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Instructions, once again

Speakers will have 2 mins to present their work

We will warn you at when 1 min, 30 sec, 0 sec remain
Must wrap up at 0O

We will ask questions during grading

Thanks!



But first attendance



Presentation order

12

13

15

18

24

27

29

35
38

41

48

52

zero-shot knowledge graph embedding

medical image anomaly detection using VLM

domain adaptation for OCR models

Optimizing Few-Shot Learning: A
Semi-supervised hybrid approach for
enhanced classification on Omniglot

Text augumentation using LLMs

In-context learning for VLM
MindSLM: Fine-tunning SLM's for effective and

confidential mental health therapy

automated code anomaly detection for
enhancing software quality

RL driven portfolio optimization

Curriculum learning methods benchmarking
Accelerating TDDFT simulations using LSTM

Temporal crowd flow classification of sequntial
frames

Compact diffusion model for cifar10

Classroom learning with knowledge distillation

Mingchen Li (mingchenli@umass.edu),
Rohan Pandey (rohanpandey@umass.edu)

Deepti Guntur (dguntur@umass.edu),
Lucy Bodtman (lbodtman@umass.edu)
Frankie Furnelli (ffurnelli@umass.edu),
Thomas Potts (tpotts@umass.edu),
Virtulya Rajput (vrajput@umass.edu)

Rutika Bhoir (rbhoir@umass.edu),
Shravanthi Murugesan (smurugesan@uma

Sejal Agarwal (sejalagarwal@umass.edu),
Siddharth Jain (siddharthjai@umass.edu)
Abhishek Sureddy (asureddy@umass.edu),
Akshay Kumar Sureddy (akshaykumars@ui
Durga Sandeep Saluru (dsaluru@umass.ec
Matt Lips (mlips@umass.edu),

Xingyu Bian (xingyubian@umass.edu),
Zhiyang Zuo (zzuo@umass.edu)

Nikhil Anand (nikhilanand@umass.edu),
Rakshita Srivastava (rakshitasriv@umass.e
Aadam Lokhandwala (alokhandwala@uma:
Kirat Arora (kiratarora@umass.edu),

Rohit Goli (rgoli@umass.edu)

Andre Kenneth Chase Randall (andrekenne
Joseph Collins (jccollins@umass.edu)
Dongming Li (dongmingli@umass.edu)
Vaishnavi Panchavati (vpanchavati@umass

Venkata Samyukta Malapaka (vmalapaka@
Yogeshwar Pullagurla (ypullagurla@umass.

Chuchen Li (chuchenli@umass.edu),
Isaac Zhong (bzhong@umass.edu)

Matthew Peters (matthewpeter@umass.edt
Neeladri Bhuiya (nbhuiya@umass.edu),
Shreyaa Dani (sdani@umass.edu)

53

55

60

62

65

66

70

71

77

80

83

85

88

autoregressive action generation for diffusion
policy

Knowledge distillation for efficient neural
network compression

compact diffusion models: from symmetry
awareness to Knowledge distillation

emotion based style transfer

enhancing text classification with llm driven
naugumentation for imbalanced datasets

can large multimodal models really understand

affordance?

evalaution methods for neural style tranfer

textual augumentation for medical
transcriptions (?)

Geo localization [changed topic from "ARC
challnege/symbolic learners]"

badminton shot and player movement
prediction

Immersive audio

automatic speech recognition

attribute driven personre-id for passenger
counting using sptio-temporal patterns in data
scarce scenarios

Anushka Agarwal (anushkaagarw@umass.:
Muhammad Yusuf Hassan (mdhassan@um
Talha Mohammed Zakir Chafekar (tchafeka

Akshata Sangwai (asangwai@umass.edu),
Prateek Bhindwar (pbhindwar@umass.edu;

Ajit Kumar (ajitkumar@umass.edu),
Pronay Dutta (pronaydutta@umass.edu)

Gehao Zhang (gehaozhang@umass.edu),
Zekai Zhang (zekzhang@umass.edu)

Chandana Pamidi (cpamidi@umass.edu),
Mahima Choudha (mchoudha@umass.edu’
Ujwala Munigela (umunigela@umass.edu)
Delin Chen (delinchen@umass.edu),
Fengming Shen (fengmingshen@umass.ed
Siyuan Cen (scen@umass.edu)

Benjamin Hall (bmhall@umass.edu),
David Gerard (dgerard@umass.edu)

Shreya Balakrishna (shreyabalakr@umass.
Vaishnavi Kashyap (vaishnavikas@umass.¢
Hung Nguyen (huntnguyen@umass.edu),
John Steenbruggen (jsteenbrugge@umass.
Long Vo (longvo@umass.edu)

Anmol Chokshi (achokshi@umass.edu),
Kavisha Parikh (kavishaprana@umass.edu
Rahasya Barkur (rbarkur@umass.edu)
Lixing Fang (lixingfang@umass.edu),
Qinhong Zhou (qinhongzhou@umass.edu),
Sunli Chen (sunlichen@umass.edu)
Jiageng Liu (jiagengliu@umass.edu),
Wenjun Liu (wenjunliu@umass.edu),
Zhehuan Chen (zhehuanchen@umass.edu

Nthenya Kyatha (mkyatha@umass.edu),
Sanuratu Koroma (skoroma@umass.edu)




Zero-shot knowledge graph
embedding

Mingchen Li (mingchenli@umass.edu)
Rohan Pandey (rohanpandey@umass.edu)

Project #1


mailto:mingchenli@umass.edu

Motivation and background

Motivation:

Knowledge graphs (KG) such as Wikidata and Free- base are an important resource for many
applications of artificial intelligence. However, it is impractical to include all types of relations in
knowledge graph applications. Zero-shot learning (ZSL) for knowledge graph embedding was
thus introduced to deal with unseen relations which are not available during training.

Neighbor relations are a crucial external source for zero-shot knowledge graph
embedding because they not only provide prior knowledge of a relation when transferred to
unseen relations but also help the knowledge graph embedding model reduce the size of
candidate entities, thus improving the performance of related tasks, such as link prediction.

Previous Work:

Previous works utilize the internal text description of relations and external structure
information provided by the ontology or the knowledge graph, but they ignore the extra
structural knowledge of the neighbor relations that may further promote zero-shot learning
performance. We argue that neighbor relations are a crucial external source for zero-shot
knowledge graph embedding because they not only provide prior knowledge of a relation when
transferred to unseen relations but also help the knowledge graph embedding model reduce
the size of candidate entities, thus improving the performance of related tasks, such as link
prediction and question answering.

Gender O

Barack Obama Male

7
City of Honolul O‘ BirthPlace

g™

City of Honolulu

Figure 1. A sub-graph of the entity Barack Obama. The objec-
tive relation Gender has the neighbor relations Nationality,
BirthPlace and Born in.

Following previous work on link prediction [&, 15], we
will evaluate the ZSL Link Prediction task using the Mean
Reciprocal Rank (MRR), hits@ /0, hits@5 and hits@ /, and
two datasets NELL-ZS, Wiki-ZS.

Dataset #Entities  #Triples #Train #Dev  #Test
NELL-ZS 65,567 188,392 139 10 32
Wiki-ZS 605812 724967 469 20 48

Table 1. Statistics of the NELL-ZS and Wiki-ZS



Results

Method A: Training Adaptive Transformer

NELL-ZS Wiki-ZS
KGE model Method MRR  hits@10 hits@5 hits@! | MRR hits@10 hits@5 hits@1
ZSL-TransE 0.097 0.203 0.147 0.043 0.053 0.119 0.081 0.018
Cosine-Map 0.097 0.212 0.134 0.042 0.084 0.198 0.109 0.036
TransE OntoZSL[10] 0.250 0.399 0.327 0.172 0.184 0.265 0.215 0.138
ZSGAN[21] 0.234 0.373 0.304 0.160 0.177 0.258 0.207 0.131
LENR 0.271 0.403 0.344 0.200 | 0.218 0.286 0.254 0.179
ZSL-DistMult | 0.235 0.326 0.284 0.185 0.189 0.236 0.210 0.161
Cosine-Map 0.088 0.179 0.111 0.045 0.089 0.197 0.107 0.040
DistMult OntoZSL[10] 0.256 0.385 0.318 0.188 0.211 0.289 0.238 0.167
ZSGAN][21] 0.249 0.376 0.306 0.183 0.207 0.284 0.235 0.164
LENR 0.270 0.382 0.330 0.206 | 0.212 0.275 0.238 0.174
ZSL-Tucker 0.253 0.382 0.317 0.185 0.109 0.225 0.189 0.048
Cosine-Map 0.169 0.296 0.236 0.100 0.111 0.227 0.158 0.052
Tucker OntoZSL[10] 0.208 0.298 0.248 0.158 0.076 0.180 0.100 0.024
ZSGAN][21] 0.193 0.309 0.247 0.132 0.160 0.240 0.206 0.115
LENR 0.283 0.406 0.356 0.214 | 0.199 0.255 0.228 0.164
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Method B: Inference only LLM
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Conclusion

In our work, we have proposed a novel neighbour enhanced training methodology for zero-shot link prediction tasks. In addition, we
demonstrated that modern LLMs with their pre-training capacity perform at least as well as training based methods using just inference time
methods.

Our results demonstrate that neighbour-enhanced methods perform better across the board. For training based methods, our proposed
neighbour enhanced methodology performs better than existing methods. Furthermore, our novel prompting/inference based strategy drastically
improves performance baseline zero-shot and neighbour enhanced methods, thereby showing the potential of LLMs and test-time scaling methods.

Due to a lack of computation, our work is currently limited to only a single dataset as well as a single model. In future work, we would like to
extend the analysis across more datasets, and models to demonstrate the generalizability of our results. In addition, for inference based scaling, we
have currently restricted the maximum iterations for 3, we would like to extend this to more iterations to see if/when does the performance gains
saturate. We would also like to compare the performance with fine-tuning of the language models.
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MedVMAD

Medical imaging Anomaly Detection using Visual Language Models

e Motivation:
o Subtle abnormalities in medical imaging are often missed,
impacting diagnostic accuracy.
e Goal:
o Develop a framework using the visual language model, CLIP, for
anomaly detection in medical images.
e Focus:
o Anomaly detection using learnable embeddings for both text
prompts and images.
o Trained on brain MRI scans, tested on brain MRI scans, liver
CT-scans, and breast cancer tomosynthesis for zero-shot
testing.

e Background: @OO
o AnomalyCLIP - uses only learnable text embeddings ..

o MVFA-AD - uses only learnable visual embeddings
o MediCLIP - Few-shot AD with learnable embeddings ' ‘



(a) Image

mage

(b) Heatmap of anomaly (Ours)

(b) Heatm

(¢) Text Learnable

(d) AnomalyCLIP (Baseline-1)

(€) AnomalyCLIP (Baseline-1)

() MVTFA-AD (Baseli: ) . S
(e) MVTA-AD (Baseline-2)

Figure |. Results for anomalous images

Figure 2. Results for non-anomalous images




Method & Conclusion

We utilize image feature token embeddings and textual embeddings
to compute similarity scores, while segmentation token embeddings
and ground-truth annotations are used to generate anomaly maps.

These two sets of scores are combined to define our loss function..
Evaluation Metrics with BRaTS 2021 dataset:

Model Pixel AUROC | Pixel AUPRO | Image AUROC | Image AP
AnomalyCLIP 96.5 77 70.3 76
MVFA-AD 89.1 574 79.6 84.5
MedVMAD (Ours) 96.7 56.9 84.6 87.7

Incorporating both learnable image embeddings and learnable text
embeddings significantly enhances the precise anomaly detection
compared to using just learnable text embeddings alone.
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Overview, Motivation and Background

Project Overview: Motivation:
e To adapt the TrOCR model to better e How to improve pre-trained OCR models
recognize an unseen handwritten when labeled documents are scarce
domain: Background:

e TrOCR is a state-of-the-art Transformer-based
OCR model that is effective for standard
handwriting and printed text.

o A dataset of personalized journal
entries that we collected, cleaned

and preprocessed ourselves.
o 197 pages / 6,595 lines of e TrOCR struggles to correctly recognize unseen

handwritten text personal writing of a single author with unique

e Domain Adaptation Techniques: style and quirks.

o Pseudo-labeling and Masking e We seek to reduce this gap by fine-tuning the

o Seeding a limited amount of model with unlabeled handwriting samples for

manually labeled data domain adaptation.
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Conclusion

The adaptation methods, pseudo-labeling and training on limited annotated data, improved the CER and
WER of TrOCR on the personalized handwritten domain!

Applications:

e There is a plethora of documents that have not been transcribed, such as historical documents and

personal notes or journals
e Implementing methods to adapt OCR models to unlabeled or partially labeled data may prove useful

for historical research and digitizing notes and journals.

Limitations: - - :
' bll ' c'l ' dll ' ell ' flI ‘_g'l I_hll I_ill ‘_j'l '_k|l l_lll '_h'I '_il]

['_a'y ' - ol F -
['fabcdefghijk1lhi']

e Model Hallucination:
o TrOCR was likely to produce long false predictions when preprocessing was imperfect, such as

text data being cut off or noise in an image

® Preprocessing:
o TrOCR requires text images to be only one line. The handwritten dataset lacked of structure,

which caused it to be challenging to separate the data into neat lines of text
m  We utilized OpenCV to detect horizontal lines, and partitioned from the predictions



Optimizing Few-Shot Learning: A
Semi-supervised hybrid approach for
enhanced classification on Omniglot
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e Motivation: o

Few-shot learning enables models to generalize effectively to
unseen classes with minimal labeled data.

Crucial for domains with limited labeled data availability, such as
medical diagnostics and specialized research fields

e Proposed Approach:
o  Use pseudo-labels to expand the training set

with high-confidence samples.
o Integrate augmented data into MAML to
enhance model adaptability and accuracy

Goal:

e  Develop robust, generalizable models capable of
addressing real-world challenges in few-shot
learning.
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o

5-Way 1-Shot Classification: Achieved a test
accuracy of 95.32% over 1000 iterations,
showcasing strong performance in a limited-label
setting.

3-Way 1-Shot Classification: Delivered
competitive accuracy with consistent training and
validation trends, reflecting the model's
robustness.

20-Way 1-Shot Classification: Despite the
increased complexity, the model attained an
accuracy of 83.47% in just 250 iterations,
demonstrating its scalability and efficiency.

The training and validation curves highlight minimal overfitting
across all tasks, with rapid convergence within the initial
iterations. These findings underscore the potential of our
approach to address data scarcity and task adaptability
challenges in few-shot learning scenarios. Future work will aim
to further optimize computational efficiency and explore broader
applications in real-world datasets beyond Omniglot.




Text augmentation using
LLMs
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Problem Statement:

The goal of this project is to explore the effectiveness of Large Language Models (LLMs) like GPT-2 for
augmenting imbalanced datasets in text classification. We aim to improve model performance, particularly
for minority classes, by generating synthetic data through context-aware prompts in various imbalance
scenarios.

Background:

Imbalanced datasets are a common challenge in text classification, often resulting in biased models that
perform poorly on underrepresented classes. This issue is particularly critical in real-world applications
like healthcare, finance, and social media, where minority classes hold significant value. Traditional
methods like SMOTE may not fully address the complexities of imbalances in text data.

Method:

Data: Used AG News dataset with imbalance in the Science/Technology category.

Imbalance Technique: Applied severe under-sampling, topic-specific sampling, clustered minority sampling,
and progressive rarity imbalance—to simulate real-world imbalances.

Baseline Model: Used the Synthetic Minority Oversampling Technique (SMOTE) for comparison, generating
synthetic instances for the minority class.

LLM: Used DistilGPT-2-based Large Language Models (LLMs) with context-aware prompts to generate
synthetic text for underrepresented classes, enhancing the dataset.

Model Training: Train Logistic Regression and Support Vector Machine models, evaluating performance on
metrics like accuracy, precision, recall, and F1-score, with a focus on minority class recall.



Heatmap of Metrics for Different Methods

Imbalanced_Logistic Regression_Clustered Minority Instances
L]
Result ° Imbalanced_Logistic Reg 1_Prog Rarity Imbalance

Imbalanced_Logistic Regression_Severe Under-sampling

Imbalanced_Logistic Regression_Topic-Specific Under-sampling

L Augmented methOdS Outperforrn SMOTE Imbalanced_SVM_Clustered Minority Instances

across all metrics in severe under-sampling RSO AV PV Karis Weesy
Imbalanced_SVM_Severe Under-sampling <
scenarios (radar Chart)_ imbalanced_SVM_Topic-Specific Under-sampling
.« e gl |_Logistic Reg! _Cl d Minority Instances
e Original models perform best on balanced Oriited,Logist Ragresiion_ Proprassive Rarkty tmblancs
. . Aug _Logistic Reg _Severe Unde 9
datasets but Struggle Wlth lmbalance Augmented_Logistic Regression_Topic-Specific Under-sampling -0.6
(heatma ) 3 Augmented_SVM_Clustered Minority Instances
p : . g d_SVM_Prog Rarity e
e Augmented approaches improve F1-score and Augmented_SVM_Severe Under sampiing .

Augmented_SVM_Topic-Specific Under-sampling

recall significantly, surpassing SMOTE. Original_Logistic Regeession

: . Original_SVM

. Imbalanced methOdS Wlthout augmentatlon SMOTE_Logistic Regression_Clustered Minority Instances
haVe the WeakeSt performance‘ SMOTE_Logistic Regression_Progressive Rarity Imbalance

SMOTE_Logistic Regression_Severe Under-sampling
SMOTE_Logistic Regression_Topic-Specific Under-sampling
Radar Chart: SMOTE vs Augmented Methods SMOTE_SVM_Clustered Minority Instances

o Precision SMOTE_SVM_Progs Rarity lance
SMOTE_SVM_Sevire Undersampling SMOTE_SVM_Severe Under-sampling L % 0.646
— Augmented SVM_Severe Under-sampling - R 2
SMOTE_SVM_Topic-Specific Under-sampling 0.702 3
' T 0.2
F1-Score Precision Recall Accuracy Macro avg Weighted avg

Conclusion:

The findings suggest that LLM-based augmentation offers notable
strengths, such as superior recall and the generation of diverse, contextually
relevant synthetic samples. However, traditional methods like SMOTE,
while effective in simpler cases, struggle to capture more complex patterns,
limiting their ability to address class imbalances.

Macro avg
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Motivation and background

Motivation

ICL Success in NLP: Adapts to tasks without fine-tuning; reduces
computational overhead.

Vision tasks pose unique challenges (data structures, alignment
with ICL principles).

Potential to enhance flexibility and generalization of
Vision-Language Models (VLMs).

Background

Vision-Language Models (e.g., Flamingo, ViLA) process

interleaved image-text sequences, enabling multi-example prompts.

Challenges: Most VLMs trained on single image-text inputs;
adapting them for ICL is non-trivial.

Leverage ViLA models as they support multi-example inputs,
making them feasible for ICL.

Investigate how In-Context Learning (ICL),
proven effective in language models (e.g., GPT),
can be applied to vision tasks.
Evaluate performance on vision tasks: Image
Captioning, Visual Question Answering
(VQA), Classification (coarse and
fine-grained), and Keypoint Detection.
Analyze the impact of quantity and quality of
in-context examples on performance using ViLA
models (3B, 13B), using 2 settings:

1. Random retrieval

2. Nearest Neighbor Search Retrieval



Methodology & Results

Coarse-classification Prompt: Imagenet
<image> This image shows a [class-1]<|endofchunk|>
<image> This image shows a [class-2]<|endofchunk|>
<image> This image shows a

Random setting - Model output: cat

33
siamese cat

potpie pick

NNS setting - Model output: siamese cat

Query Image

Y ST
siamese cat

pekinese persian cat

Finegrain-classification Prompt: Stanford cars
Identify and classify the car in the provided image. Provide the
label in the exact format: [Make] [Model] [Year].

<image> [class-1]<|endofchunk|>

<image> [class-2]<|endofchunk|>

<image>

Random: Chevrolet Impala Corvette Stingray Coupe 2012

Query Image
—

Ddg DungoSUV 2007 )
NNS: Chevrolet Impala Sedan 2007

Toyota Camry Sedan 2012

Honda Odyssey Minivan BMW 6 Series Convertible Chevrolet Impala Sedan
2007 2007



Results & Conclusion

Classification task
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Quick summary of the project, motivation and background

o
e L|LMs have great potential in the medical field w

o LLMs

o Powerful
o Closed source (OpenAl)

o Requires a lot of compute
o Needs remote access
e Existing smaller language models ’

o Less optimal performance Response
o Open source
o Run locally on weaker hardware

e Mental health epidemic
e Widely accessible mental health support
e Fine-tune smaller models on counseling dataset and few-shot prompting

Sensitive Data




Main results + comparison to prior work

e Our MindQwen outperformed other models quantitatively through ROUGE-L and
BERTScore, and qualitatively through LLM-as-a-judge

e Larger models performed better, few shot improved smaller models but not larger models
First to utilize our quantitative metrics in mental health

Comparison of all models

Model Name # outputs | percentage
1000 - qwen2.5:0.5b-instruct 24 15%
llama3.2:1b-instruct 1143 70.0%
qwen2.5:1.5b-instruct 216 13.2%
llama3.2:03b-instruct 251 15.4%
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°
]
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Conclusion MindQwen

¢

e Our model performed best based on our
results and analysis

e Indicates potential use case for our product in
the real world and improve mental health well
being

e Limitations oo e Lo s T A

Tunderstand that you're feeling overwhelmed with your work and life balance. It's essential to
take care of your mental and emotional well-being. Can you please share what aspects of your
life and work you believe are causing you the most stress? This will help me guide you towards

o Llama-3.2 training faced bug in tokenization rm——

I don't have time to take care of my kids. Mestings, cases, and
transportation take too much time. But | want to have more
time with families.

. I u t u re W O r k I'see that you're struggling to find a balance between work and personal life, particularly in

relation to your children. It's crucial to prioritize self-care and relationships with your family.
Can you share some of your daily activities and tasks that you believe can be adjusted or
eliminated to create more time for yourself and your family?

I'm struggling with my life and work recently. | don't have

»,

»,

e e O d e S Maybe making a plan to save more time..do you have any suggestions?
H H Yes, creating a schedule or plan can help you manage your time more effectively. St aside
O u I - u rn CO n V e rS a I O n S specific days and times for self-care, family time, and work. It important to communicate your
needs and boundaries to your family and friends. Additionally, considering outsourcing some

»,

tasks or asking for help from others might be helpful in reducing your workload.

Oh, got that. | can have a try. Thank you!

You're welcome! Remember, it's essential to be gentle with yourself during this process.
Prioritize self-care and seek support from your loved ones when needed. Feel free to reach out if
you have any questions or need further guidance.
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Summary and Motivation

Summary

This project leverages LSTM networks and CK metrics to detect code anomalies, such as defects and design
flaws, by analyzing labeled code samples. It aims to enhance software quality and explores automated refactoring
suggestions to improve maintainability.

Motivation

1. Improving Software Quality and Maintainability
2.  Empowering Developers with Actionable Insights
3.  Advancing the Role of Al in Software Engineering



Results

; . . Model Accurac
Confusion Matrix for Code Smell Detection 0.85 y
—— Train RV g
175 —— Validation ‘JA\
is_feature_envy 12 44 0.80 -
150 '
125
5 5, 075 -
G .
S is_god_class 3 35 0 100 5
> o
= 2
- 75 0.70 A
- 50
is_long_method - 15 0 87 0.65 -
25
T T T r— 0
is_feature_envy is_god_class is_long_method X T J T T T
Predicted label 8 10 20 30 40 50

Epoch

Confusion Matrix Training vs Validation



Conclusion

Effectiveness of LSTM Models

Superiority Over Dense Neural Networks (DNNSs)
Broader Implications for Software Quality
Challenges in Precision for Certain Code Smells
Future Directions
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An LSTM-Enhanced PPO Network Approach
for Subsector trading in the S&P 500
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Challenges in Portfolio Management

e Traditional strategies are static and fail to adapt to market volatility.
e Soourgoalistodevelop adynamic model that learns optimal allocation
across sub sectors using temporal market data.

The Long Short-Term Memory (LSTM)
component captures temporal
dependencies in financial time series
data, addressing challenges posed by
non-stationary and autocorrelated
market data.

Proximal Policy Optimization (PPQ)is a
robust and efficient approach to
optimizing trading strategies by directly
learning the policy that maximizes
expected returns while managing risk. It
is useful because of its ability to handle
continuous action spaces and maintain
stability during training



Data Collection And Environment

Data Collection: We have assembled a comprehensive dataset with 570+ Technical indicators (e.g., SMA, RSI, MAMA, etc.)
spanning from January 1, 2000, to 2019 for training, with data from 2020 onwards reserved for testing. This data was
collected using Alpha Vantage API, with some of it being self computed.
Data Preprocessing:

° Inter-Day percentage change between features.

e  Missing data imputation.
State Space:

o  Features: Hidden feature from LSTM, PCT OHLCV, and PCT technical indicators .

e Portfolio State: Current portfolio, hidden feature from LSTM.
Action Space:

e Continuous allocation weights across subsectors.

Reward Function: A =nR + a- n)At—l =A,_, +nA4
U, B, AA—A _AB /2 where
b= = @, -4 )" B=1R’+(1-mB_=B AB
t—1 t—1 t—n t +( _n) t—l— t_1+n t

Trading Constraints:
° Our traded do not affect the market prices.
e  Portfolio rebalanced at every market open.
e Notrades during the day to simulate day trading and manage computational load.



Model Loss Calculations

Enviroment

OILIFO
£
m




Results and Conclusion

Article Data State Space Action Space Reward Performance

Deep Reinforcement Learning | 28 S&P500, 5283 days, | Total return, closing price, volumes, quar- | Continuous 20 dims Differential Sharpe 1255 days, Total return:
Agent for S&P 500 Stock Selec- | 415 stocks terly earnings, dividends, declaration and 328%, Sharpe = 0.91

tion [67] publication dates (d, n, f)

Diversity-driven knowledge dis- | 28 FX, 1h Normalized OHLCYV, current open position | Discrete (exit, buy, sell) | PnL 2 years, PnL = 0.35
tillation for financial trading [68] as one-hot

A Deep RL Approach for Au- | Bitcoin, 3200 h Time stamp, OHLCV, USD volume | Discrete (buy, hold, sell) | Profit Sharpe 800h, return =~ 3%

tomated Cryptocurrency Trading
[69]

weighted Bitcoin price

An application of DRL to algo-

30 stocks daily, 5 years

Current trading position, OHLCV

Discrete (buy, sell)

Normalized price change

Sharpe = 0.4, AAPL annual

rithmic trading [39] return = 0.32
Adaptive Stock Trading with | 15 stocks daily, 8 years OHLCV + Technical indicators (MA, | Discrete (long, neutral, | Sortino ratio 3 years, —6% to 200%
DRL Methods [63] EMA, MACD, BIAS, VR, and OBV) short)

Portfolio management system in | 50 stocks daily, 2 years Normalized OHLC Continuous 50 dims Sharpe ratio 2 years, profit =~ 50%

equity market neutral using RL
[70]

DRL for Automated Stock Trad-
ing: An Ensemble Strategy [47]

30 stocks daily, 7 years

Balance, shares, price, technical indicators
(MACD, RSI, CCI, ADX)

Discrete (2k + 1)%°

Portfolio value change,
Turbulence

Sharpe = 1.3, Annual return
=13%

Portfolio trading system for digi- | 20 assets, 30 min, 4 | Normalized HLC, shares Continuous 20 dims Log cumulative return 2 months, Return = 22x

tal currencies with attention gat- | years

ing [71]

Deep Reinforcement Learning | 415 stocks from S&P500 | Currently available market information | Continuous 20 dims Differential Sharpe Sharpe: A=1.99, B=2.18,

Agent for S&P 500 Stock Selec- | (1998-2018) (Number of shares, time period, features of C = 2.20. Total Return: A

tion stock) =86.38%, B = 82.42%,C =
87.23%.

Our Approach Market Indicators and | Embedding from the model predicting | Continuous number of | Differential Sharpe Sharpe Total Return: 12,

OHLCV for all sectors
of S&P 500

market data and previous distribution of
sectors

sectors + cash

Portfolio change value

300% (2000 onwards)




Portfolio Value

Sum of Differenctial Sharpe Ratio

Results and Conclusion

Portfolio Value over Time
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Introduction and Motivation

Curriculum learning involves splitting datasets and
incrementally training models on the splits.

Aim to explore and benchmark different methods
of curriculum learning

Benchmark 3 Main Points
1. Training Time
2. Accuracy on Clean Testing Set
Accuracy on Noisy Testing Set

T

Easy \/ Medium \( Hard

Model 1 - Colored
MNIST-Like Images

=

Model 1 - MNIST Model 1 - Colored Images of
Worn Clothes

Model 2 - Unblurred
Model 2 - Gaussian Blurred

Sigma=1

Model 2 - Gaussian Blurred
Model 3 - Easy Model 1 Sigma =2
Model 3 - Easy Model 1 with
Gaussian Blur Sigma =1
and Medium Model 1
Images

Model 3 - Easy Model 1 with
Gaussian Blur Sigma = 2,
Medium Model 1 with
Gaussian Blur Sigma =1
and Model 1 Hard Images

O O
QR Y Model
O O
0
©%
Data
small & easy larger & harder
subset subset
-
% Qc Qr= Curriculum

Training process

https://www.researchgate.net/figure/llustration-of-the-Curriculum-Learning-CL-concept-The-fruit-images-are-from-106-CL_fig1_350459224

3 Main Methods of Splitting Dataset
1. Complexity of Dataset
2. Amount of Noise in Dataset
3.  Hybrid of Previous Methods



Results and Comparison

Pros: Cons:
- Large decrease in training time - If used on large pre-existing datasets some strategies
- Comparable results to base models may take a lot of time and manual labor
- In some strategies splitting the dataset may be very - On some datasets there might be catastrophic
easy, only benefitting the model. forgetting if we don’t revisit previous ‘difficulties’
Average Training Tiria of Madals Column 1 v BaselineModel v Model 1 (using Complexity Split) v  Model 2 (using Gaussian Split) v  Model 3 (using Hybrid) v
B Baseline Model [l Complexity Split Gaussian Split [l Hybrid Split SN Reta
800.00 Runt 9753 97.78 96.89 97.04
Run2 97.47 97.12 97.19 97.33
Run3 97.68 97.68 97.14 97.53
—~ 600.00
ﬁ Average Percentage 97.56 97.53 97.07 97.30
g 400.00 Accuracy on Gaussian
= Blur Testing Set
£ Run1 96.79 97.63 97.19 96.99
o
= 200.00 Run 2 97.09 96.64 97.58 96.89
Run3 96.64 96.3 96.79 97.73
0.00 Average Percentage 96.84 96.86 97.19 97.20

Similar results to previous papers, especially with Gaussian Blur models.
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Long Short-Term Memory
(LSTM) architecture

ELEMPLT-WISE
STATIE



Baseline and Results
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Machine-learning Kohn—Sham potential from
dynamics in time-dependent Kohn—Sham systems

Jun Yang, and James Whitfield
Machine learning Science and Technology, 2023

4, Conclusions

In this article, we have described a new machine-learning method to learn the dynamics and the Kohn—Sham
potential (or the hardest part—sxc potential) of the Kohn—Sham system. We have demonstrated the method
with two one-dimensional examples: a harmonic oscillator model and a two-electron soft Coulomb model.
In both examples, the exact dynamics of the systems could be well reproduced from the machine learning
method. The machine-learned potential in the harmonic oscillator test captures the general feature of the
actual quadratic form potential, but it shows a discrepancy from the actual one in the two-electron test. We
have analyzed the possible reasons, and the memory effect is the major source of error. The memory etfect
requires considering the densities of previous timestamps. To overcome this difficulty, we believe the neural
networks capable of handling time series (e.g. RNN, LSTM) are promising [34, 36].
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Summary

Motivation & Goal: Reduce the size and inference time (time used to generate image) of the diffusion model while preserving the quality of

the images generated by the model.

Dataset: CIFAR-10 3x32x32

Background:

(e]

We measure performance by Fréchet inception distance (FID) score (measures difference between images, the lower the better),
inference time, and model size

We use Denoising Diffusion Probabilistic Model (DDPM), which is a kind of generative diffusion model. Generative diffusion model is
trained by adding noise to train image and denoising. During inference, it operates the learned denoising process on pure noise to
generate new images.

Conditional diffusion model improves training of model (compared to unconditional). Conditional model takes into account the label
instead of purely depending on images in training data.

Exponential moving average (EMA) improves training of model. EMA smooth model’s weight over time and thus enhance the
model’s stability when encountering fluctuation in training data.

Structural pruning to optimize model size and training time. Structural pruning removes redundant parameters from model by
modifying its structure

Quantization optimize model size and training time. Quantization optimizes the model by reducing bit size of parameters (for

example float 32 to int 8)



Result

We implemented an unconditional Denoising Diffusion Probabilistic Model (DDPM) as our base model

We added exponential moving average (EMA) on top of conditional DDPM

We then implemented structural pruning on top of on top of conditional DDPM with EMA
We at last added quantization, but our method is naive and only support CPU inference
All inference except CPU inference are performed on 4080 laptop GPU

Inference Result of Conditional-EMA-DDPM Inference Result of Conditional-EMA-Pruned-DDPM

(]
e We then implemented a conditional version of DDPM
(]
[ ]
(]
(]
FID- Model- Inference-
(5000 Size (Mb) | time-10-
images) images
(seconds)
Unconditional || 46.6382 117.8429 | 22
Conditional 40.1885 23.6553 19
Conditional- 35.2616 23.6553 19
EMA
Conditional- 46.2591 9.9578 19
EMA-Pruned
Conditional- 48.9244 23.0638 150
EMA- (CPU)
Quantized
Conditional- 58.8651 9.3689 133
EMA- (CPU)
Pruned-
Quantized




Conclusion

e Comparing between our results, The conditional-EMA implementation provides the best result with small
enough model size, which is our recommended model for the CIFAR-10 dataset. Structural pruning may be
preferred if smaller model size is required with tolerable increase in FID score.

e Dynamic quantization is not recommended as it provides too little decrease in model size compared to pruning

but resulted in larger increase in FID score. Also it only supports CPU inference leading to unacceptably high

inference time.

Future Work

e Utilize another quantization method, which could possibly provide less loss in FID score

e Implement other strategies, like knowledge distillation, that can provide same picture quality while reduces

size and inference time
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Background and Motivation

Project Objective:

The goal is to develop a more efficient image classification system by applying Knowledge Distillation (KD) to an ensemble of student models. This
allows us to replicate the performance of larger, deeper models while reducing computational costs

Motivation:

° High Computational Costs of Large Models: Models like ResNet110 and VGG-16 require substantial resources, making them impractical
for deployment in resource-constrained environments (e.g., mobile devices).

° Need for Efficient Models: Knowledge Distillation and ensemble methods help improve smaller models' performance, making them
viable for low-power devices without sacrificing accuracy

Background:

° Ensemble Learning: Combines predictions from multiple models to improve performance. By using multiple student models in an
ensemble, performance can be maintained while significantly reducing computational complexity

° Mixture of experts: Uses a gating network to divert the processed inputs to the necessary expert/experts, to create a sparse model unlike
the dense models that are traditionally used.

° Knowledge Distillation: Knowledge distillation (KD) is a technique where a smaller "student" model learns from a larger "teacher" model,
transferring knowledge through softened output probabilities. In our code, KD is implemented by using the teacher model’s logits (raw
predictions) as soft targets for the student model, which helps the student model capture finer details of the data distribution

° Combined loss function used in training the student consists of the standard cross-entropy loss (to match hard labels) and a KL
divergence loss (to align the student's predictions with the teacher's softened outputs)

o Loss=a- Cross-Entropy Loss+[3- KL Divergence
o Where a and 3 are weights that control the importance of each component of the loss.



Results (Ensemble)

Teacher Models
Model Accuracy (%) Parameters (M)
ResNet32 81.82 0.49
ResNet56 86.21 0.88
ResNet110 87.37 1.75

* CNNs have 2 convolutions (3x3
Kernel, stride 1, padding 1, 16
filters) each

Student
Model

CNN*

CNN*

CNN*

CNN*

CNN*

CNN*

ResNet8

ResNet8

ResNet8

ResNet14

ResNet14

ResNet14

Teacher
Model

ResNet32

ResNet32

ResNet32

ResNet56

ResNet56

ResNet56

ResNet56

ResNet56

ResNet56

ResNet56

ResNet56

ResNet56

Number
of
Students

Accuracy
before Dist.
(%)

42.76

46.16

47.31

44.37

43.47

45.71

69.18

77.49

78.32

74.25

77.44

81.57

Accuracy
after Dist.
(%)

43.81

47.50

47.92

44.76

45.13

47.71

80.10

84.01

85.36

84.51

87.06

87.53

Improveme
nt (%)

+1.05

+1.34

+0.61

+0.39

+1.66

+2.00

+10.92

+6.52

+7.04

+10.26

+9.62

+5.96

Compression
Ratio

0.0062

0.0308

0.0493

0.0034

0.0171

0.0343

0.1124

0.5622

1.0119

0.2234

0.6701

1.1169



Results (Mixture of Experts)

Student Teacher Number of Accuracy before Accuracy after Improvement Effective
Model Model experts Dist. (%) Dist. (%) (%) Compression
Ratio
MoE ResNet32 2 65.09 63.87 -1.22 0.097
MoE ResNet32 3 64.99 64.51 -0.48 0.097
MoE ResNet32 4 65.47 63.87 -1.6 0.097
MoE ResNet32 5 66.29 66.07 -0.22 0.097
MoE ResNet32 6 65.73 64.34 -1.39 0.097
MoE ResNet32 7 64.99 65.84 +0.85 0.097
MoE ResNet32 8 64.63 64.57 -0.06 0.097
MoE ResNet32 9 64.92 65.86 +0.94 0.097
MoE ResNet32 10 64.66 65.21 +0.55 0.097




Conclusion and key takeaways

e Ensembles of CNN and ResNet student models achieved actuaries near to
their teacher models

e Simple CNN student achieved compression ratio as low as 0.0062 with
respectable accuracy upto 47% with Resnet32 as teacher.

e Resnet8 student ensemble trained w Resnet56 achieved 84.01% accuracy i,e
98% of teacher’s performance while having half parameter count.

e Students trained via distillation outperformed those trained independently by
nearly 2% in CNN and 6-10% in Resnet8 models.

e (Gains are the highest when the teacher and student have a similar
architecture.

e Mixture of experts students don’t work well with dense model teachers due to
disparity in the loss objectives.

e ResNets outperform MoE models with similar parameter size.
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Motivation and Background

Noise as Masking
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Main Results

Generated Video  Ground Truth Generated Video Ground Truth

Subtask 1: Subtask 2:
Pick the apple Place apple in the empty spot

Subtask 3: Subtask 4:
Pick the orange Place in the apple's original spot

Subtask 5: Subtask 6:
Pick the apple Place in the orange's original spot

Table 1. Comparison of results for the Fruit Swap task

Method MSE | UIQI1 SSIM 1 PSNR 1

Diffusion Forcing (RNN) 0.092 0414 0501 16.390
Diffusion Forcing (Transformer) 0.090 0412 0.501 16.464

Generated Video  Ground Truth Generated Video Ground Truth
Subtask 1: . 4 Subtask 1: s
Grasp Nut DO Pick the coffee pod

‘ ' m‘ .ro

Subtask 2:

Subtask 2: Insert the coffee pod

Place on Peg PO

\

. Subtask 3:
Subtask 3: Close the machine hinge

Grasp Nut D1
L SR §

Table 3. Comparison of results for the Coffee task

Subtask 4:

Place on Peg P1 Method MSE | UIQIT SSIM T PSNR 1
' Diffusion Forcing (RNN) 0452 0.119 0.258 9.46
‘ t Diffusion Forcing (Transformer) 0.445 0.127 0.268 9.53

Table 2. Comparison of results for the Nut Assembly task

Method MSE | UIQIt SSIM 1 PSNR 1

Diffusion Forcing (RNN) 0317 0.189 0.179 11.00
Diffusion Forcing (Transformer) 0.296 0.180 0.264 11.296




Conclusion

e Our proposed Transformer network performs better for multiple long
horizon tasks as compared to the baseline RNN.

e Diffusion Forcing is intensive with respect to resources.

e Diffusion Forcing is quite sensitive to hyperparameter tuning.
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Goal

Create a custom model that
surpasses the baseline accuracy of
existing designs by combining various
established methods and
architectures within the knowledge
distillation framework while
significantly compressing the teacher
model.

Teacher Model: VGG-16

Motivation

Knowledge distillation is traditionally
achieved using KL-Divergence loss
between the teacher's outputs and
the hard labels. However, since the
teacher is a large and complex
network, the student's architecture
is often constrained in terms of the
number of layers, as excessive
compression can lead to
information loss.

Dataset: Imagenette (10 classes & 13,394 images)

References:

1. TAKD paper
2. CMTKD paper

Background

We experimented with the following
methods for calculating loss:
1. Intermediate feature based
distillation
2. Mutual loss based distillation
In order to design the custom lite
model we studied the following
architectures:
1.  TAKD - Teacher Assistant
Knowledge Distillation
2. CMTKD - Collaborative Multi
Teacher Knowledge
Distillation


https://arxiv.org/pdf/1902.03393
https://openaccess.thecvf.com/content/WACV2023/papers/Pham_Collaborative_Multi-Teacher_Knowledge_Distillation_for_Learning_Low_Bit-Width_Deep_Neural_WACV_2023_paper.pdf
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Custom Lite Architecture
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Results

=> The graph on the right shows validation accuracy vs iterations

for the Custom Lite architecture.

- Table 1 compares the compression ratio and performance

gain of all three architectures.

- Table 2 compares the validation and test accuracies of all the

three architectures

Custom Model

80

Vahdation Accuracy (%)
8 2

»
o

Method Compression Ratio | Performance Gain — e
Baseline 1 2.6 1.33% o — g et
Baseline 2 1.625 1.16% 10500 mo e w0000

Custom Lite 4.334 0.92%

Method Model Validation Accuracy | Test Accuracy | Number of CNN Blocks
Baseline 1 Teacher 83.90 66.40 13
Baseline | Teaching Assistant 86.60 73.40 7
Baseline 1 Student 84.60 67.62 5
Baseline 2 Teacher 83.90 66.40 13
Baseline 2 Student 84.70 67.45 8

Custom Architecture Teacher 83.90 66.40 13
Custom Architecture | Teaching Assistant 1 84.70 67.45 8
Custom Architecture | Teaching Assistant 2 85.30 69.64 4
Custom Architecture Student 81.80 67.21 3




Conclusion

1. We were able to successfully implement Baseline 1 and Baseline 2 after a few tweaks in their original design,
given our computational constraints.

2. We successfully created a custom architecture (Custom Lite) which incorporates both the methods of Knowledge
Distillation - Intermediate feature-based KD and Mutual Loss-based KD

3. Inour Custom Lite architecture, we achieved a compression ratio of 4.334 and our lightweight student still
managed to surpass its teacher’s test accuracy (67.21% compared to 66.40%)

4. The most important part of KD is the KL-Divergence loss. In both methods of KD, the KL-Divergence between
output distribution of the teacher and student plays a critical role in guiding the student model to mimic the
teacher's behavior.

5. This loss function measures how well the student model's predictions align with the softened probability
distribution of the teacher, which often contains richer information about class relationships than the hard labels.

6. (Future Scope: ) Incorporating either multiple teachers with varying quantization levels or multiple teachers with
different architectures while maintaining the same number of modules (e.g., ResNet).
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Introduction & Objectives

» Diffusion Models:

» Powerful generative models for high-fidelity image generation.
» Operate through a gradual denoising process.

» Challenges:

» Computationally intensive and memory-heavy.
» Difficult deployment on resource-constrained devices.

» Objectives:
» Develop a compact diffusion model maintaining high image
quality.
» Apply model compression techniques:

» Knowledge Distillation: Transfer knowledge from a larger
teacher to a smaller student model.
» Pruning: Eliminate redundant parameters.
» Quantization: Reduce numerical precision for further
optimization.
» Evaluate performance based on image quality, inference time,
and model size.



Architecture & Methodology

Input
Downsample Block
Self-Attention Block
Upsample Block
Figure: U-Net Architecture Embedding vector
Overview

U-Net backbone with self-attention and convolutional layers to capture local and
global features.
Methodology:
» Knowledge Distillation: Combines standard diffusion loss (Lstandard) and
distillation loss (Lgistiil):

Laudene = alstandara + Blaisa

» Mixed Precision Training and EMA: Mixed precision combines FP16/FP32 to
reduce memory usage, while Exponential Moving Average (EMA) smooths
weight updates for stability.

» Pruning: Magnitude-based channel pruning removes less significant channels
based on their L1 norm. Fine-tuning ensures performance is maintained after
pruning.



Results & Future Directions

Performance Metrics

Model Size (MB) Inference Time (s) FID Score
Teacher Model 89.02 18.54 163
Student Model 22.6 15.72 184
Pruned Student Model 17.42 15.4 213

Future Directions
» Implement more efficient training techniques.

» Increase the number of training images for better
generalization.

» Explore advanced pruning and quantization methods.
» Utilize symmetries and latent space diffusion models.
» PHYSICS: RG flow vs diffusion models?
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Motivation and Background

EmoEditor EmoEditor EmoEdit

e What is AIM?
o Affective Image Manipulation.
o Modifying user-provided images to evoke
specific emotional responses.
e Motivations
o Previous works offered uncontrolled editing,
where users provided an image and target
emotion but had no control over the outcome,
often leading to edits that conflicted with users
intent.
o Existing editors either require large-scale
training or rely on calling proprietary LLMs
e Our Goals

o The first image emotion editor to evoke
specific emotions while integrating user
instructions for controlled edits.

o The first local deployable emotion editor.

Figure 1. Editing results from previous works.



CoMEdi: A multi-step agent framework

Step 1:Generate an
intermediate image based
on user instruction by
InstructPix2Pix

Image Editor —
I

Step 2: Use LISA to blur
specific area of original

image that mentioned in e g i |
user instruction et O i o resoned

Instruction
Generator

I
i ;
; © s [rms—— 4 FSL Instruction
. Generator

Image Editor

1
! Additional Instruction
|

i
1
i
i
Add a stone structure
i | tothe fox's back. First-Round Instructions

Step 3: Use LLAVA to

FSL

« "Add a stone structure to the fox's
H ' back. Then, draw a funny face on

generate emotional editing o [ ;
. . the fox." * "Add a crown-like stone structure 1
N Stru Ct' O n S fro m b I u rred * "Adding a stone crown on to the animal's back.." !
. the fox." * "Add a playful pattern on the fox's 1
H * “Turn the stones into fur and a stone structure to the fox's -
|mage Exclusion Zone L bubbles.” back.” :
Locator * "Add a playful pattern on * “Give this picture a yellow-green 1
the fox's fur." tint.” :

Step 4: Feed emotional
editing instructions and
intermediate image to
editor and get final results



Results and Conclusion || orusement

® 1.88x of emotion-manipulating ability
compared to the best-performed
baseline.

® 43% increase in additional instruction
following ability

Method | Metsic | Positive Emotfns Negative Emotions Avg
- =] -
5 5 g
g § g - @ 4 Technique
5 3 =2 & g g - P2P
3 g 3 ) 0 & §
5 8 §F §|§8 £ & 3 = o
25
UltraEdit [4] 0.126 0.013 0.040 0.132 | 0.044 0.031 0.030 -0.013 | 0.051
IP2P w/ MagicBrush [5] AE 0.115 0.038 0.048 0.128 | 0.055 0.024 0.052 0.020 | 0.060
InstructPix2Pix (IP2P) [3] 0.147 0.087 0.114 0.135 | 0.101 0.047 0.099 0.058 | 0.098 20 4
COMEDI (Ours) 0270 0.157 0.185 0.215 | 0.146 0.051 0.304 0.141 | 0.184 "
UltraEdit 0.082 -0.001 0.019 0.098 | 0.035 0.012 0.014 -0.011 | 0.031 § 15 4

IP2P w/ MagicBrush AE 0.057 0.005 0.017 0.073 | 0.039 0.014 0.026 0.009 | 0.030
InstructPix2Pix (IP2P) SSIM | 0,070 0.024 0.044 0.076 | 0.056 0.020 0.046 0.028 | 0.045
COMEDI (Ours) 0.128 0.054 0.074 0.117 | 0.062 0.020 0.117 0.066 | 0.080 104
UltraEdit 0.098 0.008 0.024 0.108 | 0.033 0.020 0.017 -0.014 | 0.037
IP2P w/ MagicBrush AE 0.090 0.018 0.030 0.106 | 0.048 0.021 0.040 0.013 | 0.046 5
InstructPix2Pix (IP2P) CLIP 1 0.103 0.046 0.068 0.103 | 0.074 0.034 0.073 0.030 | 0.067
COMEDI (Ours) 0.185 0.094 0.106 0.155 | 0.095 0.036 0.205 0.096 | 0.122

s . BAD IMAGE NOT FOLLOWED ROUGHLY FOLLOWED FOLLOWED
Table 2. Evaluation results among COMEDI and baselines Annotation
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Objective
Improve text classification performance by augmenting data for under-represented categories using LLMs.
Datasets

Banking77: 77 classes, granular intent classification.

Reuters-21578: 8 classes, broad text categorization.
Data Augmentation Strategies

Techniques: Cross-linguistic and Hybrid.

Approaches: Implemented using both Traditional (rule-based) and LLM (Gemini model).
Classification Model
Mistral LLM is used for evaluating model performance.

Goal

The goal is to evaluate whether data augmentation technique can improve accuracy for textual classification.
Furthermore we are comparing different data augmentation techniques with traditional and LLM-based
augmentation and improve downstream classification results.
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* Balanced datasets demonstrate reduced bias compared to imbalanced datasets, leading
to more reliable classification outcomes.

« With seed 10 Traditional approach is performing better compared to LLM Approach
whereas for seed 100 LLM approach is performing better.

LLM Approach Traditional Approach

seed =10 Cross Linguistic Hybrid
banking77=32% reuters=30% banking77=33% reuters=31%

seed =100 Hybrid Cross Linguistic
banking77=88% reuters=78% banking77=88% reuters=76%
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Problem: Existing machine learning models and tools, such as COLMAP and Vision-Language Models (VLMs), fail to

accurately classify and interpret camera motion. Challenges include ambiguous motion cues, overlapping object and
camera movements, and the absence of human-labeled datasets specifically tailored to camera dynamics.

Goal: Develop a comprehensive human-labeled dataset and design a pseudo-automated labeling system to capture
camera motion types and steadiness levels. This will enable more effective classification and interpretation of dynamic
video content while improving scalability for future research.

Approach: Create a taxonomy of camera motion, label real-world video data with trained and professional human
annotators, and evaluate the dataset using automated tools (e.g., COLMAP) and Vision-Language Models. Highlight the
limitations of existing models while emphasizing the value of human annotations for improving motion-aware Al systems.

N
-




COLMAP Performance on Motion Classification Tasks

_ COUMAP Accuracy
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Conclusion:

Challenges in Camera Trajectory Understanding
Camera motion classification is a complex problem, requiring huanced temporal reasoning
and the ability to disentangle overlapping object and camera dynamics.

Dataset Contributions
This work presents a human-labeled dataset designed to address these challenges, providing
detailed annotations that set a new benchmark for motion analysis.

Model Limitations

State-of-the-art models like ”LLAVA-OneVision" and tools like COLMAP struggle to capture
motion-specific cues, underscoring the need for motion-aware architectures.
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Project Overview

Motivation: Style transfer as a tool to enhance animation film time Y 4
and labor-intensive production, high computational resource cost, | _Wu 'V
visual identity standardization, and multi-style project scalability.

ONLY IN THEATERS
DECEMBER 14

Background:

e Style Transfer Methods: Linear Style Transfer (Gram-Based), Arbitrary Style
Transfer via Multi-Adaptation Network (Attention-Based) , Style Injection in
Diffusion (Diffusion-Based)

e Evaluation Metrics: Art-Fid, structural similarity, color similarity, content loss,
style loss, novel Animation Score, and inference time

Summary: Perform four style transformation experiments leveraging a designed
scalable framework for the inference and evaluation pipeline.



Experimental Results

4 Primary Experiments: Style transfer with comic images, style transfer with Al-generated
images, emotion-based style transfer, and consecutive frames style transfer

Experiment 1
Experiment 3




Conclusion

e Careful style image curation and trade-off prioritization — all models have
high potential
e Diffusion technique highest quality stylized images at expense of inference
efficiency, AMAGO best Animation Score
e Facilitates animation efficiency and creativity.
Model ArtFID | SSIM (avg + std) | ColorSim (avg + std) | ContentLoss (avg + std) | StyleLoss (avg + std) AnimationScore | AvgTime (avg + std) | LoadTime
AMAG60 | 40.04 0.558 £ 0.146 0.147 £0.171 21066.62 + 8491.96 1.1829 x 106 +1.0174 x 106 | 2.89 0.166 £ 0.411 0.145
Linear 38.18 0.400 + 0.149 0.290 + 0.157 37077.58 £ 13970.67 1.9099 x 10%° +£8.0571 x 10™ | 1.34 0.510 + 1.337 0.271
AMA90 | 37.94 | 0.372+0.134 0.324 +0.165 42009.41 + 12775.43 5.5629 x 101 +6.0418 x 10™° | 2.81 0.175 +0.437 0.139
SID 44.90 0.569 +£0.113 0.372 £ 0.187 19085.72 + 5487.76 8.7546 x 10™ +4.5552 x 10%° | 0.52 3.533+0.014 20.860
Table 2. Evaluation Results for Comic Style Conversions
Model | ArtFID | SSIM (avg + std) | ColorSim (avg + std) | ContentLoss (avg + std) | StyleLoss (avg + std) AnimationScore | AvgTime (avg + std) | LoadTime
AMAG0 | 40.68 0.661 +0.058 0.009 £0.212 25613.93 £2261.33 9.1555 x 10'® £ 9.8551 x 10'¢ | 1.92 0.342 +£0.575 0.153
Linear 47.29 0.436 £0.119 0.236 £ 0.306 54126.31 +7073.21 7.5489 x 10'® + 4.8070 x 106 | 1.07 0.984 + 1.694 0.255
AMA90 | 43.03 0.481 £0.075 0.121 £ 0.207 50527.12 + 9301.46 7.2467 x 10™® £ 6.5663 x 1016 | 1.92 0.341 £0.573 0.146
SID 46.48 0.457 £0.145 0.535 +0.161 41936.68 + 5289.11 2.1538 x 10¢ £2.1021 x 106 | 0.51 3.543 £0.011 19.767

Table 4. Evaluation Results for Emotion Style Conversions
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Introduction and Methodology

Comparison of Specialty Counts (Counts < 110)

Problem Statement: Medical transcription datasets often suffer from class
imbalance, where certain categories are overrepresented while others are

underrepresented.This imbalance can lead to inaccurate classifications,

particularly for the underrepresented classes.
Proposed Solution: Use Large Language Models (LLMs) such as
80

ClinicalBERT, ALBERT, T5, GPT-Neo, and GPT-J and compare with
traditional methods like SMOTE for data augmentation to generate
8

synthetic samples for minority classes.
Classification Approach: After augmentation, apply CNN (Convolutional
Neural Networks) and CNN + BIiLSTM (Bidirectional Long Short-Term %
Memory) for classification to evaluate the impact of augmented data on
model performance. -
Common Augmentation Strategy: :
Ao v & A L A 0N A u oG Ap N v N & 9 NN 0 o
Synonym Replacement: Up to 10 randomly selected words in each text sample §8 8§ 55 § F 68 88 S 8898588 ¢ 53898
. Lo Sy 9 F § 5 § &7 3 5 3 ¢ 3 $ Y s 5
were masked and replaced using model predictions. §°8 $° 8§ 570888 2888 588578 &8558 7
< § spiegeFe E058EF 8
3 ¢ § 5.0 & 244 ¥ § § 3 g 4
g g y & $ N § 3 $ 9
? g YSa g §FFs S B
() o y Q
éa WE T g \SJ 3 5\ q
Specialty
Class distribution after augmentation with ClinicalBERT

Strategic Masking: Additional masks were placed at specific positions, such as
the second and second-to-last words (ClinicalBERT) or at the beginning and end
of the text (ALBERT), to encourage diverse replacements.

Sampling Rules:
Classes with fewer than 20 samples were augmented to have 30 new

samples.
Classes with 20 to 110 samples received 25 new samples.
Classes with more than 110 samples received only 1 additional sample



Results and Comparison
with previous work

The experimental results demonstrate the superior
performance of ALBERT across both CNN and
CNN+BIiLSTM architectures, achieving the highest
accuracy (94.33% with CNN+BiLSTM and 94% with
CNN), recall, and F1 scores, significantly outperforming
traditional methods like SMOTE, which struggled with
accuracy (51.94% and 53%).

Other LLMs, such as ClinicalBERT, GPT-Neo, and T-5,
also showed promising results, with ClinicalBERT
achieving high accuracy (91.95%) and GPT-Neo excelling
in precision (92.09%), though they did not surpass
ALBERT in overall performance.

On Comparing with previous work:

Given the significant class imbalance in this dataset, there
has been limited work with this dataset. Previous studies
on data augmentation with LLMs for this dataset achieved
accuracy in the range of 65-75%. Our implementation
demonstrates an impressive improvement, with an
accuracy of 94%.

CNN

Accuracy Recall Precision F1-Score
ClinicalBert 0.93 0.939 0.944 0.940
ALBERT 0.94 0.949 0.952 0.948
T5 0.81 0.818 0.906 0.833
GPT-Neo 0.83 0.831 0.920 0.849
SMOTE 0.53 0.532 0.830 0.538

CNN+BIiLSTM

Accuracy Recall Precision F1-Score
ClinicalBert 0.91 0.947 0.943 0.972
ALBERT 0.94 0.972 0.947 0.960
T5 0.75 0.823 0.875 0.848
GPT-Neo 0.77 0.794 0.964 0.870
SMOTE 0.51 0.483 0.967 0.645




Conclusion

LLM Superiority: ALBERT and ClinicalBERT outperformed other models, achieving high accuracy (up to 0.94) and F1-scores (up to
0.960) in handling imbalanced medical datasets.

Model Performance: Both CNN and CNN + BiLSTM models performed well with LLM-based augmentation, delivering strong
classification results.

T5 and GPT-Neo Insights: T5 and GPT-Neo showed moderate effectiveness, highlighting the need for task-specific fine-tuning.

Limitations of SMOTE: SMOTE improved recall and precision but struggled with accuracy and F1-scores compared to LLM-based
augmentation.

Impact: | L Ms demonstrated significant potential in addressing class imbalance, enhancing predictive reliability, and supporting
healthcare research and patient care.

Future Scope:

e Real-Time Data Integration: Combine real-time medical data with LLM-based augmentation for adaptive models in dynamic

clinical settings.
e Continuous Improvement: Use real-time feedback to fine-tune LLMs, ensuring timely, accurate predictions for healthcare
professionals.
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Geolocator

GeoGuessing Like The Pros: Improving Image Classification

with Segmentation

Motivation:

e Geo-locating images using visual features has
applications in intelligence, environmental
monitoring, and personal recreation (e.g.,
GeoGuessr game).

e Goal: Replicate the strategies of expert
GeoGuessr players by using segmentation to
analyze geographical features (e.g., roads,
terrain, signs).

Objective:

e Enhance image classification using a
Convolutional Neural Network (CNN) integrated
with segmentation techniques.

e Improve geo-location prediction for images from
Google Street View.

Dataset:

e 40,000 Google Street View images with a focus

on rural locations, available from Kaggle.

— -

é FIGURE OUT WHERE YOU ARE




Results and performance

Key Findings:
Baseline Model:
e CNN trained on whole images gives 17% accuracy in
classifying images to the correct grid cell, far
exceeding the random guess accuracy of 0.6%.

Segmented Model:
e Improvement expected with image segmentation,
allowing better classification by focusing on distinct
objects like roads, terrain, and fauna.

Comparison to Prior Work:

e Previous geo-location models (e.g., PlaNet) use global
classification techniques, but segmentation allows
more fine-grained, object-based analysis.

e  Our approach improves geo-location prediction by
leveraging segmented analysis of key objects.

Accuracy

12 4

10 4

Plain VS. Segmented Model
Training Accuracy per Epoch

—— segmented
— plain

Epoch




Conclusion

Challenges:

e Dataset biases towards rural environments, which lack clear
infrastructure markers like signage.

e Variability in natural and man-made environments, including
seasonal changes and infrastructure evolution, makes
prediction harder.

Future Work:

e  Further tuning of segmentation models and integration with
more diverse datasets for broader geographic coverage.

e Explore other CNN architectures (e.g., ResNet, EfficientNet)
and advanced segmentation techniques.

Takeaway:
e Image segmentation offers a promising path to improve
geo-location tasks by capturing region-specific visual features,
with potential to outperform generic models.
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Motivation and Summary

Shot 2

->  Where will the players move on the court after each 3
shot? gy .
->  What type of shot will they perform? 2 Actual
® opponent_pred
Approach al E
e Sequence to sequence models
e Graphical Models 0
[ ]
_1 -
Dataset:
Badminton Singles Dataset — 10 shot types Ll
(x,y) coordinate of player and opponent
-3
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Results

Model Params | Seq Len | MSE | MAE C(E e Mean Square Error (MSE) and Mean Absolute
LSTM 10533 4 1.45 1.85 | 1.97 Error (MAE) for Player Location prediction
8 1-32 1;8 1.95 e  Cross Entropy for Shot Type Predictions
. 4 1.4 1.83 | 2.13
i s 8 1:37 1.80 | 2.34
4 1.40 1.81 1.97
ShuttleNet 32512 2 147 134 17196 Conclusion:
4 141 184 | 1.99 %  Designed RGCN- Attn with almost half the
Transformer | 14608 3 131 177 1 1.97 parameters as compared to state of the art
DyMF with competitive performance.
GCN 4021 g gg; ;(1;31 ;% %  Computationally inexpensive model with
: . — comparable performance.
R-GCN 7949 4 1.64 1.99 | 2.06
8 1.41 1.80 | 1.97
: 4 1.28 1.76 | 1.96
ki 16027 g 14 | 163 | 1.96
4 1.35 1.78 | 1.97
RGCN-Altn 8881 2 129 167 17195

Table 1. Performance metrics for different models across se-
quences.
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Motivation and snapshot

Motivation: Existing datasets often lack multi-channel audio or fail to
maintain consistent spatial and temporal correspondence between audio and
video components, limiting their utility for training models designed for
realistic and synchronized audio-video generation.

Approach: We leverages state-of-the-art models, including video-language
models, open-vocabulary object detection, segmentation, and consistent
depth estimation, to identify, track, and synthesize audio for sound sources
within videos.

Goal: By combining pixel-level segmentation, depth information, and motion

tracking, the pipeline generates multi-channel spatial audio that accurately
corresponds to video content in both time and space




Data & Model

Data Generation:

- Motion from video a5 Video Data
- Object detection + tracking sp==c2s
- Metric depth estimation (assumed
camera intrinsic)

- Prompting with VLM

Text Data Generation Audio Data Generation

- Which objects are making sounds? Wap W@ ==\ 5N o 0del Mono
- How is each object moving? The white/car'ic \\\_ @ ¢ VZA Model
- Sound Composition oungio. o s Spatlal
- Video to Audio with pretrained LDM Final

models

VLM
- Impulse Response based on distance ﬂ Spatial
& direction The red car is /
- V2A model Mono
Al 21 oSl

moving to -



Core contributions

This work addresses the challenges of synthesizing high-quality spatial
audio-video data enriched with textual context, including:

- Data Generation Pipeline: a comprehensive pipeline for creating spatial
video data with synchronized audio and text, unlike prior approaches that
often result in low-quality spatial outputs.

- Large-Scale Dataset: an extensive spatial audio-video dataset paired with
textual descriptions, serving as a critical resource for advancing multimodal
research and training models in this domain.

Dataset

Spatial Sound

Text Description

Spatial Annotations

VGGSound [1]
STARSS [11]
Youtube-360 [8]
Ours

No
Yes
Yes
Yes

Yes

Yes

No
Rich

No
No
No
Yes
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Overview of ASR: i

e Automatic Speech Recognition (ASR) converts speech into text. ad b
e Applications: Virtual assistants, transcription, accessibility tools. i

e Challenges: Variability in speech patterns, accents, rates, and noise. ;

Traditional vs. Modern Approaches:

m
[ J

Traditional: HMMs and GMMs struggled with complex speech dynamics.

FusionASR Innovation:
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Modern: Deep learning (CNNs, RNNs, LSTMs, Transformers,) models richer features, improving accuracy.
Conformer, effectively capture local/global speech dependencies using self-attention and convolution.

e Combines Conformer-based encoder with varied decoders for improved transcription.
e Trained on LibriSpeech Datasets.
[ J

Leverages GPT-2 tokenizer, data augmentation, and language modeling for semantic richness boosts.



Method

Conformer Encoder:
o Feed-forward,
o  Multi-head self-attention — global dependency
o convolutional modules - local feature
o residual connections
Decoder:
o LSTM Decoder: Processes input sequences to predict outputs using
memory-based gating mechanisms.
o Linear Decoder: Maps encoded features to outputs via simple linear
transformations.
o  Transformer Decoder: Uses self-attention for parallel, context-aware
sequence processing.
o  LSTM Decoder-Transformer: Combines LSTM with Transformer for
semantic sentence correction and error reduction.
Improvements:

I(A) Conformer Block' ! (B) FusionASR Pipeline

Input X

—

FeedForward

4

MultiHead
Attention

—

Convolution
Block

—¢

FeedForward

o Data Augmentations: Enhances model robustness using SpecAugment ‘

techniques like masking and time warping.

o Tokenized ASR Model: Reduces errors by using GPT-2 token-level
decoding with Byte Pair Encoding.

o Hybrid ASR System: GPT2 as scorer.

Encoder

Output X |

@

Output Y

; LSTM Decoder-Transformer

LSTM
Decoder

CNN
Subsample

Conformer
Nx
Block
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LM Decoder

Text Correct
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Linear
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Experiment Result and Conclusion

e Experiment Result: Compare to current SOTA method. (Table 1)
e Ablation Study: Each Module (Table 2); Hyperparameters (Table 3-@m3

e Conclusion: 2 189 208
o Explore Different Decoders, Tokenization, Hybrid Architecture. M 58 18

16 12.8 17.9

o Reach 12.6% WER, exceeding current SOTA method.
o Further work needed in LM Fusion, Larger Scale, Datasets.

Number of layers test-clean test—otherA

8 20.1 32.5
Methods test-clean test-other Methods test-clean  test-other 12 13.9 23.0
16 12.6 17.6

w/o GPT-2 Transformer 12.9 18.8
QuartzNet [12] 15.1 26.7 w/o Tokenization 45.4 60.3
ContextNet [8] 13.7 20.2 Linear Decoder 13.1 18.4 Window size test-clean  test-other

Transformer Decoder 12.5 18.0 1/4 78.2 81.7

Conformer [7] 12.9 18.8 — 292 12 252 40.1 5

w/o Data Augmentation 20.7 3 U IEeIE SEqiise) 12.6 17.6

4 FusionASR(Ours) | 12.6 17.6 9 [ FusionASROur) 12.6 17.6
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Project Overview
Motivation/Background

Most people travel by bus, but knowing the number of
people that use the buses, areas in which they live, the
time the majority of people commute is a challenge for pamere 1 17252
developing countries. This makes it hard to properly
allocate resources to areas where they are needed.

[Camera

Solution

Luckily, the newly rolled out E-buses come with CCTV
cameras. Our proposed solution is to use state-of-the-art
computer vision models, specifically YOLO, BoT-SORT and
OSNet to count the number of passengers boarding and
alighting.

University of
Massachusetts
Ambherst
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Challenges

e Passengers going in very close together resulted in tracking only the one at the back.
e Overcrowding in the buses made it difficult to accurately define the boundary.

e Line-based counting or region-of-interest (ROI) counting introduced double counting
[

Due to similar clothes, poses and occlusions cause ID mis-assignment. University of

Massachusetts
( Confidential ) ( Copyright © ) Ambherst




— Conclusions

m

Contributions

e Examined the performance of YOLO on out-of-distribution data, focusing on darker-skinned

people.
e Examined the performance of Re-ID models in high-density environments with occlusions and

poor lighting
Future-work

e Enhancing model robustness through additional fine-tuning on diverse, domain-specific datasets
and integrating advanced tracking algorithms to mitigate counting inaccuracies in dynamic

environments.
e Explore other counting techniques that don't include ROI

University of
Massachusetts
Ambherst
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