Miller



Data Preprocessing
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Step 1: Preprocess the data

original data zero-centered data normalized data
. A
- -]
-3 \
% ) = 1Y 15 = 0 5 9 a4 -5 ° 10
X -= np.mean(X, axis = 0). X /= np.std(}{,kﬁ = 0)
Assume X [NxD] i matrix - -
(Assume X [NxD] is data matrix, Invariance of units

each example in a row)
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Step 1: Preprocess the data

original data zero-centered data normalized data
-
- e ,I
) 4

~10} -10

X -= np.mean(X, axis = 0). X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)
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Preprocessing: Why are we doing this?

- Subtracting off the mean

Avoid gradients that only point in two different orthants.

- Normalizing the magnitude

Kilometers vs. millimeters...
Invariance to the specific *units* of the inputs...
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Step 1: Preprocess the data

In practice, you may also see PCA and Whitening of the data

original data decorrelated data whitened data

-10 -
-10 -5 0 3 19 -10 = ] 3

(data has diagonal (covariance matrix is the
covariance matrix) identity matrix)
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In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image
(mean image = [32,32,3] array)

- Subtract per-channel mean
(mean along each channel = 3 numbers)

Not common to normalize
variance, to do PCA or
whitening
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Weight Initialization
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- Q: what happens when W=0 init is used?

output layer
input layer

hidden layer
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- First idea: Small random numbers
(Gaussian with zero mean and le-2 standard
deviation)

W = 0.01* np.random.randn(D,H)
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- First idea: Small random numbers
(Gaussian with zero mean and le-2 standard
deviation)

W = 0.01* np.random.randn(D,H)

Works ~okay for small networks, but can lead to
non-homogeneous distributions of activations
across the layers of a network.
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# assume some unit gaussian 16
D = np.random.randn(10006, 500)
hidden layer sizes = [588]*10

Let,s Iook at nonlinearities = ['tanh']*len(hidden layer sizes)

act = {'relu’:lambda x:np.maximum(©,x), 'tanh’':lambda x:np.tanh(x)}

= {}

S
Som e for i1 in xrange(len(hidden layer sizes)):
X =D if i == 0 else Hs[i-1] # input at this layer

fan in = X.shape([1])
fan out = hidden layer sizes[i]

actlvatlo n W = np.random.randn(fan in, fan out) * 0.01 # layer initialization

D input data

H = np.dot(X, W) # mat multiply
- - H= actlnonlmearxues[x]](H) # nonlinearity
Statistics -
# look at distributions at each layer

print 1npu layer had mean %f and std %f' % (np.mean(D), np.std(D))
layer means = [np.mean(H) for i,H in Hs.iteritems())
layer stds = [np.std(H) for i,H in Hs.iteritems()]
for 1,4 in Hs.iteritems():
print ‘hidden layer %d had mean %f and std %f' % (i+1, layer means[i], layer stds[i])

E.g. 10-layer net with | & figurey " ¢ *randard deviarions
plt.subplot(121)

500 neurons On eaCh plt.pl_;ot(Hs.keys(), layer means, 'ob-')

plt.title('layer mean')
plt.subplot(122)

|a.yer, USIﬂg tanh non' pll.t:plo{(ﬂs.keys(), layer stds, ‘or-')
. - plt.title('layer std')
|Inea‘r|t|es’ and # plot the raw distributions
initializing as for L. in Hs. iteritens():

plt.subplot(1,len(Hs),i+l)

described in |ast S"de_ plt.hist(H.ravel(), 30, range=(-1,1))
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input Layer had mean 0.00092/ and std 0.998388

hidden layer 1 had mean -0.000117 and std ©.213081
hidden layer 2 had mean -0.000001 and std ©.047551
hidden layer 3 had mean -0.000002 and std 0.010630
hidden layer 4 had mean 0.000001 and std ©.002378
hidden layer 5 had mean 0.000002 and std ©.000532
hidden layer 6 had mean -0.000000 and std 0.000119
hidden layer 7 had mean 0.000000 and std 0.000026
hidden layer 8 had mean -0.000000 and std 0.000006
hidden layer 9 had mean 0.000000 and std 0.000001
hidden layer 10 had mean -0.000000 and std 0.000000
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input layer had mean ©.,000927 and std ©.998388
hidden layer 1 had mean -0.000117 and std 0.213081
hidden layer 2 had mean -0.000001 and std ©.847551

- -
hidden layer 3 had mean -0.000002 and std ©.010630
hidden layer 4 had mean ©.000001 and std ©.002378 aC Iva IonS
hidden layer 5 had mean 0.000002 and std ©.000532
hidden layer 6 had mean -0.000000 and std 0.600119
hidden layer 7 had mean ©.000000 and std ©.000026

hidden layer 8 had mean -6.000800 and std ©.008086 beCOI ' Ie Zer0|
hidden layer 9 had mean 0.000060 and std ©.600001 L]

hidden layer 10 had mean -0.600000 and std 0.000000

Q: think about the
backward pass.
What do the
e gradients look like?

Hint: think about backward
pass for a W*X gate.
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W =_np.randﬂm.raﬁdnifaﬁ_in, faﬁ_ﬂut} * 1.0 # layer initialization

input layer had mean ©.001860 and std 1,001311

hidden layer 1 had mean -0.000430 and std 6.981879
hidden layer 2 had mean -0.600849 and std ©,981649
hidden layer 3 had mean 0.000566 and std 6.981601

Almost all neurons

hidden layer $ had mean -6.900682 and std ©.981614 * O d f *O O CO pl ete|>/

hidden layer 6 had mean -0.000401 and std ©.981560 1 " InStea O " 1 .

hidden layer 7 had mean -9.000237 and std ©0.961520 Satu rated elther _1
hidden layer 8 had mean -6.000448 and std 0.981913 ]

hidden layer 9 had mean -9.000899 and std 0.981728

hidden layer 10 had mean 0.000584 and std 0.981736

e e e and 1. Gradients
| will be all zero.

-
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input layer had mean 0.001800 and std 1.001311

hidden layer
hidden layer
hidden layer
hidden layer
hidden layer
hidden layer
hidden layer
hidden layer
hidden layer
hidden layer

1 had mean 0.001198 and std 6.627953
2 had mean -0.000175 and std 0.486651
3 had mean 0.000055 and std 6.407723
4 had mean -0.000306 and std 0.357168
5 had mean ©.0060142 and std ©.320917
6 had mean -0.000389 and std 0,.292116
7 had mean -0.000228 and std ©0.273387
8 had mean -0.000291 and std ©0.254935
9 had mean ©.000361 and std 0.239266
10 had mean ©.000139 and std 0.228008

W = np.random.randn(fan in, fan out) / np.sqrt(fan in) # layer initialization |

“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
| (Mathematical derivation
i : . assumes linear activations)
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Proper initialization is an active area of research...

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by
Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and
Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krahenbthl et al., 2015

All you need is a good init, Mishkin and Matas, 2015
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Batch Normalization

Subhransu Maji, Chuang Gan and TAs Lecture 7 - 27 Sep 26. 2024
Some slides kindly provided by Fei-Fei Li, Jigjun Wu, Erik Learned-Miller i !



Batch Normalization [loffe and Szegedy, 2015]

l

FC Usually inserted after Fully
BL . Connected (or Convolutional, as
! we’ll see soon) layers, and before
tanh nonlinearity.
FC
!

BN #(k) — 2t — E[x(k)]
! k
= \/ Var[z(%)]

I
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Batch Normalization [loffe and Szegedy, 2015]

“you want unit Gaussian activations? just make them so.”
Not actually “Gaussian”. Just zero mean, unit variance.

consider a batch of activations at some layer.
To make each dimension unit normalized,

apply:
(k) _ E[(F)
K] . * [z™]

\/ Var[z(¥)] this is a vanilla
differentiable function...
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Batch Normalization [loffe and Szegedy, 2015]

“you want unit Gaussian activations? just make them so.”
Not actually “Gaussian”. Just zero mean, unit variance.

1. compute the empirical mean and
f 1] oocompy
variance independently for each

dimension.
N X .
2. Normalize
(k) _ (k)
vVY 7(k) — i E[CIZ ]
D v/ Var[z(%)]
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Batch Normalization [loffe and Szegedy, 2015]

l

FC Usually inserted after Fully
BL . Connected / (or Convolutional, as
! we’ll see soon) layers, and before
tanh nonlinearity.
FC
!

BN #(k) — 2t — E[x(k)]
! k
= \/ Var[z(%)]

I
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Batch Normalization [loffe and Szegedy, 2015]

Normalize:
k k
(k) _ (k) —E[:z:( )]
T ®
\/Var[flj ] Note, the network can learn:
And then allow the network to squash 7(1‘6) - \/Var{m(k)]

the range if it wants to:

Bk — E[z®)]

to recover the identity
mapping.
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Batch Normalization

Input: Values of x over a mini-batch: B = {x1. ., };
Parameters to be learned: ~, 3

Output: {y; = BN, g(z;)}

i B8
HB(_E;':UZ

1 m
0B o, > (xi — ps)?
1=1

// mini-batch mean

// mini-batch variance

i — KB
\/afg—l—e

i 3-8 + B= BN, 5(7i)

T; // normalize

// scale and shift

Subhransu Maji, Chuang Gan and TAs

[loffe and Szegedy, 2015]

Improves gradient flow through
the network

Allows higher learning rates
Reduces the strong dependence
on initialization
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Batch Normalization

[loffe and Szegedy, 2015]

0.87 BN + same learning rate baseline (no BN)
BN + 5x learning rate / /
. == & - S -
0.7 ° W -
14
0.6,
= = = Inception
ol R BN-Baseline
os{{-t BN-x5
g BN-x30
e "+ BN-x5-Sigmoid
| 4 Steps to match Inception
0.4 o | ] ] ] ] ] 1
5M 10M 15M 20M 25M 30M
Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.
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Batch Normalization [loffe and Szegedy, 2015]

Input: Values of x over a mini-batch: B = {z1._ . }; Note: at test time BatchNorm layer

Parameters to be learned: v, 3 functions differently:
Output: {y; = BN, g(z;)}

[ m The mean/std are not computed
pB < — ¥ // mini-batch mean | based on the batch. Instead, a single
i=1 fixed empirical mean of activations

1 m . . . .
of = (vi—ps)’ / mini-bateh variance| GUrNG training is used.
W 1=1
» T; — B p " (e.g. can be estimated during training
S = normalize | with running averages)
Yi < YZ; + B = BN, g(x;) // scale and shift

Source of many bugs!
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Gradient Checking
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Gradient checks

1-sided

df

dx

In(x), x = 0.1

- - true
— 1-sided |

10.04

(f(z+h) = f(z))

m/
~~

S| =

10.00 |

estimated df/dx

Compare gradient implementation with

numerical gradients 9.98

Easy to implement, but slow v

Numerical precision can be an issue ot o o o o e o o o
(want h to be small but not too small) epsilon
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. 2-sided gradients have better numerical stability!
Gradient checks g

+9.9994§2 . !n(x),x f 0.001I ‘
. -- true
1-sided 0.10 —  1-sided ||
df 1 —  2-sided

T~ (fl@t )~ f(@)

2-sided

i 1

0.06

estimated df/dx

0.02

1015 1013 101 10° 107 10°
epsilon

107 10! 10?
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. 4-sided gradients are even better!
Gradient checks

+9.99999%e4 In(x), x = 1e-05

true

1-sided o1 — 1sided ||

— 2-sided

df 1 —  4-sided
0.12

T~ (fl@t )~ f(@)

2-sided

d 1 008
Vs o (fla—h) — fa+h)

0.06

estimated df/dx
(=]
=
o

4-sided

10713 1013 107 10° 107

3‘i ~ léh(_f($+2h) +8f(x+ h) —8f(x — h)+ f(x — 2h))

107 102 10t 10!

How about 6 sided or 12 sided?

https://justindomke .wordpress.com/2017/04/22/you-deserve-better-than-two-sided-finite-differences/
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Step 1: Preprocess the data

original data zero-centered data normalized data
10 10 10
. A
0 — 0 - 0 / I
\/

X -= np.mean(X, axis = 0). X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)
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Step 2: Choose the architecture:
say we start with one hidden layer of 50 neurons:

50 hidden
neurons

'\

10 output
CIFAR-10 input neurons, one
images, 3072 layer hidden layer per class
numbers
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Double check that the loss Is reasonable:

def init two layer model(input size, hidden size, output size):

model = {}
model[ '}
model[ 'l
[
[l

0.0001 * np.random.randn(input size, hidden size)
np.zeros(hidden size)
0.0001 * np.random.randn(hidden size, output size)
np.zeros(output size)

model
model

I | B |

1]
.
2
25
model

model = init two layer model(32#*32*3, 50, 10) # input size, hidden size, number of classes

1 d = 1 X del, trai ; - - .
p(:i;t %;25 two ayer net tra1n mode y_ rain 0.0 d|Sab|e regulanzatlon
2.30261216167 - ‘--"‘-—______.____._.
— loss ~2.3.
“correct “ for returns the loss and the
10 classes gradient for all parameters
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Double check that the loss Is reasonable:

def init two layer model(input size, hidden size, output size):

model = {}
model[ '}
model[ 'l
model[ '}
model[ '!

0.0001 * np.random.randn(input size, hidden size)
np.zeros(hidden size)
0.0001 * np.random.randn(hidden size, output size)
np.zeros(output size)

I | B |

1]
.
2
25
model

model = init two layer model(32%32*3, 50, 10) # input size, hidden size, number of classes
loss, grad = two _layer net(X train, model y train/| 1le3 Crank Up regularization
print loss

3.06859716482 \
loss went up, good. (sanity check)
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model = init_two_layer model(32%32%3, 50, 10) # input size, hidden size, number of classes

L t t t t 1 trainer = ClassifierTrainer()
e S ry O raln nOW. " n X tiny = X train[:20] # take 20 examples
y tiny = y train[:20]
best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
model, two layer net,
num_epochs=200, reg=0.0,

Tip: Make sure that B e
you can overfit very
small portion of the

training data The above code:

- take the first 20 examples from
CIFAR-10

- turn off regularization (reg = 0.0)

- use simple vanilla ‘'sgd’
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| | a
model = init_two_layer model(32%32%3, 50, 10) # input size, hidden size, number of classes
L t t t t 1 trainer = ClassifierTrainer()
e S ry O raln nOW. . X tiny = X train[:20] # take 20 examples
y tiny = y train[:20]
best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,

model, two layer net,
num_epochs=200, reg=0.0,

Tip: Make sure that Somple batches = ratce o

learning rate=le-3, verbose=True)

you Can Ove rﬂt Ve ry Finished epoch 1 / 200: cost 2.302603, train: 0.400000, val 0.400000, lr 1.000000e-03 -
Finished epoch 2 / 200: cost 2.302258, train: 0.450000, val 0.450000, lr 1.000000e-03
- Finished epoch 3 / 200: cost 2.301849, train: 0.600000, val 0.600000, lr 1.000000e-03
Sma” portlon Of the Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val 0.650000, lr 1.000000e-03
Finished epoch 5 / 200: cost 2.300044, train: 0.650000, val 0.650000, lr 1.000000e-03
. . Finished epoch 6 / 200: cost 2.297864, train: 0.550000, val 0.550000, lr 1.000000e-03
tral nl ng data F;nished epoch 7 / 200: cost 2.293595, tra@n: 0.600000, val 0.600000, lr 1.000000e-03
Finished epoch 8 / 200: cost 2.285096, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 9 / 200: cost 2.268094, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 10 / 200: cost 2.234787, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 11 / 200: cost 2.173187, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 12 / 200: cost 2.076862, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 13 / 200: cost 1.974090, train: 0.400000, val 0.400000, lr 1.000000e-03
Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val 0.400000, lr 1.000000e-03
Finished epoch 15 / 200: cost 1.820876, train: ©0.450000, val 0.450000, 1lr 1.000000e-03
Finished epoch 16 / 200: cost 1.737430, train: 0.450000, val 0.450000, lr 1.000000e-03
Finished epoch 17 / 200: cost 1.642356, train: ©0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 18 / 200: cost 1.535239, train: 0.600000, val 0.600000, lr 1.000000e-03
Ve ry Sma” IOSS’ Finished epoch 19 / 200: cost 1.421527, train: 0.600000, val 0.600000, 1lr 1.000000e-03 o

—————— —p - ———r e m = m e m e —— e s mrmmmmm ey tm e m e mmmmmm gy me e mm = —

1 1 OO Finished epoch 195 / 200: cost 0.002694, train: 1.000000, val 1.000000, lr 1.000000e-03
tral n accuracy . y Finished epoch 196 / 200: cost 0.002674, train: 1.000000, val 1.000000, lr 1.000000e-03
Finished epoch 197 / 200: cost 0.002655, train: 1.000000, val 1.000000, lr 1.000000e-03

. l > £inished epoch 198 / 200: cost 0.002635, train: 1.000000, val 1.000000, lr 1.000000e-03
nlce_ Finished epoch 199 / 200: cost 0.002617, train: 1.000000, val 1.000000, lr 1.000000e-03
Finished epoch 200 / 200: cost 0.002597, train: 1.000000, val 1.000000, lr 1.000000e-03

finished optimization. best validation accuracy: 1.000000
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model = init two layer model(32*32%3, 50, 10) # input size, hidden size, number of classes

Lets try to train nOW_ . trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,
sample batches = True,

| like to start with small aIning s setice, verbosesaiuel
regularization and find

learning rate that

makes the loss go

down.
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Lets try to train now...

| like to start with small
regularization and find
learning rate that
makes the loss go
down.

Subhransu Maji, Chuang Gan and TAs

model = init two layer model(32*32*3, 50, 10) # input size, hidden size,

trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,
=—Fre,
learning rate=le-6,|verbose=True)

[ I e SR SR S SR S S

number of classes

.000000e-06
.000000e-06
.000000e-06
.000000e-06
.000000e-06
.000000e-06
.000000e-06
.000000e-06
.000000e-06

Finished epoch 1 / 10:|cost 2.302576, |train: ©.080000, al ©0.103000, 1r
Finished epoch 2 / 10:|cost 2.302582, |train: ©.1216000, al 0.124000, lr
Finished epoch 3 / 10:|cost 2.302558, |train: 0.119000, Val ©0.138000, lr
Finished epoch 4 / 10:|cost 2.302519, |[train: 0.127000, al 0.151000, lr
Finished epoch 5 / 10:|cost 2.302517, |train: ©.158000, al 0.171000, lr
Finished epoch 6 / 10:|cost 2.302518, |train: ©.1796000, al 0.172000, 1r
Finished epoch 7 / 10:|cost 2.302466, |train: ©.180000, al ©0.176000, 1r
Finished epoch 8 / 10:|cost 2.302452, |train: 0.175000, al 0.185000, lr
Finished epoch 9 / 10:|cost 2.302459, |train: ©.206000, al ©0.192000, lr
Finished epoch 10 / 10} cost 2.302420) trajn: 0.190000, val 0.192000, lr 1.000000e-06
finished optimization.lhest validation accﬂ?EEVT'ﬁTTgiﬁﬁo

Loss barely changing

Lecture 7 - 47  Sep. 26, 2024

Some slides kindly provided by Fei-Fei Li, Jigjun Wu, Erik Learned-Miller



. model = init two layer model(32*32%3, 50, 10) # input size, hidden size, number of classes
Lets try to traln nOW trainer = ClassifierTrainer()
e best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,
=—Frye,

I Ilke to Start Wlth Sma” 1earniﬁg rate=1e-6,| verbose=True)

. . . Finished epoch 1 / 10:|cost 2.302576, |trair: ©0.080000, Val 0.103000, lr 1.000000e-06
regLJIarlzat|On and flnd Finished epoch 2 / 10:|cost 2.302582, [trairl: ©.121000, Val 0.124000, lr 1.000000e-06
Finished epoch 3 / 10:|cost 2.302558, |train: 0.119000, Val ©0.138000, lr 1.000000e-06
. Finished epoch 4 / 10:|cost 2.302519, |train: 0.127000, Val 0.151000, lr 1.000000e-06
Iearnlng rate that Finished epoch 5 / 10:|cost 2.302517, |trair: ©.158000, al 0.171000, lr 1.000000e-06
Finished epoch 6 / 10:|cost 2.302518, |train: ©0.179000, Val 0.172000, lr 1.000000e-06
makes the IOSS O Finished epoch 7 / 10:|cost 2.302466, |trair: 0.180000, Jal 0.176000, lr 1.600000e-06
EJ Finished epoch 8 / 10:|cost 2.302452, |trair: 0.175000, Val ©0.185000, lr 1.000000e-06
Finished epoch 9 / 10:|cost 2.302459, |trair: 0.206000, Val ©0.192000, lr 1.000000e-06

down Finished epoch 10 / 10} cost 2.302420) trajn: 0.190000, val 0.192000, lr 1.000000e-06

. finished optimization.lhest validationd accuracy: 0.192000

Loss barely changing: Learning rate is
loss not going down: probably too low

learning rate too low
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. model = init two layer model(32*32%3, 50, 10) # input size, hidden size, number of classes
Lets try to traln nOW trainer = ClassifierTrainer()
e best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,
=—Frye,

I Ilke to Start Wlth Sma” 1earniﬁg rate=1e-6,| verbose=True)

. . . Finished epoch 1 / 10:|cost 2.302576, |trair: ©0.080000, Val 0.103000, lr 1.000000e-06
regLJIarlzat|On and flnd Finished epoch 2 / 10:|cost 2.302582, [trairl: ©.121000, Val 0.124000, lr 1.000000e-06
Finished epoch 3 / 10:|cost 2.302558, |train: 0.119000, Val ©0.138000, lr 1.000000e-06
. Finished epoch 4 / 10:|cost 2.302519, |train: 0.127000, Val 0.151000, lr 1.000000e-06
Iearnlng rate that Finished epoch 5 / 10:|cost 2.302517, |trair: ©.158000, al 0.171000, lr 1.000000e-06
Finished epoch 6 / 10:|cost 2.302518, |train: ©0.179000, Val 0.172000, lr 1.000000e-06
makes the IOSS O Finished epoch 7 / 10:|cost 2.302466, |[trairf: 0.180000, Mal 0.176000, lr 1.000000e-06
EJ Finished epoch 8 / 10:|cost 2.302452, |trair: 0.175000, Val ©0.185000, lr 1.000000e-06
Finished epoch 9 / 10:|cost 2.302459, |trair: 0.206000, Val ©0.192000, lr 1.000000e-06

down FJ:.n;shed epoc.h'le / 10} cost 2.3@24?0 train: 0.190000, jval 0.192000, lr 1.000000e-06

. finished optimization.lhest validationd accuracy: 0.192000

Loss barely changing: Learning rate is
loss not going down: probably too low

learning rate too low Notice train/val accuracy goes to 20%

though, what's up with that? (remember
this is softmax) (go to poll)
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3 ] model = init_two layer model(32%32*3, 50, 10) # input size, hidden size, number of classes
Let S try to traln nOW_ .. trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,
= e

I Ilke to Start Wlth Sma” | learning_rate=1e6, e;'bose=True)

regularization and find X

learning rate that Okay now let’s try learning rate 1e6. What could
makes the loss go possibly go wrong?

down.

loss not going down:
learning rate too low
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Lets try to train now...

| like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

Subhransu Maji, Chuang Gan and TAs

model = init_two layer model(32%32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,

model, two layer net,

num_epochs=10, reg=0.000001,

update='sgd', learning rate decay=1,

sample batches = True,

learning rate=le6, verbose=True)

/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:50: RuntimeWarning: divide by zero en
countered in log

data loss = -np.sum(np.log(probs[range(N), yl)) / N
/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:48: RuntimeWarning: invalid value enc
ountered in subtract

probs = np.exp(scores - np.max(scores, axis=1, keepdims=True))

Finished epoch 1 / 10: cost nan, train: 0.091000, val 0.087000, lr 1.000000e+06
Finished epoch 2 / 10: cost nan, train: 0.095000, val 0.087000, lr 1.000000e+06
Finished epoch 3 / 10: cost nan, train: 0.100000, val 0.087000, lr 1.000000e+06

cost: NaN almost
always means high
learning rate...

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller
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model = init_two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()

Lets try to traln nOW_ .. best model, stats = trainer.train(X train, y train, X val, y val,

model, two layer net,
num_epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,

| like to start with small Ty K

Finished epoch 10: cost 2.186654, train: 0.308000, val 0.306000, 1lr 3.000000e-03

. . . Finished epoch 10: cost 2.176230, train: 0.330000, val 0.350000, lr 3.000000e-03
regularization and find Finishes cocn

1./

2:f

3 / 10: cost 1.942257, train: 0.376000, val 0.352000, lr 3.000000e-03
Finished epoch 4 / 10: cost 1.827868, train: ©0.329000, val 0.310000, lr 3.000000e-03

5/

6 /

1 Finished h 10: t inf, train: ©.128000, 1 0.128000, 1r 3.000000e-03
Iearnlng rate that Fi:i:th :gggh 10: ngt ;:f, t;:i:: 0.144000, x:l 0.147000, 1; 3.0000002-03
makes the loss go

down. 3e-3 is still too high. Cost explodes....

loss not going down: _ |
_ => Rough range for learning rate we
learning rate too low should be cross-validating is

loss exploding; somewhere [1e-3 ... 1e-5]
learning rate too high
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[cs.LG] 16 Sep 2012

Practical Recommendations for Gradient-Based Training of Deep
Architectures

Yoshua Bengio

Version 2, Sept. 16th, 2012

Abstract

Learning algorithms related to artificial neural net-
works and in particular for Deep Learning may seem
to involve many bells and whistles, called hyper-
parameters. This chapter is meant as a practical
guide with recommendations for some of the most
commonly used hyper-parameters, in particular in
the context of learning algorithms based on back-

Subhransu Maji, Chuang Gan and TAs
Some slides kindly provided by Fei-Fei Li, Jigjun Wu, Erik Learned-Miller

of practice, focusing on learning algorithms aiming
at training deep neural networks, but leaving most
of the material specific to the Boltzmann machine
family to another chapter (Hinton, 2013).

Although such recommendations come out of a liv-
ing practice that emerged from years of experimenta-
tion and to some extent mathematical justification,
they should be challenged. They constitute a good

ctartina nnint far tho avnarimoantor and ncor af loarn_
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Overview

1. One time setup

activation functions, preprocessing, weight
Initialization, regularization, batch normalization,
gradient checking
2. Training dynamics

babysitting the learning process, hyperparameter
optimization, parameter updates
3. Evaluation model ensembles
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