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1 Overview

To understand color perception in the human eye, we must explore both the spectral properties of light
and the physiological mechanisms of the eye, including the nature of the underlying sensors like the
cone cells. Cone cells are sensitive to different wavelengths of light, roughly corresponding to red, green,
and blue, and their combined responses form the basis of our color vision. However, color perception is
not solely determined by the incoming light. It is a complex process influenced by factors such as the
surrounding colors, lighting conditions, and even psychological and cultural contexts. For example, the
same color can appear different when viewed against different backgrounds or under varying illuminations.
This interplay between physical and contextual elements highlights the intricate nature of human color
perception.

2 Spectral basis of light

For the purpose of this lecture, we will consider light as an electromagnetic wave for simplicity. The
electromagnetic spectrum rages from high-frequency gamma rays, with frequencies greater than 1024 Hz
(wavelength < 10−16m), to long range radio waves with frequencies less than 1 Hz (wavelength > 108m).

Any light source can be fully described by its power spectrum P(λ), which represents the amount of
energy emitted per unit time at each wavelength:

P (λ) = Power at wavelength λ (1)

The human eye is sensitive to wavelengths ranging from 380 nm to 700 nm, which constitutes the
visible part of the spectrum. Light with wavelengths greater than 700 nm, such as radio waves, and
shorter wavelengths like ultraviolet (UV), X-rays, and gamma rays are invisible to the human eye.
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Figure 1: Spectra of a light source in the visible spectrum. The blue bars represent a discrete approxi-
mation of the continuous function which represents the relative power at each wavelength.

Therefore, to understand the color of a light source, it is sufficient to focus on the spectrum within the
visible range (380–700 nm). However, these invisible wavelengths can still impact us, potentially causing
damage to the eyes or skin tissue.

The solar radiation spectrum includes UV rays, visible light, and a significant amount of energy in
the infrared region. Normal daylight typically has a relatively uniform power distribution across visible
wavelengths. In contrast, tungsten lightbulbs emit more energy at longer wavelengths, while a ruby laser
emits all its power at exactly 694.3 nm. Refer to the lecture slides to visualize the spectra of various
light sources.

To compute the energy emitted per unit time between wavelengths λ1 and λ2, we have to integrate
the power between the two values:

E =

∫ λ2

λ1

P (λ) dλ (2)

For a discrete representation of power, wavelengths can be grouped into intervals or bins:

• Example bins: 60 nm bins with intervals 300-360 nm, 360-420 nm, etc.

• Smaller bins provide better approximations.

The energy emitted between two wavelengths can then be determined by summing the power values in
the respective bins.

3 Light and Color Perception in the Human Eye

3.1 The Human Eye

The human eye contains several physical mechanisms for detecting and processing light. These include:

• Adaptable lens: Enables focusing on objects at varying distances.

• Pupil: The aperture (a hole) that allows light to enter the eye.

• Iris: The colored ring surrounding the pupil, containing radial muscles that control the pupil size.

• Retina: A light-sensitive layer that houses two types of photoreceptor cells:

– Rods: Responsible for detecting brightness and intensity.

– Cones: Specialized for color perception and come in three types (S, M, L) corresponding to
short, medium, and long wavelengths.

Rods and cones are distributed unevenly across the retina:

• The fovea is a small region at the center of the visual field, about 1–2° in size. It has the highest
density of cones but contains no rods.

• Each human eye contains approximately 5 million cones and 100 million rods.

• The ratio of L to M to S cones is roughly 10:5:1. Notably, there are almost no S cones in the center
of the fovea.
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3.2 Color Perception

Our perception of color arises from the combined responses of three types of cone cells in the retina. Each
cone acts as a filter, mapping the light’s power spectrum P (λ) into three distinct values RS , RM , RL:

RS =

∫
P (λ)SS(λ) dλ ≈

N∑
i=1

P (i)× SS(i) (3)

RM =

∫
P (λ)SM (λ) dλ ≈

N∑
i=1

P (i)× SM (i) (4)

RL =

∫
P (λ)SL(λ) dλ ≈

N∑
i=1

P (i)× SL(i) (5)

Here SS(λ), SM (λ), SL(λ) denote the sensitivity at wavelength λ, SS(i), SM (i), SL(i) denotes the discrete
approximation, and RS , RM and RL denote the responses of the S, M and L cones respectively. This
process compresses the vast amount of spectral information into just three numbers. Consequently,
some spectral information is lost, and different spectra can appear identical to the human eye. Such
indistinguishable spectra are called metamers.
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Figure 2: Caption

Example: Let F represent the power spectra of a colored flashlight, where each of the 10 values is the
fraction of power produced in a 40nm range from 380nm to 780nm. (Note: some of the power can be in
the non-visible spectrum so the values may sum up to less than one).

F = [0.00, 0.00, 0.00, 0.00, 0.03, 0.08, 0.15, 0.32, 0.30, 0.12];

For example, this flashlight produces 12 percent of its power in the range 740-780nm. Let SS(λ),
SM (λ), and SL(λ) represent the relative absorption spectra of the cone cells in your eye. This means
that, of the power absorbed by a given type of cone cell, the fraction absorbed in a given range is given
by these numbers.

SS(λ) = [0.16, 0.26, 0.28, 0.15, 0.10, 0.03, 0.02, 0.00, 0.00, 0.00];
SM (λ) = [0.00, 0.03, 0.06, 0.20, 0.31, 0.21, 0.15, 0.03, 0.01, 0.00];
SL(λ) = [0.00, 0.00, 0.00, 0.00, 0.01, 0.04, 0.08, 0.23, 0.35, 0.29];

When a flashlight is 5 meters from a white screen, assume that it stimulates a cone cell response
(relative to the maximum possible response from that cone) given by:

Rc =

10∑
i=1

F (i)× Sc(i).

Here F is flashlight, Sc is the absorption spectrum for cones of type c, and Rc is the response for
cone cell type c. For example, from 5 meters away, the flashlight F will generate a response from the
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green (M) cone cells of

RM =

10∑
i=1

F (i)× SM (i) ≈ 0.0612

Exercise: Compute the responses for the S and L cones. (Answer:1)

3.3 Interesting Facts about Color Vision

• The pigments for M and L cones are encoded on the X chromosome. This explains why men are
more likely to be colorblind.

• Variations in the L pigment gene can lead to some women being tetrachromatic, meaning they
may perceive an additional dimension of color.

• Color Blindness

– Red-green color blindness: Caused by mutations in the L or M photoreceptors, leading
to difficulty distinguishing red and green hues.

– Blue-yellow color blindness: Caused by mutations in S photoreceptors, leading to chal-
lenges in distinguishing blue-green and yellow-red hues.

• Animals have varying numbers of cone types depending on their visual needs:

– One cone type: Found in nocturnal animals.

– Two cone types: Found in dogs.

– Four cone types: Found in fish and birds.

– Five cone types: Found in pigeons and some reptiles/amphibians.

– Twelve cone types: Found in mantis shrimp, allowing them to perceive an extraordinary
range of colors.

4 Tristimulus Theory and Color Spaces

The nature of color perception in the human eye suggests that three numbers might be sufficient for
encoding color. In fact, this observation dates back to the 18th century (Thomas Young). We can also
test this hypothesis through color-matching experiments, where the goal is to match the color of a light
source by adjusting the power of three primary light sources. Most people can match any given light
using three primaries, provided that the primaries are independent. For the same light and the same
primaries, most people select the same weights. Color matching also appears to be linear, which were
first described in Grassmann’s laws (1853)2.

1. If two test lights can be matched with the same set of weights, then they match each other:

Suppose A = u1P1 + u2P2 + u3P3 and B = u1P1 + u2P2 + u3P3. Then A = B.

2. If we mix two test lights, then mixing their matches will also match the result:

Suppose A = u1P1 + u2P2 + u3P3 and B = v1P1 + v2P2 + v3P3.

Then A+B = (u1 + v1)P1 + (u2 + v2)P2 + (u3 + v3)P3.

3. If we scale the test light, then the matches scale by the same amount:

Suppose A = u1P1 + u2P2 + u3P3. Then kA = (ku1)P1 + (ku2)P2 + (ku3)P3.

1RS ≈ 0.0084 and RL ≈ 0.2289
2https://en.wikipedia.org/wiki/Grassmann%27s_laws_(color_science)
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4.1 Computing Primaries for any Light

How can we compute the weights of the primaries to match any spectral signal? One way to do this is to
do a color matching experiment. However this is cumbersome. We would like to develop a mathematical
way to estimating the weights given any spectral signal. Fortunately there is a way to do this by
exploiting linearity of light! The idea is to think of light of a given spectrum to be a linear combination
of monochromatic lights whose spectra is a delta function at a given wavelength, with linear coefficients
given by the power at each wavelength. The figure below illustrates this:

Say that a monochromatic light of wavelength λi will be matched to c1(λi), c2(λi), c3(λi) of each
primary p1, p2, p3. We can run color matching experiments for each λi and store the color matching
function in the rows of the matrix C given by:

C =

 c1(λ1) . . . c1(λN )
c2(λ1) . . . c2(λN )
c3(λ1) . . . c3(λN )


Let the given spectral signal be described by the vector t

t =

 t(λ1)
...

t(λN )


Then the amounts of each primary needed to match t is given by e = Ct. The components e1, e2, e3

describe the color of t. This follows from the linearity of light.
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Figure 3: A light source can be thought of a linear combination of monochromatic lights with weights
given by the spectral power (top). Thus the primary amounts of the light source can be computed as
the weighted combination of the primary amounts of each monochromatic light (below)

4.2 Color Spaces

The RGB color space is based on primaries corresponding to red, green, and blue lights, which are
typically emitted by LEDs or phosphors in monitors. The RGB color space cannot represent all visible
colors, as some colors require negative weights in the matching process. These emitters are so densely
packed that the human eye cannot distinguish them individually. Instead, what we perceive is the
combination of several emitters within a neighborhood corresponding to a pixel. Thus, by changing the
brightness of these emitters, we can alter the effective color of the pixel.

The RGB color space is not uniform in perceptual space. In other words, differences in RGB values
do not necessarily correspond to perceptual color differences. The CIE uv color space is a transformation
designed to better align with perceptual distance.

The HSV color space (Hue, Saturation, Value/Intensity) maps the RGB color space to dimensions
that are more perceptually meaningful. Hue corresponds to the color, as represented on a color wheel.
Saturation represents the vividness or purity of the color. Value corresponds to the overall brightness of
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the color. This transformation effectively reorients the RGB cube, aligning it along its vertex to make
these dimensions easier to interpret.

There are many other color spaces designed for the specific application, device or industry needs.
Some examples are:

• Lab – Similar to CIE uv. Represents lightness (L), red-green (a), and blue-yellow (b) components.
Used in image processing and color difference calculations.

• CMY/CMYK (Cyan, Magenta, Yellow, Black) – Subtractive color model used for printing.

• YUV – Used in video compression; separates luminance (Y) from chrominance (UV).

• YCbCr – Derived from YUV; used in JPEG and MPEG compression standards.

The transformation from one color space to another is typically non-linear and sometimes requires
calculating an intermediate color. In Python, you can apply color transformations using libraries like
OpenCV or scikit-image. Conversion formulas can be looked up on Wikipedia (you don’t need to mem-
orize them!).

5 Color Phenomenon

5.1 Color Constancy

This is the ability of the human visual system to perceive color as relatively constant despite changes
in illumination conditions. The perceived color results from the interaction between the light source’s
spectrum and the surface’s reflectance. To a rough approximation, the fraction of power reflected at
wavelength λ is given by: Preflected(λ) = R(λ) · P (λ), where R(λ) is the reflectance at λ.

For example, a tomato looks red in sunlight because it reflects more red light, while grapes appear
purple because they reflect both blue and red light. This also means the color of a surface is influenced
by the light illuminating it. For instance, under monochromatic yellow light, every surface will appear
as a shade of yellow.

The human brain is adept at disentangling the effects of illumination on a surface to estimate its
reflectance (or its “true” color). This means color perception depends on context and can lead to
phenomena such as color constancy, the checkerboard illusion, and the controversy about the dress color.
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Figure 4: The spectrum of the light reflected from a surface is the product of the illumination and the
surface reflectance. Thus the color of a surface depends both on the surface properties as well as the
light that it is under.

5.2 Chromatic Adaption

The human visual system exhibits remarkable adaptability, adjusting its sensitivity based on the pre-
vailing luminance in the visual field, although the exact mechanisms behind this process remain poorly
understood. One way the eye adapts to different brightness levels is by changing the size of the iris open-
ing, or aperture, which regulates the amount of light entering the eye. For example, when transitioning
from bright sunlight into a dimly lit building, the iris contracts to allow less light in, helping the eye
adapt to the new lighting conditions.
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Similarly, the visual system adapts to different color temperatures by altering the sensitivity of the
receptive cells in the retina. When exposed to an increased amount of red light, the cells sensitive to red
gradually reduce their responsiveness, restoring the perception of a balanced scene where white appears
as it should. Interestingly, this color adaptation is more effective in brighter environments, which explains
why scenes illuminated by candlelight retain their yellowish hue, yet still appear natural to us.

5.3 White Balance

When viewing a picture on a screen or in print, our eyes adapt to the room’s lighting rather than the
lighting depicted in the image. If the white balance is incorrect, the image may display an unnatural
color “cast.”

White balancing is the process of adjusting the colors in an image to make them appear natural
and accurate under varying lighting conditions. The primary goal of white balancing is to ensure that
objects that are white in real life are rendered as white in the image, regardless of the light source’s color
temperature. For example, a photograph taken under tungsten light may appear overly orange. White
balancing corrects this by reducing the orange tone, restoring a natural appearance where whites look
white and other colors appear accurate.

Von Kries adaptation proposes that the visual system compensates for these changes by scaling the
responses of the cone cells independently, allowing colors to appear relatively constant. This principle
can be applied to correct white balance. One of the best ways is to record the color of the light using
color cards—surfaces with known colors. By photographing these cards under the light source, we can
infer the effect of the light by comparing the camera’s measurements with the true colors of the card.
For example, if a neutral object with a true color of r=g=b, is recorded as rw, gw, bw then the effect of
light is can be undone by multiplying the color channels with weights 1/rw, 1/gw, 1/bw.

When color cards are unavailable, alternative techniques can be used to estimate white balance,
including:

1. Gray World Assumption: This method assumes that the average color of the image is gray.
The image’s average red (rave), green (gave), and blue (bave) values are calculated, and the color
channels are adjusted using weights 1/rave, 1/gave, 1/bave.

2. Brightest Pixel Assumption: This method assumes that the brightest pixels in the image
typically represent highlights and carry the color of the light source. The weights for the color
channels are set inversely proportional to the values of the brightest pixels.

3. Gamut Mapping: The gamut of an image (the convex hull of all pixel colors) is compared to
the gamut of a “typical” image under white light. A transformation is then applied to match the
image’s gamut to the standard gamut, correcting the white balance.

4. Natural Image Statistics: Statistical models of natural images can be used to predict and correct
white balance based on expected color distributions.

Modern cameras achieve white balancing through a combination of hardware sensors, machine learn-
ing algorithms, and software processing, ensuring that images and videos appear natural under various
lighting conditions. For instance, iPhones are equipped with ambient light sensors that measure the
color temperature and intensity of the surrounding light, while computational photography and machine
learning algorithms enhance color accuracy. However, these algorithms can occasionally misfire. During
wildfires in California, many people noted on Twitter that green traffic lights appeared blue in photos
and videos. This happened because cameras attempted to correct the orange cast of the sky by boosting
the blue and green channels, leading to this unintended color shift.

6 Optional Readings

Color and Language In their seminal work Basic Color Terms: Their Universality and Evolution,
Berlin and Kay (1969) explored the relationship between color perception and language across different
cultures. They proposed that all languages evolve basic color terms in a predictable sequence, starting
with black and white, then adding red, and progressively incorporating other colors such as green, yellow,
blue, brown, and more. This universality suggests that human color perception is biologically rooted,
but the way colors are categorized and named is influenced by cultural and linguistic factors.
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Colorization Converting a grayscale image to color, often referred to as colorization, involves adding
plausible color information to an image that originally contains only intensity values. This process is
used in applications such as restoring old photographs, enhancing scientific imaging, and improving
visual appeal in media. Early methods relied on manual techniques, where artists applied colors to
specific regions, guided by the image’s content. Modern approaches leverage machine learning and deep
neural networks to automate the process (and have in fact shown that colorization is a effective way to
teach deep networks a good deal of visual information without requiring labels). These models are trained
on large datasets of paired grayscale and color images, learning to infer contextually appropriate colors
for objects, textures, and scenes. Advanced algorithms also use hints or user-provided inputs to improve
accuracy and customization, ensuring the colorized output appears natural and visually consistent.
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