Lecture 3:
Loss function
Regularization
Optimization
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Announcements (also on Piazza)

- Homework 1 released, due Feb’26

- Reminder to read course policies https://cvl-umass.qgithub.io/
compsci682-spring-2026/policies/ and course page in general
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Recall from last time ... Linear classifier
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Loss function/Optimization
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Goals:

» Define a loss function
that quantifies our
unhappiness with the
scores across the training
data.

« Come up with a way of
efficiently finding the
parameters that minimize
the loss function.
(optimization)
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) =Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog '17 20 '3.1
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are: '
Given an example (Z;, ¥;)
where g; is the image and
where Yi is the (integer) label,

and using the shorthand for the
scores vector: 5, — Filxi, W)

the SVM loss has the form:

cat 3.2 13 29 L =¥, max(0,8; — s, +1)

and the full training loss is the mean

over all examples in the training data:
car 5.1 4.9 2.5

L=Y0 L
1.7 20 -3.1 T
frog L=(29+0+12.9)/3

Losses: 2.9 0 12.9 =513
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Example numpy code:

Li = ., max(0,s; — sy, + 1)

def L_i vectorized(x, y, W):
scores = W.dot(x)
margins = np.maximum(©, scores - scores[y] + 1)
margins[y] = 0
loss 1 = np.sum(margins)
return loss i
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Coding tip: Keep track of dimensions:

X.shape[0]
X.shape[1]
W.shape[1]

scores=X.dot(W) # (N,DY*(D,0O)=(N,O)
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Softmax Classifier (Multinomial Logistic Regression)

cat 3.2
car 5.1
frog -1.7
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

8 = @ W)

cat 3.2
car 5.1

frog -1.7
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

P(Y =k|X = @) = ;| where |5 = f(zi; W)

&)

cat 3.2
car 5.1

frog -1.7
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

P(Y =k|X = @) = 5| | where |5 = f(zi; W)

2.5 €

cat 32 Softmax function
car 5.1
frog -1.7
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

P(Y =k|X = @) = ;| where |5 = f(zi; W)

&)

Want to maximize the log likelihood, or (for a loss function)
cat 3 2 to minimize the negative log likelihood of the correct class:

Liz—l‘ Py = iXZ t
car 5.1 og P( il z)

frog -1.7
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

P(Y =k|X = @) = ;| where |5 = f(zi; W)

&)

Want to maximize the log likelihood, or (for a loss function)
cat 3 2 to minimize the negative log likelihood of the correct class:

Liz—l‘ Py = iXZ t
car 5.1 og P il z)

frog '1 7 in summary: L’l —i log( e*% : )
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Softmax Classifier (Multinomial Logistic Regression)

Li — —log( 6‘11;'3.)

5 y
vy e

cat 3.2
car 5.1

frog -1.7

unnormalized log probabilities
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Softmax Classifier (Multinomial Logistic Regression)

Li — —log( 6‘11;'3.)

5 y
vy e

unnormalized probabilities

cat 3.2 24.5
car 51 - 164.0
frog '1 7 018

unnormalized log probabilities
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Softmax Classifier (Multinomial Logistic Regression)

L; = —log(

€ i )
S
\ 5 e

unnormalized probabilities

cat 3.2 24.5 0.13

exp normalize

car 5.1 - 1164.0 0.87

probabilities
>0, sum to 1

unnormalized log probabilities
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Softmax Classifier (Multinomial Logistic Regression)

L; = —log(

€ i )
S
) g B

unnormalized probabilities

cat 3.2 24.5 0.13 | L_i=-log(0.13)

exp normalize =0.89

car 5.1 - 1164.0 0.87

unnormalized log probabilities probabilities
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Softmax Classifier (Multinomial Logistic Regression)

L; = —log(

€ i )
S
) g B

unnormalized probabilities

cat 3.2 24.5 0.13 | L_i=-log(0.13)

exp normalize =0.89

car 5.1 - 1164.0 0.87

unnormalized log probabilities probabilities
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Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

L;

3.2
5.1
-1.7

exp

_ log( ;Syi%-f )

unnormalized probabilities

24.5
164.0
0.18

. e
K

Q: What is the min/max
possible loss L _i?

normalize

unnormalized log probabilities

Subhransu Maji and TAs

0.13 |- L_i=-log(0.13)
=0.89

0.87

0.00

probabilities
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Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

L;

3.2
5.1
-1.7

exp

— log(

e’% )
NV ol
Ly e

Q2: usually at

initialization W are small

numbers, so all

What is the loss?

s ~=0.

unnormalized probabilities

24.5
164.0
0.18

normalize

unnormalized log probabilities
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0.00

probabilities

= -log(0.13)
=0.89
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Softmax vs. SVM

L; = —log(<2-) Ly =3 ,., max(0,s; — sy, + 1)

N '
vy e
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matrix multiply + bias offset

hinge loss (SVM)

001 005 | 01 0.05 -156 0.0
0.7 0.2 005 | 0.16 | 22 3o 0.2
00  -045 | -02 | 003 -44 0.3
W 56 b
£Li
Y; T
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-2.85
| max(0, -2.85-028+1) +
0.86 max(0, 0.86-0.28 + 1)
o 1.58
cross-entropy loss (Softmax)
-2.85 0.058 0.016
e exp S normalize - log(0.353)
{to aum =
te ana) 0.452
0.28 1.32 0.353
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Softmax vs. SVM

L; = —log( it, ) Ly =3, max(0,s; — sy, + 1)
assume scores: Q: Suppose | take a datapoint
10, -2, 3] and | jiggle a bit (changing its

- O, 9 ’9 score slightly). What happens to
1Y, I, ] the loss in both cases?

10, -100, -100]

and [, —
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Coming up: f(x,W) =Wx + b

- Regularization
- Optimization
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Regularization
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There is a "bug” with the loss:

=z, W) =Wz
L= 5 Xl Xy, max(0, f(zis W), — f(2is W)y, AN

E.g. Suppose that we found a W such that L = 0.
Is this W unique?
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Suppose: 3 training examples, 3 classes. Li = >z, max(0,s; — sy, + 1)|
With some W the scores f(z, W) =Wz are:

Before:

=max(0,1.3-49+ 1)
+max(0,2.0-4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

=0+0

=0
cat 3.2 1.3 2.2 With W twice as large:

= 0,26-9.8+1
car 5.1 4.9 2.5 Tr?eig((o, 4098+ )1)
frog _1 7 20 _31 : g]ixéo, -6.2) + max(0, -4.8)
| osses: 2.9 0 12.9 =0
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flz, W) = Wz

An example:
What is the loss? (POLL)

cat

car

frog

Loss:
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flz, W) = Wz

An example:
What is the loss?

cat
car

frog

Loss:
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flz, W) = Wz

An example:
What is the loss?

How could we change W to eliminate
the loss? (POLL)

cat
car

frog

Loss:
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flz, W) = Wz

An example:
What is the loss?

How could we change W to eliminate
the loss? (POLL)

Multiply W (and b) by 2!
cat

car

frog

Loss:
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flz, W) = Wz

An example:
What is the loss?

How could we change W to eliminate
the loss? (POLL)

Multiply W (and b) by 2!

cat

Wait a minute! Have we done anything
useful???

car

frog

Loss:
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flx, W) =Wz An example:
What is the loss?

How could we change W to eliminate
the loss? (POLL)

Multiply W (and b) by 2!

Cat Wait a minute! Have we done anything
useful ???

car 2 . 5 5- 0 No! Any example that used to be wrong
is still wrong (on the wrong side of the
boundary). Any example that is right is

frog 2 - O 4 . O still right (on the correct side of the
boundary).

Loss: 05 0
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Regularization A = regularization strength
(hyperparameter)

N
L(W) = %Z Li(f (s, W), ) + AR(W)

)
‘\th /H/_/

Data loss: Model predictions Regularization: Prevent the model

should match training data from having too much flexibility.
Simple examples More complex:
L2 reqularization: R(W) =3, 3, W7, Dropout
L1 regularization: R(W) — >, L Wil Batch normalization

Elastic net (L1 + L2): /(W) 3,3, 5W: + Wy, Stochastic depth, fractional pooling, etc
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Reg ularization .= regularization strength
(hyperparameter)

N

o o ,

L(W) = N > " Li(f(zi, W), i) + AR(W)
=1

- e
v
Data loss: MOde} PrediCtions Regularization: Prevent the model
should match training data from having too much flexibility.

Why regularize?
- Express preferences over weights
- Make the model simple so it works on test data
- Improve optimization by adding curvature
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Regularization: Expressing Preferences

L2 Regqularization

e il’ L1, 1] R(W) - Zk ZIWA?.I
wp = _1,0,0,0] |
Wy = :0.25, 0.25, 0.25,0.25]

Subhransu Maji and TAs Lecture 3 - 37 Feb 5, 2026
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller




Regularization: Expressing Preferences

L2 Regularization

= L, 1, 1 1] RW) =3 ,3>,W

1,0,0,0]

g
|

§
||

025, 025, 025, 025] L2 regularization likes to

“spread out” the weights

[T/ & S
wla:—w2:c—1
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Regularization: Prefer Simpler Models

O
O
© @
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Regularization: Prefer Simpler Models

f, £
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Regularization: Prefer Simpler Models

i:1 f

X

Regularization pushes against fitting the data with too much flexibility. If you are going to
use a complex function to fit the data, you should be doing based on a lot of data!
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Bias Variance Tradeoff

y=f(x)+e f(z)=sin(rz)
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Bias Variance Tradeoff for Polynomials
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But things can be complicated!

Source: https://en.wikipedia.org/wiki/Double_descent

1.5 P
(a) B Training Error (£, ,.i0) ' : ';
®  Test Emor (€ P Double descent
fo1e
= 1O ’; i |
g ’.‘.‘_.*.“ .'l : |‘
bed I.‘--‘ ‘.. y 1 ‘
O L e, » P
. = o o % .
L =, *%ecoese? : b Interpolation
05F 'l_‘ | . Threshold
.y :
l‘-‘ N
l‘ 1
() () 1 1 L L

Parameters/Data «,
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Optimization
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Recap

- We have some dataset of (x,y) eq.
- We have a score function: 5= f(z; W) = Wz
- We have a loss function:

. e— . o eﬂyi
Lz — log( Z st ) SOftmaX requisrizatine lase
J W

Li = 3,2, max(0,s; — sy, + 1)svm

h )

@L—ﬂ

soore funchon

:l-'g'I
L= i\ S Li + R(W) Full loss ly'
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Strategy #1: A first very bad idea solution: Random search

bestlass = Maalt{"inl") # F
for num in xrange|1868):
W= np.randan. ramcin {13, 3G73) * 0.8641 # ¢
loss = L{X Lrain, Y train, W) # ¢
if loss < pestless:
bestlass = lass
pesIW = W
print 'in allenp! %d the Toss was W, best 577 % (num, lass, beslloss)
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Let’'s see how well this works on the test set...

scores = Wbest.dot(Xte cols) # 10 x 10000
Yte predict = np.argmax(scores, axis = 0)

np.mean(Yte predict == Yte)

15.5% accuracy! not bad!
(SOTA is ~95%)
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- ’_"‘_, — -

How often will a random search succeed?

Subhransu Maji and TAs Lecture 3- 49  Feb 5, 2026
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



Strategy #2: Follow the slope

g(k) <~ Vo F(p)lp,

compute gradient at the current location

Pk+1 < Pk — ng(k)

take a step down the gradient

T local optima = global optima
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Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

df(a) S f(z + h) — f(z)
da: h >0 h

In multiple dimensions, the gradient is the vector of (partial derivatives).
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Numerical evaluation of the gradient...
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current W: gradient dW:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

"

10 BELO TS BTG BTG BTG BETH BT |

-~
[]
[]

| S

Subhransu Maji and TAs Lecture 3 - 53 Feb 5, 2026

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



current W: W + h (first dim): gradient dW:
[0.34, [0.34 + 0.0001, [?,
-1.11, -1.11, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.95, 0.95, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 loss 1.25322
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current W: W + h (first dim): gradient dW:

[0.34, [0.34 + 0.0001, [-2.5,

'1.11, -1-115 ?1 '

0.78, 0.78, ?, \

8-;? 8-;? (1.25322 - 1.25347)/0.0001
. y . ’ =-25

-23811 ’ -23811 ) d j; el _ i f(z+ h}) — f(z)

-1 .5: -1 .5: 7

0.33,...] 0.33,...] ?2,..]

loss 1.25347 loss 1.25322
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current W: W + h (second dim): gradient dW:
[0.34, [0.34, [-2.5,
-1.11, -1.11 + 0.0001, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25353

Subhransu Maji and TAs Lecture 3 - 56 Feb 5, 2026

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



current W: W + h (second dim): gradient dW:
[0.34, [0.34, [-2.5,

-1.11, -1.11 + 0.0001, 0.6, .

0.78, 0.78, ?. \

0.12, 0.12, ?,

0.95, 0.99, (1.25353 - 1.25347)/0.0001
2.81, 2.81, =0.6

-31 y -31 ’ df(x) i f(z + k) — f(z)
_1_5’ _1_5, dx Y h
0.33,...] 0.33,...] 7.

loss 1.25347 | loss 1.25353
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current W: W + h (third dim): gradient dW:
[0.34, [0.34, [-2.5,
-1.11, -1.11, 0.6,
0.78, 0.78 + 0.0001, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25347
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current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Subhransu Maji and TAs

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

[-2.5,
0.6,
0,

?,\
n

(1.25347 - 1.25347)/0.0001
=0

df(x) _ 1iII(1J f(z+ hz — f(z)

dx h o>

-’---J
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current W gradient dW:
[0.34, [-2.5,
111, dw = ... 06
0.78, (some function of 0

0.12, data and W) 0.2
0.55, 07
2.81, T s
31, 1.1,
1.9, 1.3,
0.33,...] 211
loss 1.25347
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Evaluating the def eval_numerical_gradient(f, x):

a naive implementatian af nunerical gradien! aof [ a4t x

[ ] L]
radlent numerlcall - T should be 3 tunction that takes a single arqument
x i% lhe point [nuray array) lo evalusle Lhe gradient al

T = T(X) evgliuate functle 1lve ot or
grad = np.serps[x. shape)

df(:}:) it f(:[; o h) s f(f) h = 6.00001

dax h >0 h

il = np.ndilerix, Mags=T'null ndex' 1, op Mags=s['readwrile’ 1)
while not it.ftinisnsd:

ix = il.oelti index

old_value = x[1x]

x[ix] = pld value + h 2

Txh = T(x}

x[ix] = plid value =

gradlix] = (txh - tX) / h the s(ope
il.ilernext(} & 5! exl o

return prad
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Evaluating the def eval_numerical_gradient(f, x):

a naive implementatian af nunerical gradien! aof [ a4t x

gradient numerica”y - r shoule be a3 tunction that takes a single argument

% the point [numay array) lo evalusle Lhe gradient al

FxX-=n1 (X}
grad = np.zeros[x. shage)

df(a) . f(z+h)— f(z) h = ©.00601

= lim
h >0 h

(l'[" il = np.ndilerix, Mags=T'null ndex' 1, op Mags=['readwrile’ 1)
while not it.ftinisnsd:

ix = il.melti index
old__'.'-:alue = x|[1x]
x[ix] = pld valuc + h &

- approximate i
x[ix] = pld value =
- very slow to evaluate

gradlix] = (txh - tx) 7/ h
il.ilernext(} 2 :

return prad
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This is silly. The loss is just a function of W:
L= % Z:\_1 Li + 3, W

B = E#y{ max(0,s; — 8, + 1)

a= fla: W) = Wax

s “The gradient of the loss L with respect to the
want VH‘- L - parameters W’
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This is silly. The loss is just a function of W:

L= % Z:\_l Li + Zk. I/V;?
L; = Ej#ya- max(0,s; — 8, + 1)
s=f(z; W) =Wz

want V- L
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Retreoclis

During a pandemic, Isaac Newton had to work from home,
too. He used the time wisely.

1. Developed calculus
2. Fundamentals of optics
3. Theory of gravity

...not too shabby!

Oy GiSan Breclal

VR 18 pmLEL)

Isanc Newton was in his early 20: when the Crest Pligne of London hit. He wasn™ a *Sir” yet, didn™



This is silly. The loss is just a function of W:
L= % Z:\_l Li + Zk. I/V;?

L = Ej#ya- max(0,s; — 8, + 1)

s=f(z; W) =Wz
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In summary:

- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check
Implementation with numerical gradient. This is called a

gradient check.
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Gradient Descent

while T
welghts grad = evaluate qradient(loss fun, data, weights)
weights += - step size * welghts_grad # perform parameter update
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original W

o

negative gradient direction
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Mini-batch Gradient Descent

- only use a small portion of the training set to compute the gradient.

while |
data batch = sample training data(data, 250) 2!
weighls grad = pvalusle gradienl (loss fun, dala balch, weighls)
weights += - step size #* welghts qrad # per? r i naat

Common mini-batch sizes are 32/64/128 examples
e.g. Krizhevsky ILSVRC ConvNet used 256 examples
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Mini-batch Gradient Descent

- only use a small portion of the training set to compute the gradient.
Why?
- Goal is to estimate the gradient
- Trade-off between accuracy and computation
- No point in doing more computation if it won’t change the updates
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Mini-batch Gradient Descent

- only use a small portion of the training set to compute the gradient.

while |
data batch = sample training data(data, 250) 2!
weighls grad = pvalusle gradienl (loss fun, dala balch, weighls)
weights += - step size #* welghts qrad # per? r i naat

Common mini-batch sizes are 32/64/128 examples
e.g. Krizhevsky ILSVRC ConvNet used 256 examples
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Example of optimization progress while
training a neural network.

(Loss over mini-batches goes down
over time.)

]
=
)
7
3
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The effects of step size (or “learning rate”)

A

loss

low learning rate

high learning rate

goaod learning rate

]
>
)
g
=
\J

sl . epoch
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Mini-batch Gradient Descent

- only use a small portion of the training set to compute the gradient.

while |
data batch = sample training data(data, 250) / =4 25¢ ,
weighls grad = pvalusle gradienl (loss fun, dala balch, weighls)

weights += - step _size #* welghts qrad # perform paramete

\ we will look at more
Common mini-batch sizes are 32/64/128 examples fancy update formulas

. (momentum, Adagrad,
e.g. Krizhevsky ILSVRC ConvNet used 256 examples RMSProp, Adam, ...)
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Adadelts
(image credits to Alec Radford)

——  Momentum

wee NAG
- Adagrad
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