Lecture 2;
Image Classification,
Nearest Neighbor and Linear
Classifiers
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Image classification

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

v

cat
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Challenges: Semantic gap
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integers between [0, 255]. ,. oAy as s

Whal the compuler spes

E.g.
300 x100x 3

(3 for 3 color channels RGB)
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Challenges: Viewpoint Variation
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Challenges: lllumination

Subhransu Maiji and TAs
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Challenges: Deformation
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Challenges: Occlusion
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Lecture 2 - 7 Feb 3, 2026



Challenges: Background clutter

Subhransu Maiji and TAs
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Challenges: Intraclass variation
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Writing an image classifier

del Bl@%%tlﬁinaqe)
lELJlII class_Llabel
Unlike e.qg. sorting a list of numbers,

no obvious way to hand-code the algorithm for
recognizing a cat, or other classes.
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Attempts have been made

Find edges Find corners

VA D
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Machine Learning: Data Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning algorithms to train a classifier
3. Evaluate the classifier on new images

def train(train images, train labels):
return model
def predict(model, test images):

return test_labels

# build a model for images -> labels...

# predict test labels using the model...

Subhransu Maiji and TAs

Example training set
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Nearest Neighbor Classifier
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k-Nearest Neighbor

find the k nearest images, have them vote on the label

the data NN classifier 5-NN classifier
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http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
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Example dataset: CIFAR-10
10 labels

50,000 training images
10,000 test images
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For every test image (first column),
examples of nearest neighbors in rows

cat

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



the data NN classifier 5-NN classifier
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Q: what is the accuracy of the nearest
neighbor classifier on the training data,
when using the Euclidean distance?
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the data NN classifier 5-NN classifier
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Q: what is the accuracy of the k-nearest
neighbor classifier on the training data?
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What is the best distance to use?
What is the best value of k to use?

l.e. how do we set the hyperparameters?
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What is the best distance to use?
What is the best value of k to use?

l.e. how do we set the hyperparameters?

Very problem-dependent.
Must try them all out and see what works best.

Subhransu Maiji and TAs
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Trying out what hyperparameters work best on test set.

v

train data test data
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Trying out what hyperparameters work best on test set:
Very bad idea. The test set is a proxy for the generalization performance!
Use only VERY SPARINGLY, at the end.

v

train data test data
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train data test data

'
fold 1 fold 2 fold 3 fold 4 fold 5 test data

use to tune hyperparameters
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train data test data

'
fold 1 fold 2 fold 3 fold 4 fold 5 test data

\ \ ‘
Cross-validation

cycle through the choice of which fold
is the validation fold, average results.
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Lecture 2 - 24

Example of
5-fold cross-validation
for the value of k.

Each point: single
outcome.

The line goes

through the mean, bars
indicated standard
deviation

(Seems that k ~= 7 works best
for this data)

Feb 3, 2026
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k-Nearest Neighbor on raw images is never used.

- terrible performance at test time
- distance metrics on level of whole images can be
very unintuitive

ariginal shifted messed up darkened

(aII 3 images have same L2 dlstance to the one on the Ieft)
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Linear Classification

Subhransu Maji and TAs Lecture 2 - 26 Feb 3, 2026

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



airplane ﬂ..% > ..=-h Example dataset: CIFAR-10
= 10 label

automobile E..Eﬂh.‘ 50 (?Ooet?alnlng images

bird E;. ﬂ ' !. each image is 32x32x3

10,000 test images.

Subhransu Maiji and TAs
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Parametric approach

Image parameters

f(x,W)

10 numbers,

iIndicating class
e scores

[32x32x3]

array of numbers 0...1

(3072 numbers total)
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Parametric approach: Linear classifier
flz,W) =Wz

10 numbers,

iIndicating class
- scores

[32x32x3]

array of numbers 0...1

Subhransu Maji and TAs Lecture 2 - 29 Feb 3, 2026

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



Parametric approach: Linear classifier

Fle, W)~ 72

10x1 10x3072
\ 10 numbers,

iIndicating class
e scores

[32x32x3]

array of numbers 0...1

parameters, or “weights”
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Parametric approach: Linear classifier

f(z, W)| =g 39721 |(+b)|10x1

10x1 10x3072
\ 10 numbers,

iIndicating class
e scores

[32x32x3]

array of numbers 0...1

parameters, or “weights”
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

56

231

24

Input image
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

stretch pixels into single column

02 |-05]| 01| 20 56 e -96.8 | catscore

15 | 13 | 21 | 0.0 231 + 3.2 | . | 437.9 dog score

0 (025 0.2 | -0.3 -1.2 .
input image 24 61.95 ship score

W 5 b fla; W, b)
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Interpreting a Linear Classifier
airplane M.-V V’...:'h f(mi’W/" b) — I,‘/'mz. | b

automobile

bird ZH ﬂi & VI!H
- E%-@ Q: what does the

deer linear classifier
do, in English?

Subhransu Maiji and TAs
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Interpreting a Linear Classifier

9
i

car classifier

&

airplane classifier

'

/

deer classifier

Subhransu Maiji and TAs

f(zi,W,b) = Wz; + b

[32x32x3]
array of numbers 0O...1
(3072 numbers total)

Some slides kindly provided by Fei-Fei Li, Jiaju

n Wu, Erik Learned-Miller
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Interpreting a Linear Classifier

e it P - BRI

automobile Eih‘ f(iL‘z, W, b) — sz + b
ot Elmall WS ¥ B
« EEGHNEEEsP . .

«  EWATESTVEEE Example trained weights

- : | -
SRS SCBATLS  of a linear classifier

vog ERELOANE
. trained on CIFAR-10:
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Interpreting a Linear Classifier

:::o;n:b“e E V..=""= f(:cz-,W, b)=Wzx; +b

bird = mald 'Hﬁ VI!H

cat ﬁ;fa.-g« & Q2: what would be

o =Egg%%%zg a very hard set of
classes for a linear

frog IIEHI o

horse C|aSS|fler tO
ship distinguish?
truck
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Hard cases for a linear classifier

Class 1: Class 1: Class 1:
First and third quadrants 1<=L2 norm <=2 Three modes
Class 2: Class 2:
I 2:
Class Everything else Everything else

Second and fourth quadrants
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So far: We defined a (linear) score function: f(z:,w,b) = Wa, +b

really affine

Example class
scores for 3
Images, with a
random W:

Subhransu Maiji and TAs

/

airplane -3.45
automobile -8.87
bird 0.09
2.9
cat
e 4.48
8.02
dog
3.78
frog
1.06
h
oree -0.36
Sk -0.72

truck

-0.51
6.04
5.31

-4.22

-4.19
3.58
4.49

-4 .37

-2.09

-2.93

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller
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| fle, W) =Wz
Coming up:

" (quantifying what it means to
- Loss function et s

- Opt| m|Zat|On (start with random W and find a
W

that minimizes the loss)

- Neu ral netS! (tweak the functional form of f)

Subhransu Maiji and TAs Lecture 2 - 40 Feb 3, 2026
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Summary so far ... Linear classifier

Image parameters 10 numbers, indicating
Ny f(X,W) class scores

[32x32x3]
array of numbers 0...1

N
(3072 numbers total) ; &=\ 3
= o
»
tretch pixels into singl |
stretch pixels into single column l o P—
0
0.2 | -05]| 0.1 2.0 56 1.1 -96.8 | catscore airplane classifier, &
15 | 13 | 21 | 00 | 231 |4 |32 | — | 437.9 | gog score &
input image G [9:224) 0-24{<0:3 24 A2 61.95 ship score deer classifier
w 2 b RGO — =

Subhransu Maiji and TAs
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Loss function/Optimization

1. Define a loss function
that quantifies our

irotane 34t o0 51 3 a2 unhappiness with the
automobile 8- 87 6.04 4.64 scores across the training
bird 0.09 5.31 2.65 data.
wat 2.9 ~4.22 5.1
i 4.48 —4.19 2.64 1. Come up with a way of
. 6.02 3.58 293 efficiently finding the
: 3.78 4.49 -4.34 o
rog L o6 43 . parameters that minimize
o 0.36 5 09 _4.79 the loss fur]ctlon.
e ~0.72 ~2.93 6.14 (optimization)
truck
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) =Wz are:

Subhransu Maiji and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller LeCtU re 2 - 43 Feb 3’ 2026



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are:

Given an example (Zi, ¥i)
where I; is the image and
where ¥; is the (integer) label,

and using the shorthand for the
scores vector: s; = fimx;, W)

the SVM loss has the form:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog '17 20 '3.1

Li =), max(0,8; — 8y. + 1)

Z_Jj;/'y'

Subhransu Maiji and TAs
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller LeCtU re 2 - 44 Feb 3’ 2026



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are: '
Given an example (Z;, ¥;)
where g; is the image and
where Yi is the (integer) label,

and using the shorthand for the
scores vector: 5, — Filxi, W)

the SVM loss has the form:

L=,

cat 3.2 1.3 2.2 \
> jry, max(0,85 — 8y, + 1)
car 5.1 4.9 2.5 = max(0, 5.1 - 3.2 + 1)

+max(0, -1.7 - 3.2 + 1)
frog -1.7 20 '31 = max(0, 2.9) + max(0, -3.9)

=29+0
Losses: 2.9 =29

Subhransu Maiji and TAs Lecture 2 - 45 Feb 3, 2026
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are: '
Given an example (Z;, ¥;)
where g; is the image and
where Yi is the (integer) label,

and using the shorthand for the
scores vector: 5, — Filxi, W)

the SVM loss has the form:

L=,

cat 3.2 1.3 2.2 \
> jry, max(0,85 — 8y, + 1)
car 51 4-9 25 =max(0,1.3-4.9+1)

+max(0, 2.0 -4.9 + 1)
frog -1.7 20 '31 = max(0, -2.6) + max(0, -1.9)

=0+0
Losses: 2.9 0 o

Subhransu Maiji and TAs Lecture 2 - 46 Feb 3, 2026

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are: '
Given an example (Z;, ¥;)
where g; is the image and
where Yi is the (integer) label,

and using the shorthand for the
scores vector: 5, — Filxi, W)

the SVM loss has the form:

L; = ij_y' max(0,8; — 8y. + 1)

car 5.1 4.9 2.5 = max(0, 2.2 - (-3.1) + 1)

+max(0, 2.5 - (-3.1) + 1)
frog -1.7 2.0 -3.1 = max(0, 6.3) + max(0, 6.6)

Losses: 2.9 0 12.9 ~63+66

Subhransu Maiji and TAs Lecture 2 - 47 Feb 3, 2026

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are: |
Given an example (Z;, ¥;)
where g; is the image and
where Yi is the (integer) label,

and using the shorthand for the
scores vector: 5, — Filxi, W)

the SVM loss has the form:

cat 3.2 1.3 29 Li =Y ,,, max(0,8; — 8y, + 1)

and the full training loss is the mean

over all examples in the training data:
car 5.1 4.9 2.5

g A7 20 34 | QL N %2;/3
=(29+0+12.
Losses: 2.9 0 12.9 - 53

Subhransu Maiji and TAs Lecture 2 - 48 Feb 3, 2026
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) =Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 20 '3.1

Losses: 2.9 0 12.9

Subhransu Maiji and TAs

Multiclass SVM loss:

Given an example (Z;, ¥;)
where g; is the image and
where Yi is the (integer) label,

and using the shorthand for the
scores vector: 5, — Filxi, W)

the SVM loss has the form:
Li = Y,
Q: what if the sum
was instead over all
classes?
(including j =y i)

max(0,8; — 8y, + 1)

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) =Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 20 '3.1

Losses: 2.9 0 12.9

Subhransu Maiji and TAs

Multiclass SVM loss:

Given an example (Z;, ¥;)
where g; is the image and
where Yi is the (integer) label,

and using the shorthand for the
scores vector: 5, — Filxi, W)

the SVM loss has the form:
L = ijy' max(0,8; — 8y, + 1)
Q2: what if we used a
mean instead of a

sum here?

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) =Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 20 '3.1

Losses: 2.9 0 12.9

Subhransu Maiji and TAs

Multiclass SVM loss:

Given an example (Z;, ¥;)
where g; is the image and
where Yi is the (integer) label,

and using the shorthand for the
scores vector: 5, — Filxi, W)
the SVM loss has the form:

Li = Zj/_,,’ max(0,8; — Sy, + 1)

Q3: what if we used

. 2
L; =% ., max(0,s; — s, +1)°

Laiiy

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) =Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 20 '3.1

Losses: 2.9 0 12.9

Subhransu Maiji and TAs

Multiclass SVM loss:

Given an example (Z;, ¥;)
where g; is the image and
where Yi is the (integer) label,

and using the shorthand for the
scores vector: 5, — Filxi, W)

the SVM loss has the form:
Li = Zj/_,,’ max(0,8; — Sy, + 1)

Q4: what is the min/
max possible loss?

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) =Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog '17 20 '3.1

Losses: 2.9 0 12.9

Subhransu Maiji and TAs

Multiclass SVM loss:

Given an example (T, ¥;)
where a; is the image ana
where ; is the (integer) label,

and using the shorthand for the scores
vector: s = flmi, W)
the SVM loss has the form:

Li = max(0,8; — Sy, + 1)

S
I_JJ/"V'

Q5: usually at
initialization W are small
numbers, so all s ~= 0.
What is the loss?

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller
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Example numpy code:

Li = ., max(0,s; — sy, + 1)

def L_i vectorized(x, y, W):
scores = W.dot(x)
margins = np.maximum(©, scores - scores[y] + 1)
margins[y] = 0
loss 1 = np.sum(margins)
return loss i

Subhransu Maiji and TAs
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Coding tip: Keep track of dimensions:

X.shape[0]
X.shape[1]

W.shape[1]

scores=X.dot(W) # (N,DY*(D,0O)=(N,O)
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Softmax Classifier (Multinomial Logistic Regression)

cat 3.2
car 5.1

frog -1.7
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

8 = @ W)

cat 3.2
car 5.1

frog -1.7

Subhransu Maiji and TAs Lecture 2 - 57 Feb 3, 2026

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

P(Y =k|X = @) = ;| where |5 = f(zi; W)

&)

cat 3.2
car 5.1

frog -1.7
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

P(Y =k|X = @) = 5| | where |5 = f(zi; W)

2.5 €

cat 32 Softmax function
car 5.1
frog -1.7
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

P(Y =k|X = @) = ;| where |5 = f(zi; W)

&)

Want to maximize the log likelihood, or (for a loss function)
cat 3 2 to minimize the negative log likelihood of the correct class:

Lo = —lopg PlY =9 X =&;
car 5.1 og P( il z)

frog -1.7
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

P(Y =k|X = @) = ;| where |5 = f(zi; W)

&)

Want to maximize the log likelihood, or (for a loss function)
cat 3 2 to minimize the negative log likelihood of the correct class:

Lo = —lopg PlY =9 X =&;
car 5.1 og P( il z)

frog '1 7 in summary: L'l —i log( e*% : )
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Softmax Classifier (Multinomial Logistic Regression)

Li — —log( 6‘11;'3.)

5 y
vy e

cat 3.2
car 5.1

frog -1.7

unnormalized log probabilities

Subhransu Maji and TAs Lecture 2 - 62 Feb 3, 2026

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



Softmax Classifier (Multinomial Logistic Regression)

Li — —log( 6‘11;'3.)

5 y
vy e

unnormalized probabilities

cat 3.2 24.5
car 51 - 164.0
frog '1 7 018

unnormalized log probabilities
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Softmax Classifier (Multinomial Logistic Regression)

L; = —log(

€ i )
N
\ 3 B4

unnormalized probabilities

cat 3.2 24.5 0.13

exp normalize

car 5.1 - 1164.0 0.87

probabilities
>0, sum to 1

unnormalized log probabilities
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Softmax Classifier (Multinomial Logistic Regression)

L; = —log(

€ i )
S
) g B

unnormalized probabilities

cat 3.2 24.5 0.13 | L_i=-log(0.13)

exp normalize =0.89

car 5.1 - 1164.0 0.87

unnormalized log probabilities probabilities
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Softmax Classifier (Multinomial Logistic Regression)

L; = —log(

€ i )
S
) g B

unnormalized probabilities

cat 3.2 24.5 0.13 | L_i=-log(0.13)

exp normalize =0.89

car 5.1 - 1164.0 0.87

unnormalized log probabilities probabilities
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Softmax Classifier (Multinomial Logistic Regression)

- Q: What is the min/max
L; = —log(=—-) |possible loss L_i?

TR 7
Ly e

unnormalized probabilities

cat 3.2 24.5 0.13 |~ L_i=-log(0.13)
car 5 1 exp 1640 normaliz‘e 0.87 =0.89
frog -1.7 0.18 0.00

unnormalized log probabilities probabilities

Subhransu Maiji and TAs Lecture 2 - 67 Feb 3, 2026

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



Softmax Classifier (Multinomial Logistic Regression)

Q2: usually at
Initialization W are small
numbers, so all s ~= 0.
What is the loss?

normalize

»

| 2

L; = —log(

e UNNoOrmalized probabilities
cat 3.2 24.5
car 51 [ [164.0
frog '1 7 O 1 8

unnormalized log probabilities

Subhransu Maiji and TAs

0.13 |- L.i=-log(0.13)
=0.89
0.87
0.00
probabilities

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller
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Softmax vs. SVM

L; = —log( 69%3}.

L TR :
/—JJB

) L; = ;., max(0,s; — sy, + 1)
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hinge loss (SVM)
-2.85
matrix multiply + bias offset | max(0, -2.85-0.28 + 1) +
| | 086 max(0, 0.86 - 0.28 + 1)
001 | -005| 0.1 | 005 -15 0.0 -
| 028 1.58
07 02 | 005 | 016 22 | 4| 02
00 -045| -02 | 0.03 -44 -0.3 cross-entropy loss (Softmax)
- -2.85 0.058 0.016
W 56 b
Ny exp S normalize - log(0.362)
:B’L (to aum =
te ona) 0.452
) | 0.28 1.32 0.353
Yi 2
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Softmax vs. SVM

L; = —log( 5:‘, ) Ly = ;. max(0,s; — sy, + 1)
assume scores: Q: Suppose | take a datapoint
10, -2, 3] and | jiggle a bit (changing its

- O, 9 ’9 score slightly). What happens to
1Y, I, ] the loss in both cases?

10, -100, -100]

and [, —
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Coming up: f(x,W)=Wx +b

- Regularization
- Optimization
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