Schedule
| Date | Lecture | Readings | Logistics | |
|---|---|---|---|---|
| 9/7 |
Lecture #1
(Subhransu):
Introduction and logistics |
|
Setup Piazza, Moodle, Gradescope |
|
| Module 1: Image Formation and Representation | ||||
| 9/12 |
Lecture #2
(Subhransu):
Radiometry |
|
HW1 out (due 9/26) |
|
| 9/14 |
Lecture #3
(Subhransu):
Light and color |
|
||
| 9/16 |
Lecture #4
(Zezhou, Ashish):
Python tutorial (Friday) |
|||
| 9/19 |
Lecture #5
(Subhransu):
Light and color; Image formation |
|
||
| 9/21 |
Lecture #6
(Subhransu):
Image formation |
|
||
| Module 2: Basic Image Processing | ||||
| 9/26 |
Lecture #7
(Subhransu):
Modeling images |
|
HW2 out (due 10/10) |
|
| 9/28 |
Lecture #8
(Subhransu):
Linear filtering |
|
||
| Module 3: Correspondence, Alignment, Geometry | ||||
| 10/3 |
Lecture #9
(Subhransu):
Optical flow |
|
||
| 10/5 |
Lecture #10
(Subhransu):
Feature detection and matching |
|
||
| 10/10 | No class (Indigenous Peoples Day) | |||
| 10/12 |
Lecture #11
(Subhransu):
Image transformations and alignment |
|
||
| 10/17 |
Lecture #12
(Subhransu):
Applications of image alignment |
|
HW3 out (due 11/7) |
|
| Module 4: Fundamentals of Neural Networks | ||||
| 10/19 |
Lecture #13
(Subhransu):
Intro to recognition |
|
||
| 10/24 |
Lecture #14
(Subhransu, remote):
Project feedback |
|||
| 10/26 |
Lecture #15
(Subhransu, remote):
Project feedback |
|||
| 10/31 |
Lecture #16
(Subhransu):
Linear models |
|
||
| 11/2 |
Lecture #17
(Subhransu):
Neural networks |
|
||
| 11/7 |
Lecture #18
(Subhransu):
Neural networks |
HW4 out (due 11/30) |
||
| Module 5: Advanced Topics in Recognition | ||||
| 11/9 |
Lecture #19
(Subhransu):
Transfer learning |
|
||
| 11/14 |
Lecture #20
(Subhransu):
Transfer learning |
|||
| 11/16 |
Lecture #21
(Subhransu):
Object detection |
|||
| 11/21 |
Lecture #22
(Subhransu):
Object detection; Image segmentation |
|
||
| 11/23 | No class (Thanksgiving break) | |||
| 11/28 |
Lecture #23
(Subhransu):
Image generation |
|
||
| 11/30 |
Lecture #24
(Subhransu):
Image generation |
|||
| 12/5 |
Lecture #25
(Subhransu):
Unsupervised learning |
|
||
| 12/7 |
Lecture #26
(Subhransu):
Unsupervised learning |
|||
| 12/12 |
Lecture #27
(Subhransu):
3D shape understanding |
|
||
| 12/13 | Poster presentations (CS 150/151) | |||