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Lecture 3:

Loss function

Regularization

Optimization
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Announcements (also on Piazza)
- Homework 1 released, due Feb’26


- Reminder to read course policies https://cvl-umass.github.io/
compsci682-spring-2026/policies/ and course page in general

https://cvl-umass.github.io/compsci682-spring-2026/policies/
https://cvl-umass.github.io/compsci682-spring-2026/policies/
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Recall from last time ...   Linear classifier

[32x32x3]

array of numbers 0...1

(3072 numbers total)

f(x,W)
image parameters 10 numbers, indicating 

class scores



Lecture 2 - Sept. 7. 2021Erik Learned-Miller and TAs 
Some slides kindly provided by Fei-Fei Li, Andrej Karpathy, Justin Johnson
Subhransu Maji and TAs 
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 3 - Feb 5, 20264

Loss function/Optimization
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• Define a loss function 
that quantifies our 
unhappiness with the 
scores across the training 
data.


• Come up with a way of 
efficiently finding the 
parameters that minimize 
the loss function. 
(optimization)

Goals:
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Suppose: 3 training examples, 3 classes.

With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

0Losses: 2.9 12.9

Suppose: 3 training examples, 3 classes.

With some W the scores                           are:

Multiclass SVM loss:

Given an example

where        is the image and

where       is the (integer) label,


and using the shorthand for the 
scores vector:


the SVM loss has the form:


and the full training loss is the mean 
over all examples in the training data:

L = (2.9 + 0 + 12.9)/3 

   = 5.3
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Example numpy code:
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Coding tip: Keep track of dimensions:
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 


cat

frog

car

3.2
5.1
-1.7
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 


cat

frog

car

3.2
5.1
-1.7

where
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 


cat

frog

car

3.2
5.1
-1.7

where

Softmax function
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 


Want to maximize the log likelihood, or (for a loss function) 

to minimize the negative log likelihood of the correct class:
cat

frog

car

3.2
5.1
-1.7

where
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 


Want to maximize the log likelihood, or (for a loss function) 

to minimize the negative log likelihood of the correct class:
cat

frog

car

3.2
5.1
-1.7 in summary:

where
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp

unnormalized probabilities
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities 
>0, sum to 1
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities

L_i = -log(0.13)

      = 0.89
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities

L_i = -log(0.13)

      = 0.89
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities

L_i = -log(0.13)

      = 0.89

Q: What is the min/max 
possible loss L_i?



Lecture 2 - Sept. 7. 2021Erik Learned-Miller and TAs 
Some slides kindly provided by Fei-Fei Li, Andrej Karpathy, Justin Johnson
Subhransu Maji and TAs 
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 3 - Feb 5, 202621

Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities

L_i = -log(0.13)

      = 0.89

Q2: usually at 
initialization W are small 
numbers, so all s ~= 0. 
What is the loss?
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Softmax vs. SVM
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Softmax vs. SVM

assume scores:

[10, -2, 3]

[10, 9, 9]

[10, -100, -100]

and 

Q: Suppose I take a datapoint 
and I jiggle a bit (changing its 
score slightly). What happens to 
the loss in both cases?
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Coming up:


- Regularization


- Optimization

f(x,W) = Wx + b
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Regularization
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There is a “bug” with the loss:

E.g. Suppose that we found a W such that L = 0. 

Is this W unique?
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Suppose: 3 training examples, 3 classes.

With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

= max(0, 1.3 - 4.9 + 1) 

   +max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

= 0 + 0

= 0

0Losses: 2.9

Before:

With W twice as large:
= max(0, 2.6 - 9.8 + 1) 

   +max(0, 4.0 - 9.8 + 1)

= max(0, -6.2) + max(0, -4.8)

= 0 + 0

= 012.9
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cat

frog

car 2.5
1.3

2.0
Loss:

An example:

	 What is the loss? (POLL)
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cat

frog

car 2.5
1.3	 	 	

2.0
0.5Loss:

An example:

	 What is the loss? 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cat

frog

car 2.5
1.3	 	 	

2.0
0.5Loss:

An example:

	 What is the loss? 
 
 
How could we change W to eliminate  
the loss?  (POLL)
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cat

frog

car 2.5	 5.0
1.3	 2.6	 	

2.0	 4.0
0.5	 0	Loss:

An example:

	 What is the loss? 
 
 
How could we change W to eliminate  
the loss?  (POLL) 
 
Multiply W (and b) by 2!
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cat

frog

car 2.5	 5.0
1.3	 2.6	 	

2.0	 4.0
0.5	 0	Loss:

An example:

	 What is the loss? 
 
 
How could we change W to eliminate  
the loss?  (POLL) 
 
Multiply W (and b) by 2! 
 
 
Wait a minute! Have we done anything 
useful???
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cat

frog

car 2.5	 5.0
1.3	 2.6	 	

2.0	 4.0
0.5	 0	Loss:

An example:

	 What is the loss? 
 
 
How could we change W to eliminate  
the loss?  (POLL) 
 
Multiply W (and b) by 2! 
 
 
Wait a minute! Have we done anything 
useful??? 
 
No!  Any example that used to be wrong 
is still wrong (on the wrong side of the 
boundary). Any example that is right is 
still right (on the correct side of the 
boundary).
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Regularization: Prevent the model 
from having too much flexibility.
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Regularization: Prevent the model 
from having too much flexibility.
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Regularization pushes against fitting the data with too much flexibility. If you are going to 
use a complex function to fit the data, you should be doing based on a lot of data!



y = f(x) + ✏ f(x) = sin(⇡x)

✏ = N(0,�2)

gn(x) = ✓0 + ✓1x+ ✓2x
2 + . . .+ ✓nx

n

50 samples

� = 0.1

figures from https://theclevermachine.wordpress.com/tag/estimator-variance/

(high bias, low variance)

(low bias, high variance)

Bias Variance Tradeoff

https://theclevermachine.wordpress.com/tag/estimator-variance/
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figures from https://theclevermachine.wordpress.com/tag/estimator-variance/

Bias Variance Tradeoff for Polynomials

https://theclevermachine.wordpress.com/tag/estimator-variance/
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But things can be complicated!

Double descent

Source: https://en.wikipedia.org/wiki/Double_descent
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Optimization
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Recap
- We have some dataset of (x,y)

- We have a score function: 

- We have a loss function: 

e.g.

Softmax

SVM

Full loss
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Strategy #1: A first very bad idea solution: Random search
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Let’s see how well this works on the test set...

15.5% accuracy! not bad!

(SOTA is ~95%)
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How often will a random search succeed?
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p1

p2

p5 p6

⌘1 p3
⌘2 p4
⌘3

step size

local optima = global optima

pk+1  pk � ⌘kg
(k)

take a step down the gradient

g(k)  rpF (p)|pk

compute gradient at the current location

Strategy #2: Follow the slope
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Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

In multiple dimensions, the gradient is the vector of (partial derivatives).
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Numerical evaluation of the gradient...
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current W:


[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

gradient dW:


[?,

?,

?,

?,

?,

?,

?,

?,

?,…]
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Lecture 3 - Feb 5, 202654

current W:


[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

W + h (first dim):


[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25322

gradient dW:


[?,

?,

?,

?,

?,

?,

?,

?,

?,…]
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Lecture 3 - Feb 5, 202655

gradient dW:


[-2.5,

?,

?,

?,

?,

?,

?,

?,

?,…]

(1.25322 - 1.25347)/0.0001

= -2.5

current W:


[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

W + h (first dim):


[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25322
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Lecture 3 - Feb 5, 202656

gradient dW:


[-2.5,

?,

?,

?,

?,

?,

?,

?,

?,…]

current W:


[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

W + h (second dim):


[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25353
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Lecture 3 - Feb 5, 202657

gradient dW:


[-2.5,

0.6,

?,

?,

?,

?,

?,

?,

?,…]

current W:


[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

W + h (second dim):


[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25353

(1.25353 - 1.25347)/0.0001

= 0.6
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Lecture 3 - Feb 5, 202658

gradient dW:


[-2.5,

0.6,

?,

?,

?,

?,

?,

?,

?,…]

current W:


[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

W + h (third dim):


[0.34,

-1.11,

0.78 + 0.0001,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347
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Lecture 3 - Feb 5, 202659

gradient dW:


[-2.5,

0.6,

0,

?,

?,

?,

?,

?,

?,…]

current W:


[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

W + h (third dim):


[0.34,

-1.11,

0.78 + 0.0001,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

(1.25347 - 1.25347)/0.0001

= 0
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Lecture 3 - Feb 5, 202660

gradient dW:


[-2.5,

0.6,

0,

0.2,

0.7,

-0.5,

1.1,

1.3,

-2.1,…]

current W:


[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

dW = ...

(some function of 
data and W)
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Lecture 3 - Feb 5, 202661

Evaluating the 

gradient numerically
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Lecture 3 - Feb 5, 202662

Evaluating the 

gradient numerically

- approximate

- very slow to evaluate
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Lecture 3 - Feb 5, 202663

This is silly. The loss is just a function of W:

want “The gradient of the loss L with respect to the 
parameters W”
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Lecture 3 - Feb 5, 202664

This is silly. The loss is just a function of W:

want



1. Developed calculus

2. Fundamentals of optics

3. Theory of gravity


 
...not too shabby!



Lecture 2 - Sept. 7. 2021Erik Learned-Miller and TAs 
Some slides kindly provided by Fei-Fei Li, Andrej Karpathy, Justin Johnson
Subhransu Maji and TAs 
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 3 - Feb 5, 202666

This is silly. The loss is just a function of W:

= ...
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Lecture 3 - Feb 5, 202667

In summary:

- Numerical gradient: approximate, slow, easy to write


- Analytic gradient: exact, fast, error-prone


In practice: Always use analytic gradient, but check 
implementation with numerical gradient. This is called a 
gradient check.
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Lecture 3 - Feb 5, 202668

Gradient Descent
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Lecture 3 - Feb 5, 202669

original W

negative gradient direction
W_1

W_2
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Lecture 3 - Feb 5, 202670

Mini-batch Gradient Descent
- only use a small portion of the training set to compute the gradient.

Common mini-batch sizes are 32/64/128 examples

e.g. Krizhevsky ILSVRC ConvNet used 256 examples
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Lecture 3 - Feb 5, 202671

Mini-batch Gradient Descent
- only use a small portion of the training set to compute the gradient. 

Why?

- Goal is to estimate the gradient

- Trade-off between accuracy and computation

- No point in doing more computation if it won’t change the updates
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Lecture 3 - Feb 5, 202672

Mini-batch Gradient Descent
- only use a small portion of the training set to compute the gradient.

Common mini-batch sizes are 32/64/128 examples

e.g. Krizhevsky ILSVRC ConvNet used 256 examples
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Lecture 3 - Feb 5, 202673

Example of optimization progress while 
training a neural network. 


(Loss over mini-batches goes down 
over time.)
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Lecture 3 - Feb 5, 202674

The effects of step size (or “learning rate”)
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Lecture 3 - Feb 5, 202675

Mini-batch Gradient Descent
- only use a small portion of the training set to compute the gradient.

Common mini-batch sizes are 32/64/128 examples

e.g. Krizhevsky ILSVRC ConvNet used 256 examples

we will look at more 
fancy update formulas

(momentum, Adagrad, 
RMSProp, Adam, …)
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Lecture 3 - Feb 5, 202676

(image credits to Alec Radford)

The effects of 
different 
update form 
formulas


