

Lecture 3: Loss function Regularization Optimization

Announcements (also on Piazza)

- Homework 1 released, due Feb'26
- Reminder to read course policies <https://cvl-umass.github.io/compsci682-spring-2026/policies/> and course page in general

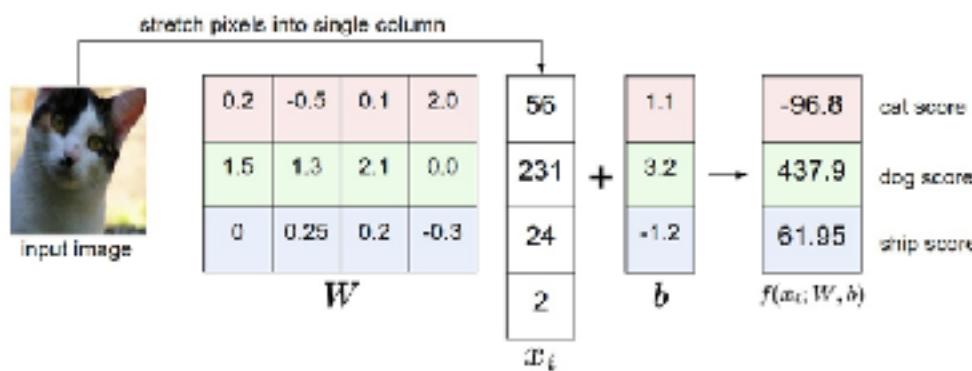
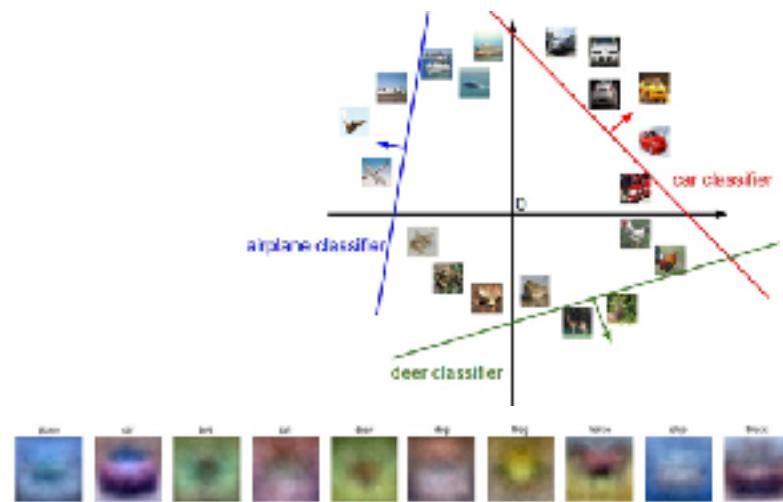
Recall from last time ... Linear classifier

[32x32x3]

array of numbers 0...1
(3072 numbers total)

image parameters
 $f(\mathbf{x}, \mathbf{W})$

10 numbers, indicating
class scores



Loss function/Optimization

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

Goals:

- Define a **loss function** that quantifies our unhappiness with the scores across the training data.
- Come up with a way of efficiently finding the parameters that minimize the loss function. **(optimization)**

Suppose: 3 training examples, 3 classes.

With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Suppose: 3 training examples, 3 classes.

With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

and the full training loss is the mean over all examples in the training data:

$$L = \frac{1}{N} \sum_{i=1}^N L_i$$

$$\begin{aligned} L &= (2.9 + 0 + 12.9)/3 \\ &= 5.3 \end{aligned}$$

Example numpy code:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

```
def L_i_vectorized(x, y, W):
    scores = W.dot(x)
    margins = np.maximum(0, scores - scores[y] + 1)
    margins[y] = 0
    loss_i = np.sum(margins)
    return loss_i
```

Coding tip: Keep track of dimensions:

```
N = X.shape[0]
D = X.shape[1]
C = W.shape[1]

scores=X.dot(W)                      # (N,D)*(D,C)=(N,C)
```

Softmax Classifier (Multinomial Logistic Regression)

cat	3.2
car	5.1
frog	-1.7

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

$$s = f(x_i; W)$$

cat	3.2
car	5.1
frog	-1.7

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

$$P(Y = k|X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \quad \text{where} \quad s = f(x_i; W)$$

cat	3.2
car	5.1
frog	-1.7

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

$$P(Y = k|X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $s = f(x_i; W)$

cat	3.2	Softmax function
car	5.1	
frog	-1.7	

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

$$P(Y = k|X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \quad \text{where} \quad s = f(x_i; W)$$

cat	3.2
car	5.1
frog	-1.7

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y = y_i|X = x_i)$$

Softmax Classifier (Multinomial Logistic Regression)

cat	3.2
car	5.1
frog	-1.7

scores = unnormalized log probabilities of the classes.

$$P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \quad \text{where} \quad s = f(x_i; W)$$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y = y_i | X = x_i)$$

in summary: $L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}}\right)$

Softmax Classifier (Multinomial Logistic Regression)

$$L_i = -\log\left(\frac{e^{s_i}}{\sum_j e^{s_j}}\right)$$

cat
car
frog

3.2
5.1
-1.7

unnormalized log probabilities

Softmax Classifier (Multinomial Logistic Regression)

$$L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}}\right)$$

unnormalized probabilities

cat
car
frog

3.2	
5.1	
-1.7	

exp

24.5
164.0
0.18

unnormalized log probabilities

Softmax Classifier (Multinomial Logistic Regression)

$$L_i = -\log\left(\frac{e^{s_i}}{\sum_j e^{s_j}}\right)$$

unnormalized probabilities

cat
car
frog

3.2
5.1
-1.7

exp

24.5
164.0
0.18

normalize

0.13
0.87
0.00

probabilities
>0, sum to 1

unnormalized log probabilities

Softmax Classifier (Multinomial Logistic Regression)

$$L_i = -\log\left(\frac{e^{s_i}}{\sum_j e^{s_j}}\right)$$

unnormalized probabilities

cat
car
frog

3.2
5.1
-1.7

exp

24.5
164.0
0.18

normalize

0.13
0.87
0.00

$$L_i = -\log(0.13) = 0.89$$

unnormalized log probabilities

probabilities

Softmax Classifier (Multinomial Logistic Regression)

$$L_i = -\log\left(\frac{e^{s_i}}{\sum_j e^{s_j}}\right)$$

unnormalized probabilities

cat
car
frog

3.2
5.1
-1.7

exp

24.5
164.0
0.18

normalize

0.13
0.87
0.00

$$L_i = -\log(0.13) = 0.89$$

unnormalized log probabilities

probabilities

Softmax Classifier (Multinomial Logistic Regression)

$$L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}}\right)$$

unnormalized probabilities

Q: What is the min/max possible loss L_i ?

cat
car
frog

3.2
5.1
-1.7

exp

24.5
164.0
0.18

normalize

0.13
0.87
0.00

$$L_i = -\log(0.13) = 0.89$$

unnormalized log probabilities

probabilities

Softmax Classifier (Multinomial Logistic Regression)

$$L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}}\right)$$

unnormalized probabilities

Q2: usually at initialization W are small numbers, so all $s \approx 0$. What is the loss?

cat
car
frog

3.2
5.1
-1.7

exp

24.5
164.0
0.18

normalize

0.13
0.87
0.00

$$L_i = -\log(0.13) = 0.89$$

unnormalized log probabilities

probabilities

Softmax vs. SVM

$$L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}}\right)$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

matrix multiply + bias offset

0.01	-0.05	0.1	0.05
0.7	0.2	0.05	0.16
0.0	-0.45	-0.2	0.03

W

-15	0.0
22	0.2
-44	-0.3
56	

$+$

| 0.0 | 0.2 | -0.3 |

b

y_i 2

| -2.85 | 0.86 | 0.28 |

hinge loss (SVM)

$$\max(0, -2.85 - 0.28 + 1) + \max(0, 0.86 - 0.28 + 1) = 1.58$$

cross-entropy loss (Softmax)

-2.85	0.058	0.016
0.86	2.36	0.631
0.28	1.32	0.353

\exp

normalize
(to sum to one)

$$- \log(0.353) = 0.452$$

Softmax vs. SVM

$$L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}}\right)$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

[10, -2, 3]

[10, 9, 9]

[10, -100, -100]

and

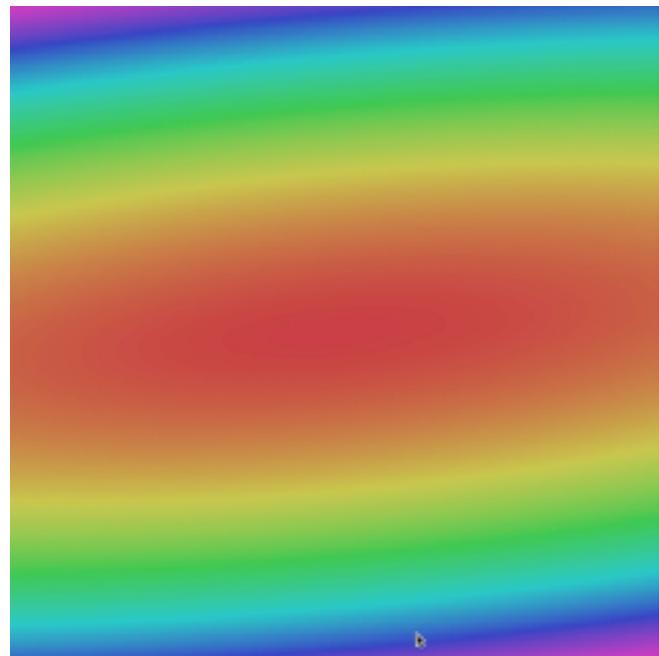
$$y_i = 0$$

Q: Suppose I take a datapoint and I jiggle a bit (changing its score slightly). What happens to the loss in both cases?

Coming up:

$$f(x, W) = Wx + b$$

- Regularization
- Optimization



Regularization

There is a “bug” with the loss:

$$f(x, W) = Wx$$

$$L = \frac{1}{N} \sum_{i=1}^N \sum_{j \neq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$$

E.g. Suppose that we found a W such that $L = 0$.
Is this W unique?

Suppose: 3 training examples, 3 classes.

With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Before:

$$\begin{aligned} &= \max(0, 1.3 - 4.9 + 1) \\ &\quad + \max(0, 2.0 - 4.9 + 1) \\ &= \max(0, -2.6) + \max(0, -1.9) \\ &= 0 + 0 \\ &= 0 \end{aligned}$$

With W twice as large:

$$\begin{aligned} &= \max(0, 2.6 - 9.8 + 1) \\ &\quad + \max(0, 4.0 - 9.8 + 1) \\ &= \max(0, -6.2) + \max(0, -4.8) \\ &= 0 + 0 \\ &= 0 \end{aligned}$$

$$f(x, W) = Wx$$

An example:

What is the loss? (POLL)

cat	1.3
car	2.5
frog	2.0

Loss:

$$f(x, W) = Wx$$

An example:

What is the loss?

cat	1.3
car	2.5
frog	2.0
Loss:	0.5

$$f(x, W) = Wx$$

An example:

What is the loss?

How could we change W to eliminate
the loss? (POLL)

cat	1.3
car	2.5
frog	2.0
Loss:	0.5

$$f(x, W) = Wx$$

cat	1.3	2.6
car	2.5	5.0
frog	2.0	4.0
Loss:	0.5	0

An example:

What is the loss?

How could we change W to eliminate the loss? (POLL)

Multiply W (and b) by 2!

$$f(x, W) = Wx$$

cat	1.3	2.6
car	2.5	5.0
frog	2.0	4.0
Loss:	0.5	0

An example:

What is the loss?

How could we change W to eliminate the loss? (POLL)

Multiply W (and b) by 2!

Wait a minute! Have we done anything useful???

$$f(x, W) = Wx$$

cat	1.3	2.6
car	2.5	5.0
frog	2.0	4.0
Loss:	0.5	0

An example:

What is the loss?

How could we change W to eliminate the loss? (POLL)

Multiply W (and b) by 2!

Wait a minute! Have we done anything useful???

No! Any example that used to be wrong is still wrong (on the wrong side of the boundary). Any example that is right is still right (on the correct side of the boundary).

Regularization

λ = regularization strength
(hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^N L_i(f(x_i, W), y_i)}_{\text{Data loss: Model predictions should match training data}} + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from having too much flexibility.

Simple examples

L2 regularization: $R(W) = \sum_k \sum_l W_{k,l}^2$

L1 regularization: $R(W) = \sum_k \sum_l |W_{k,l}|$

Elastic net (L1 + L2): $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$

More complex:

Dropout

Batch normalization

Stochastic depth, fractional pooling, etc

Regularization

λ = regularization strength
(hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^N L_i(f(x_i, W), y_i)}_{\text{Data loss: Model predictions should match training data}} + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from having too much flexibility.

Why regularize?

- Express preferences over weights
- Make the model *simple* so it works on test data
- Improve optimization by adding curvature

Regularization: Expressing Preferences

$$x = [1, 1, 1, 1]$$

L2 Regularization

$$R(W) = \sum_k \sum_l W_{k,l}^2$$

$$w_1 = [1, 0, 0, 0]$$

$$w_2 = [0.25, 0.25, 0.25, 0.25]$$

$$w_1^T x = w_2^T x = 1$$

Regularization: Expressing Preferences

$$x = [1, 1, 1, 1]$$

L2 Regularization

$$R(W) = \sum_k \sum_l W_{k,l}^2$$

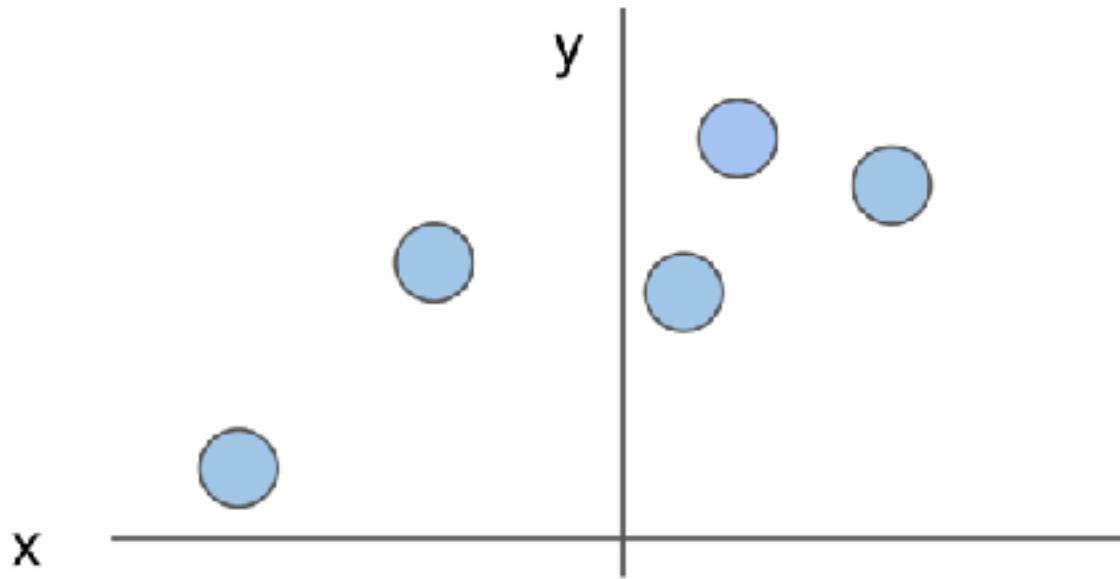
$$w_1 = [1, 0, 0, 0]$$

$$w_2 = [0.25, 0.25, 0.25, 0.25]$$

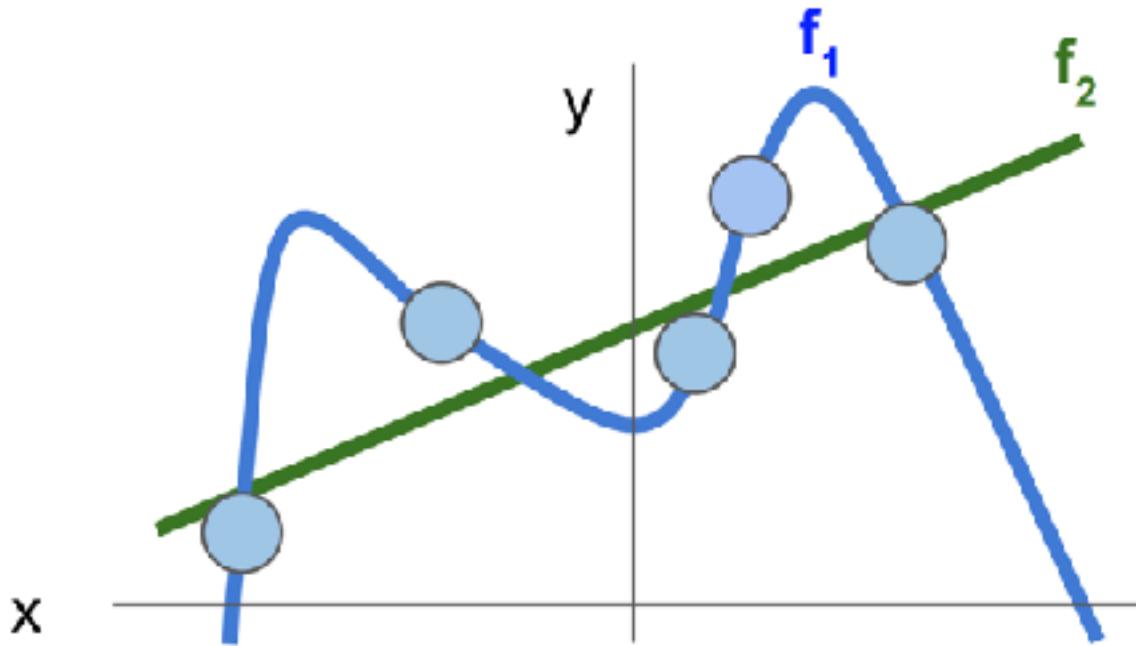
L2 regularization likes to
“spread out” the weights

$$w_1^T x = w_2^T x = 1$$

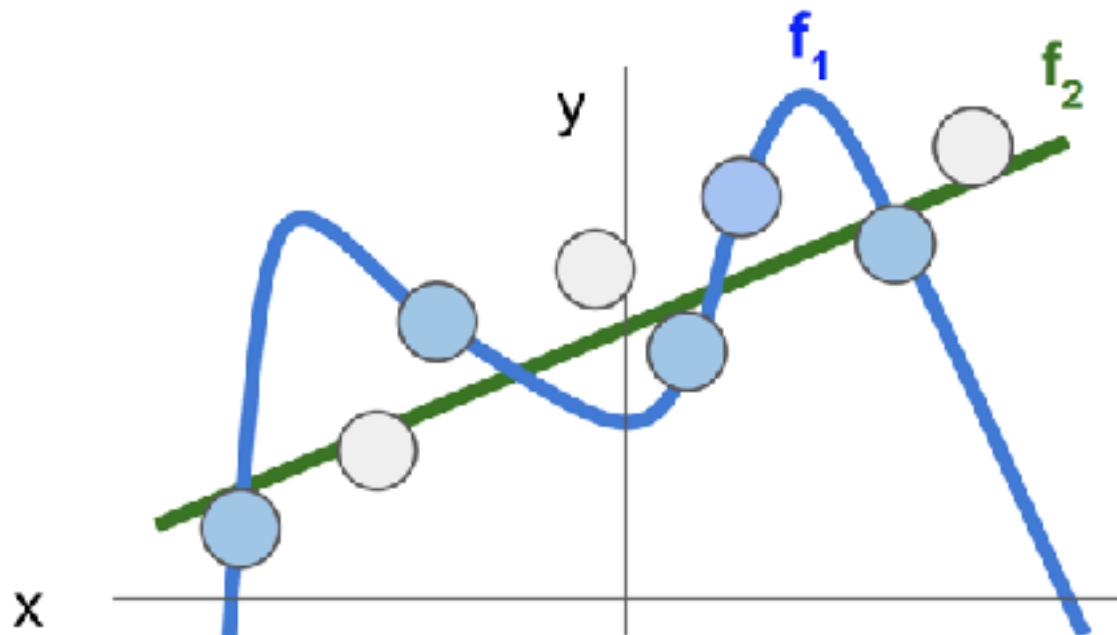
Regularization: Prefer Simpler Models



Regularization: Prefer Simpler Models



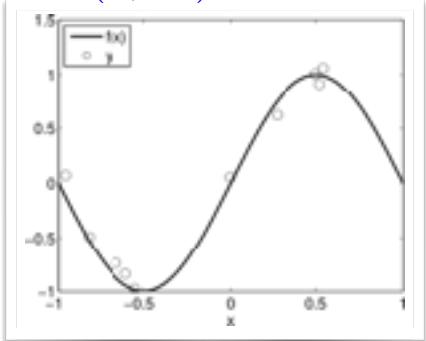
Regularization: Prefer Simpler Models



Regularization pushes against fitting the data with too much flexibility. If you are going to use a complex function to fit the data, you should be doing based on a lot of data!

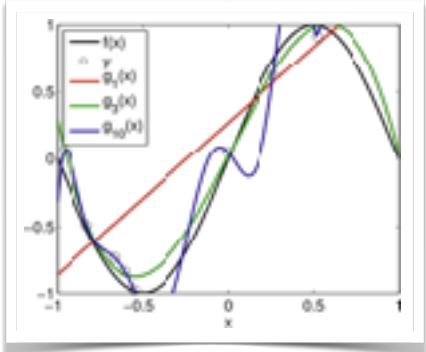
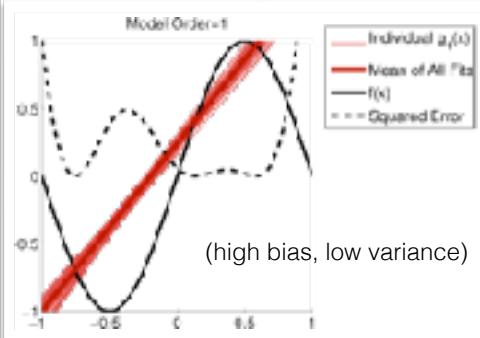
Bias Variance Tradeoff

$$y = f(x) + \epsilon \quad f(x) = \sin(\pi x)$$
$$\epsilon = N(0, \sigma^2) \quad \sigma = 0.1$$

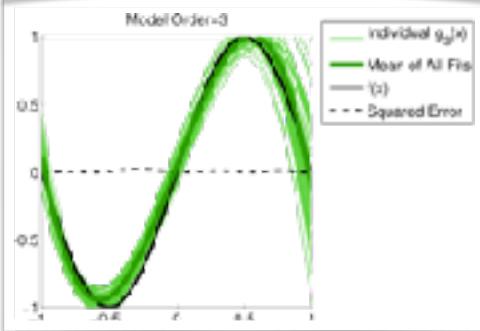
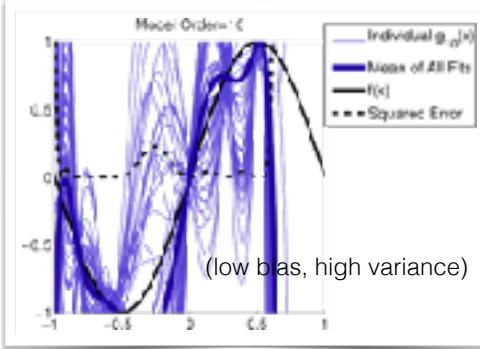


50 samples

$$g_n(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_n x^n$$

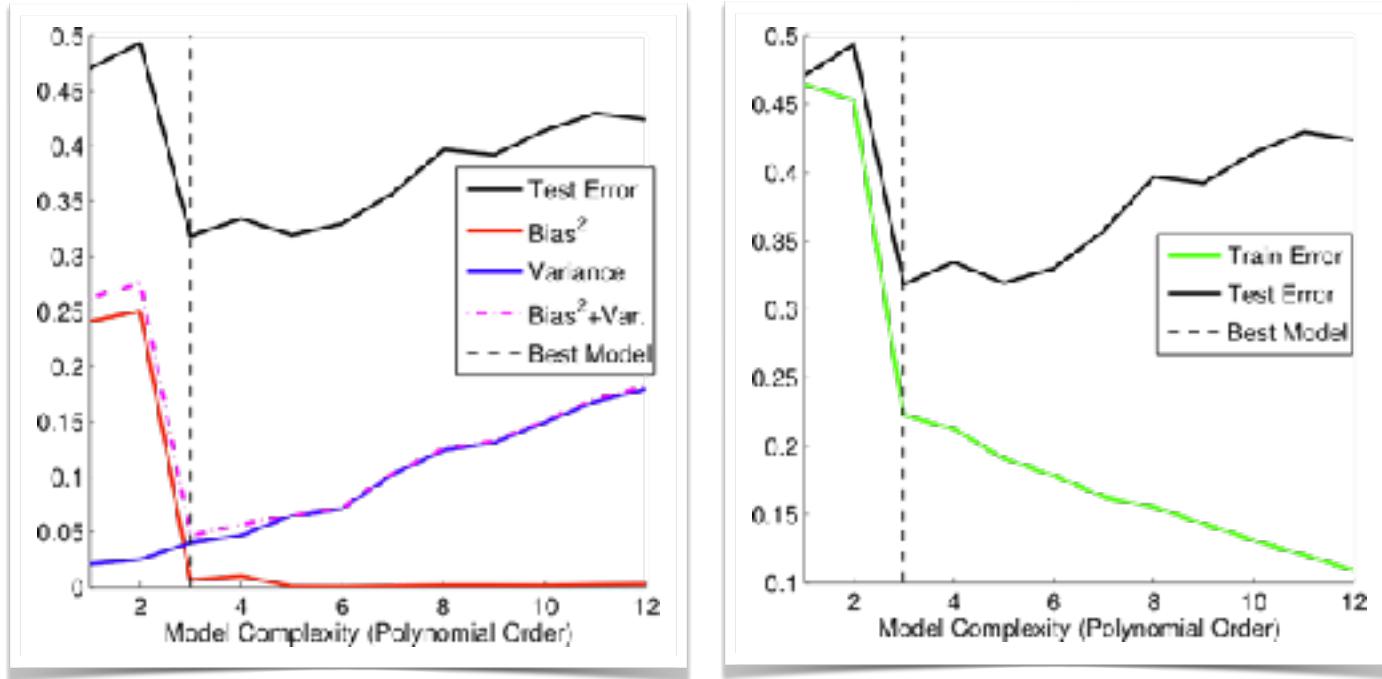


(high bias, low variance)



(low bias, high variance)

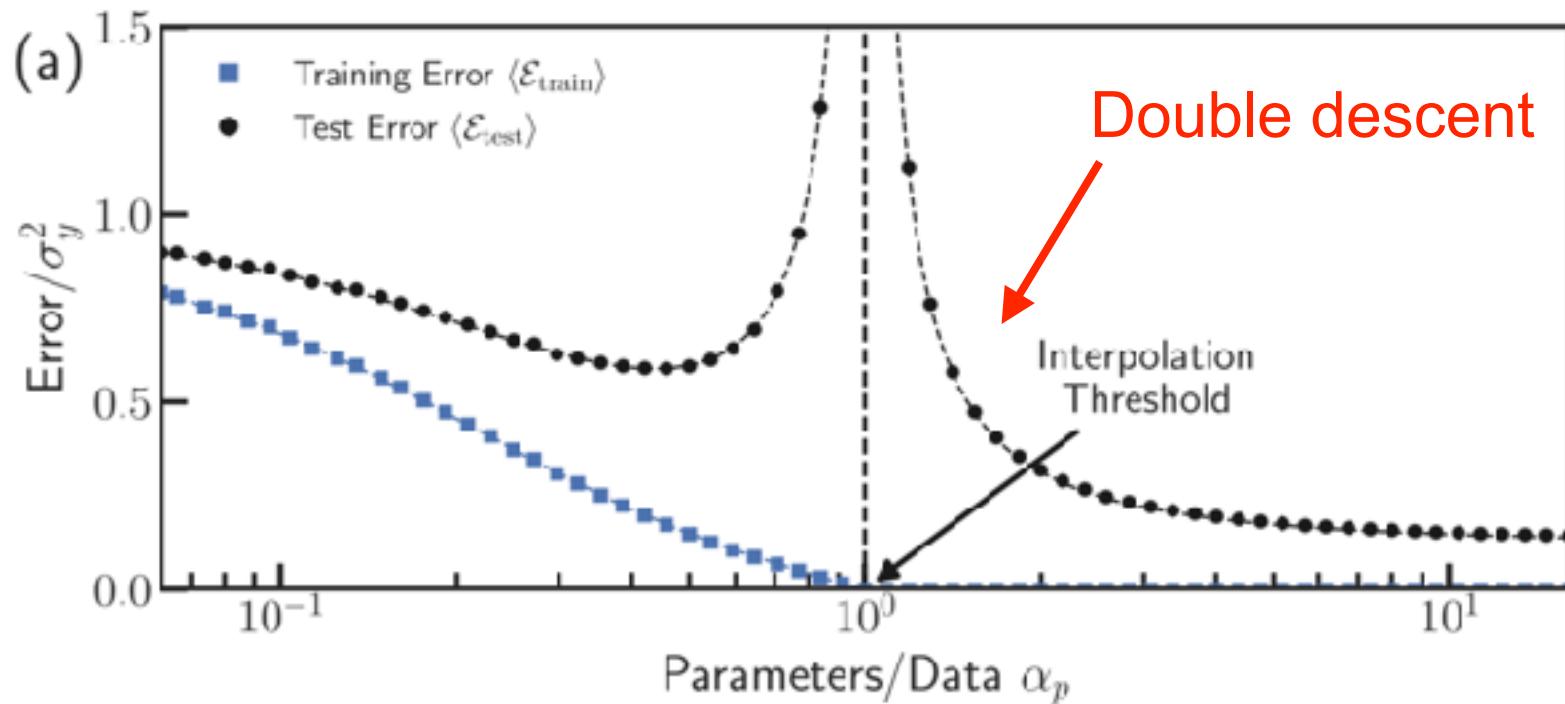
Bias Variance Tradeoff for Polynomials



figures from <https://theclevermachine.wordpress.com/tag/estimator-variance/>

But things can be complicated!

Source: https://en.wikipedia.org/wiki/Double_descent



Optimization

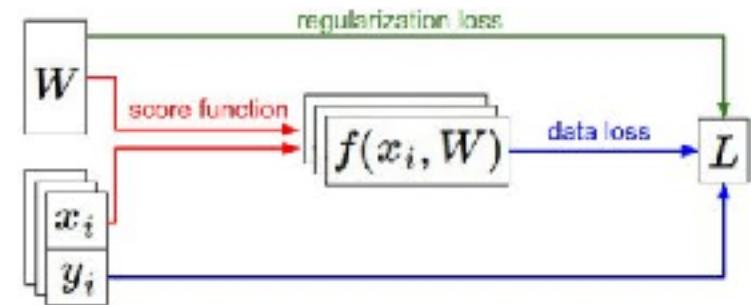
Recap

- We have some dataset of (x, y)
- We have a **score function**: $s = f(x; W) = Wx$ e.g.
- We have a **loss function**:

$$L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}}\right) \text{ Softmax}$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \text{ SVM}$$

$$L = \frac{1}{N} \sum_{i=1}^N L_i + R(W) \text{ Full loss}$$



Strategy #1: A first very bad idea solution: Random search

```
# assume X_train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y_train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function

bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
    W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
    loss = L(X_train, Y_train, W) # get the loss over the entire training set
    if loss < bestloss: # keep track of the best solution
        bestloss = loss
        bestW = W
    print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)

# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (truncated: continues for 1000 lines)
```

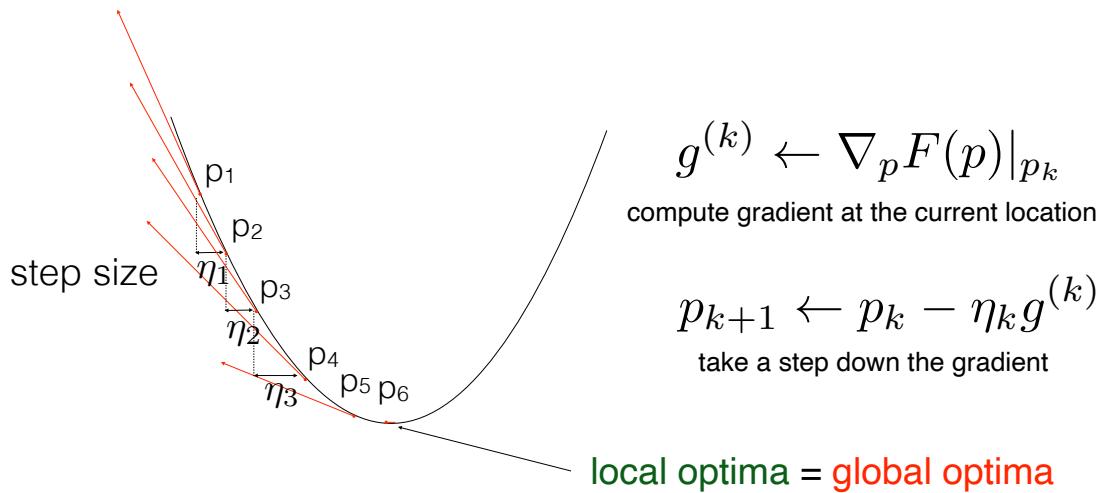
Let's see how well this works on the test set...

```
# Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```

15.5% accuracy! not bad!
(SOTA is ~95%)

How often will a random search succeed?

Strategy #2: Follow the slope



Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

$$\frac{df(x)}{dx} = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}$$

In multiple dimensions, the **gradient** is the vector of (partial derivatives).

Numerical evaluation of the gradient...

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]

loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,
?,...]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]

loss 1.25322

gradient dW:

[?,
,
,
,
,
,
,
,
,...]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]

loss 1.25322

gradient dW:

[-2.5,
?,
,
?]

$$(1.25322 - 1.25347)/0.0001
= -2.5$$

$$\frac{df(x)}{dx} = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}$$

,
?,
?,...]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]

loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]

loss 1.25353

gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,
?,...]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]

loss **1.25347**

W + h (second dim):

[0.34,
-1.11 + **0.0001**,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]

loss **1.25353**

gradient dW:

[-2.5,
0.6,
?,
?,

$$\frac{(1.25353 - 1.25347)}{0.0001} = 0.6$$

$$\frac{df(x)}{dx} = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}$$

?,...]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]

loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]

loss 1.25347

gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,
?,...]

current W :

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]

loss **1.25347**

$W + h$ (third dim):

[0.34,
-1.11,
0.78 + **0.0001**,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]

loss **1.25347**

gradient dW :

[-2.5,
0.6,
0,
?,
?]

$$\frac{(1.25347 - 1.25347)}{0.0001} = 0$$

$$\frac{df(x)}{dx} = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}$$

.....

current W:

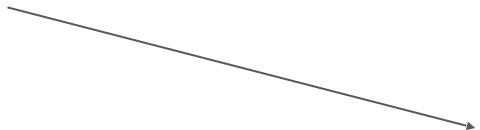
[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]

loss 1.25347

gradient dW:

[-2.5,
0.6,
0,
0.2,
0.7,
-0.5,
1.1,
1.3,
-2.1,...]

$dW = \dots$
(some function of
data and W)



Evaluating the gradient numerically

$$\frac{df(x)}{dx} = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}$$

```
def eval_numerical_gradient(f, x):
    """
    a naive implementation of numerical gradient of f at x
    - f should be a function that takes a single argument
    - x is the point (numpy array) to evaluate the gradient at
    """

    fx = f(x) # evaluate function value at original point
    grad = np.zeros(x.shape)
    h = 0.00001

    # iterate over all indexes in x
    it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
    while not it.finished:

        # evaluate function at x+h
        ix = it.multi_index
        old_value = x[ix]
        x[ix] = old_value + h # increment by h
        fxh = f(x) # evaluate f(x + h)
        x[ix] = old_value # restore to previous value (very important!)

        # compute the partial derivative
        grad[ix] = (fxh - fx) / h # the slope
        it.iternext() # step to next dimension

    return grad
```

Evaluating the gradient numerically

$$\frac{df(x)}{dx} = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}$$

- approximate
- very slow to evaluate

```
def eval_numerical_gradient(f, x):  
    """  
    a naive implementation of numerical gradient of f at x  
    - f should be a function that takes a single argument  
    - x is the point (numpy array) to evaluate the gradient at  
    """  
  
    fx = f(x) # evaluate function value at original point  
    grad = np.zeros(x.shape)  
    h = 0.00001  
  
    # iterate over all indexes in x  
    it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])  
    while not it.finished:  
  
        # evaluate function at x+h  
        ix = it.multi_index  
        old_value = x[ix]  
        x[ix] = old_value + h # increment by h  
        fxh = f(x) # evaluate f(x + h)  
        x[ix] = old_value # restore to previous value (very important!)  
  
        # compute the partial derivative  
        grad[ix] = (fxh - fx) / h # the slope  
        it.iternext() # step to next dimension  
  
    return grad
```

This is silly. The loss is just a function of W :

$$L = \frac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$s = f(x; W) = Wx$$

want $\nabla_W L$ ←

“The gradient of the loss L with respect to the parameters W ”

This is silly. The loss is just a function of W :

$$L = \frac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$s = f(x; W) = Wx$$

want $\nabla_W L$

During a pandemic, Isaac Newton had to work from home, too. He used the time wisely.

A later portrait of Sir Isaac Newton by Samuel Freeman. (British Library/National Endowment for the Humanities)

By [Gillian Brockell](#)

MARCH 12, 2020 05:21:18 p.m. EDT

Isaac Newton was in his early 20s when the Great Plague of London hit. He wasn't a "Sir" yet, didn't

1. Developed calculus
2. Fundamentals of optics
3. Theory of gravity

...not too shabby!

This is silly. The loss is just a function of W :

$$L = \frac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$s = f(x; W) = Wx$$

$$\nabla_W L = \dots$$

In summary:

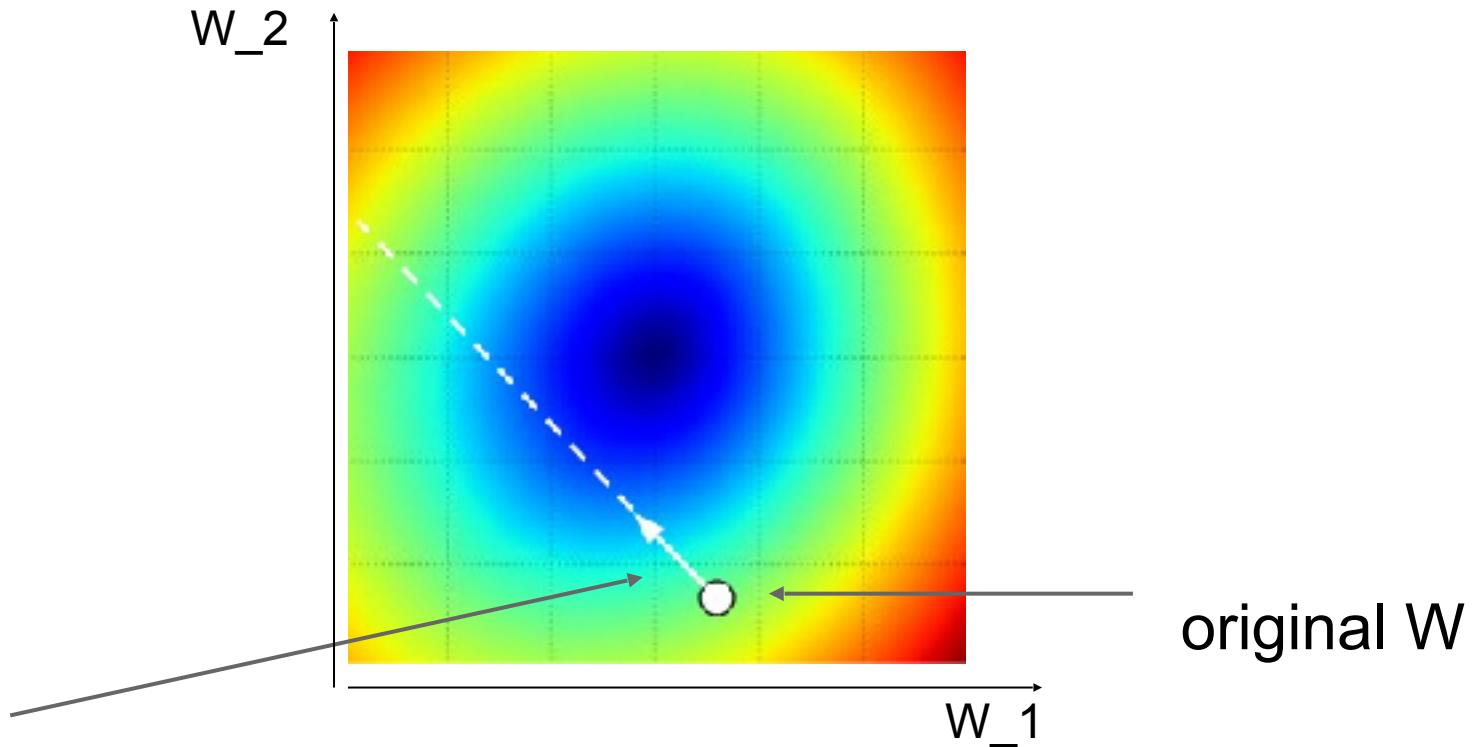
- Numerical gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a **gradient check**.

Gradient Descent

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```



Mini-batch Gradient Descent

- only use a small portion of the training set to compute the gradient.

```
# Vanilla Minibatch Gradient Descent
```

```
while True:  
    data_batch = sample_training_data(data, 256) # sample 256 examples  
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)  
    weights += - step_size * weights_grad # perform parameter update
```

Common mini-batch sizes are 32/64/128 examples
e.g. Krizhevsky ILSVRC ConvNet used 256 examples

Mini-batch Gradient Descent

- only use a small portion of the training set to compute the gradient.
Why?
 - Goal is to estimate the gradient
 - Trade-off between accuracy and computation
 - No point in doing more computation if it won't change the updates

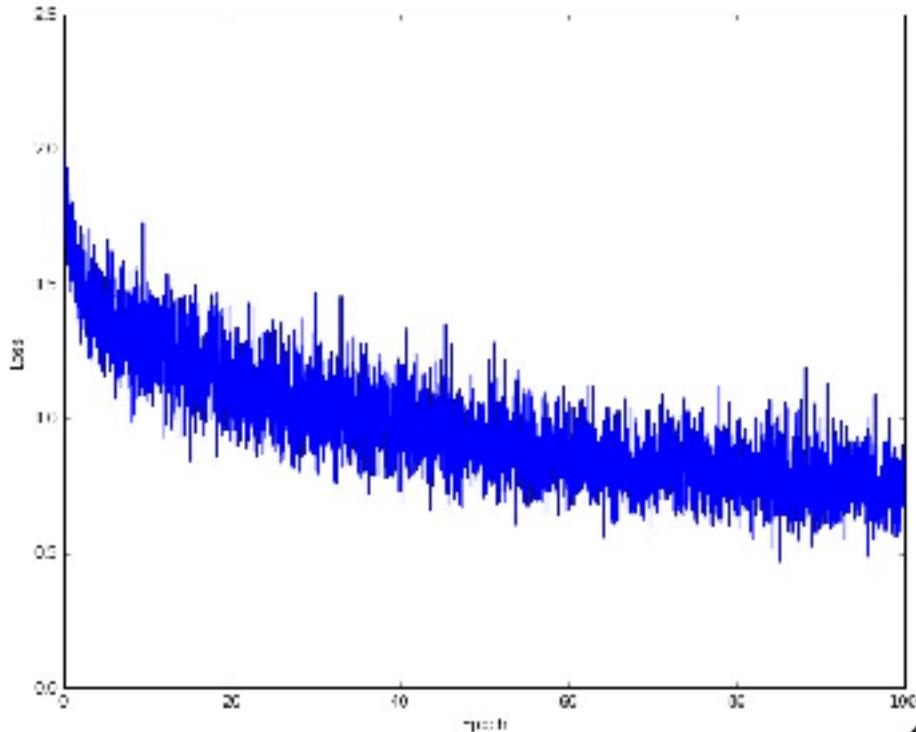
Mini-batch Gradient Descent

- only use a small portion of the training set to compute the gradient.

```
# Vanilla Minibatch Gradient Descent
```

```
while True:  
    data_batch = sample_training_data(data, 256) # sample 256 examples  
    weights_grad = evaluate_gradient(loss_fn, data_batch, weights)  
    weights += - step_size * weights_grad # perform parameter update
```

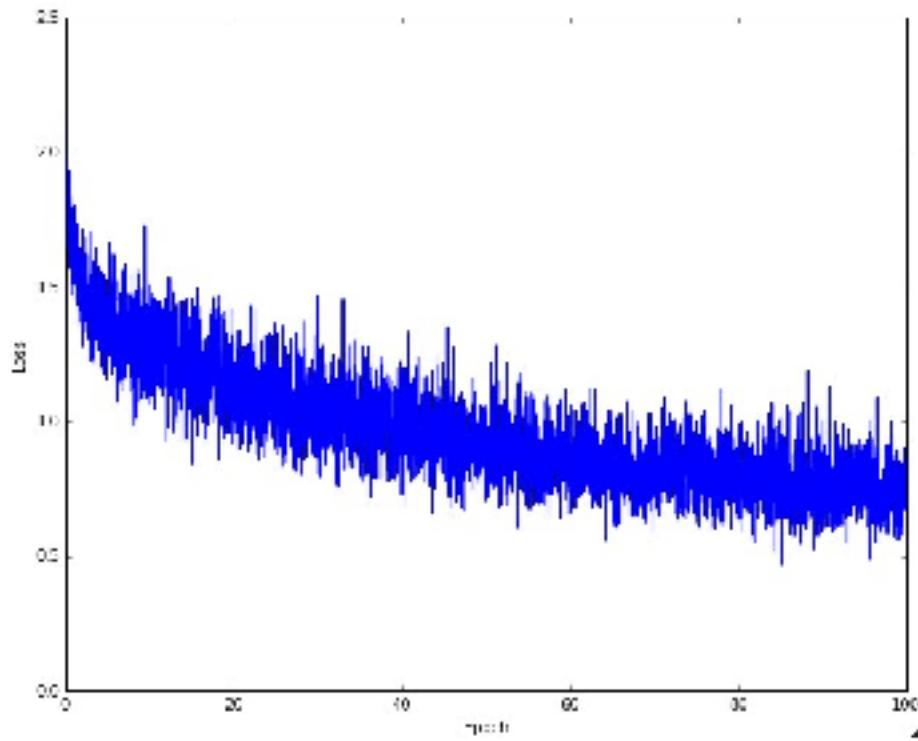
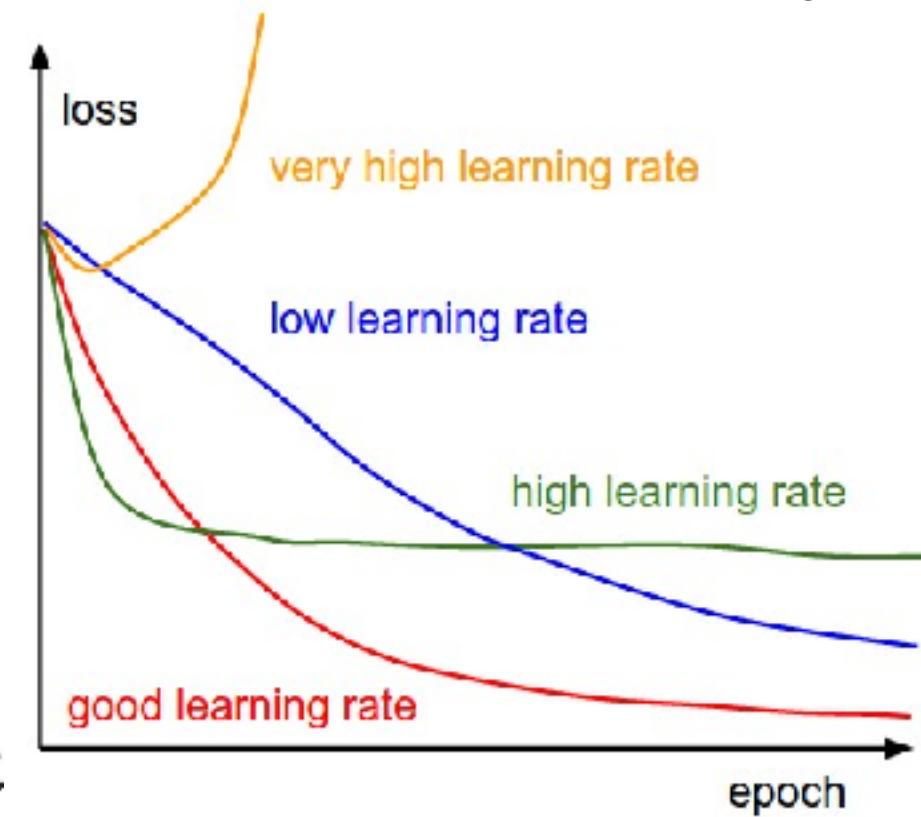
Common mini-batch sizes are 32/64/128 examples
e.g. Krizhevsky ILSVRC ConvNet used 256 examples



Example of optimization progress while training a neural network.

(Loss over mini-batches goes down over time.)

The effects of step size (or “learning rate”)



Mini-batch Gradient Descent

- only use a small portion of the training set to compute the gradient.

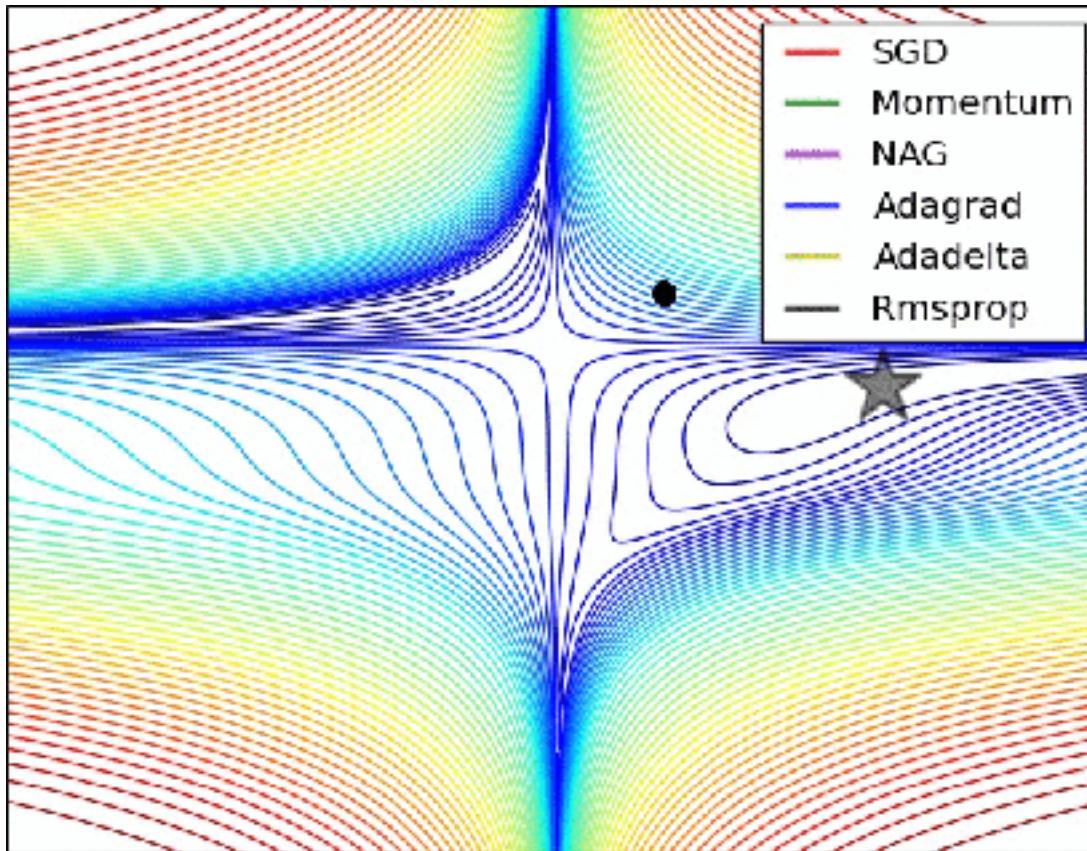
```
# Vanilla Minibatch Gradient Descent
```

```
while True:  
    data_batch = sample_training_data(data, 256) # sample 256 examples  
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)  
    weights += - step_size * weights_grad # perform parameter update
```

Common mini-batch sizes are 32/64/128 examples
e.g. Krizhevsky ILSVRC ConvNet used 256 examples

we will look at more fancy update formulas (momentum, Adagrad, RMSProp, Adam, ...)

The effects of different update form formulas



(image credits to Alec Radford)