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Digitizing an image

Image processing
• Example: Improving contrast


Convolution and filtering
• Mathematical model

• Implementation details


Applications
• Denoising

• Sharpening

• Edge detection

Overview of the next two lectures

2
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Image formation

3
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What is an image before you digitize it?
‣ Continuous range of wavelengths

‣ 2-dimensional extent

‣ Continuous range of power at each point

Pre-digitization image

4
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To simplify, consider only a brightness image
‣ Two-dimensional (continuous range of locations)

‣ Continuous range of brightness values


This is equivalent to a two-dimensional function over a plane

Brightness images

5
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An image as a surface

6

How do we represent this continuous two 
dimensional surface efficiently?
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Sampling strategies
‣ Spatial sampling


• How many pixels?

• What arrangement of pixels?

‣ Brightness sampling


• How many brightness values?

• Spacing of brightness values?

‣ For video, also the question of time sampling.

Discretization

7
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Goal: determine a mapping from a continuous signal (e.g. analog video signal) to one of K 
discrete (digital) levels. 

Signal quantization

8
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I(x,y) = continuous signal: 0 ≤ I ≤ M
Want to quantize to K values 0,1,....K-1
K usually chosen to be a power of 2:

Mapping from input signal to output signal is to be determined.
Several types of mappings: uniform, logarithmic, etc. 

Quantization

9

K: #Levels #Bits
2 1
4 2
8 3
16 4
32 5
64 6
128 7
256 8
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Choice of K

10
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Choice of K

11
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Uniform sampling divides the signal range [0-M] into K equal-sized intervals.
The integers 0,...K-1 are assigned to these intervals.
All signal values within an interval are represented by the associated integer value.
Defines a mapping: 

Choice of the function: uniform

12
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Signal is: log I(x,y)
Effect is: 

Detail enhanced in the low signal values at expense of detail in high signal values.

Logarithmic quantization

13
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Logarithmic quantization

14
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Given a 24 bit color image (8 bits for R, G, B)
‣ Turn on 3 subpixels with power proportional to RGB values

Color displays

15

A single

pixel.

https://en.wikipedia.org/wiki/File:Pixel_geometry_01_Pengo.jpg
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“White” text on color display

16

http://en.wikipedia.org/wiki/Subpixel_rendering

http://en.wikipedia.org/wiki/Subpixel_rendering
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8 bit image: 256 different values.
Simplest way to display: map each number to a gray value:
‣ 0  (0.0, 0.0, 0.0) or (0,0,0)

‣ 1  (0.0039, 0.0039, 0.0039) or (1,1,1)

‣ 2  (0.0078, 0.0078, 0.0078) or (2,2,2)

‣ ...

‣ 255  (1.0, 1.0, 1.0) or (255,255,255)

This is called a grayscale mapping. 

Lookup tables

17
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Color to gray and colormaps

18

R : G : B :: 0.3 : 0.6 : 0.1
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We can also use other mappings:
‣ 0  (17, 25, 89)

‣ 1  (45, 32, 200)

‣ ...

‣ 255  (233,1,4)

These are called lookup tables.

Non-gray lookup tables

19
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More colormaps

20

jet

winter
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What can we do to “enhance” an image after it has already been digitized?
‣ We can make the information that is there easier to visualize.

‣ We can guess at data that is not there, but we cannot be sure, in general.

Enhancing images

21

Increasing the contrast Removing motion blur
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Two methods:
‣ Normalize the data (non-linear mapping, contrast stretching)

‣ Transform the data (histogram equalization)

Contrast enhancement

22
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Logarithmic quantization

23
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Contrast stretching

24

histogram

Original

After contrast stretching
image source: wikipedia

map this to 255map this to 0
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Basic idea: scale the brightness range of the image to occupy the full range of values

Question: When is contrast stretching not effective?

Contrast stretching

25

I  floor

✓
I �min(I)

max(I)�min(I)
⇥ 255

◆

map this to 0 map this to 255
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Histogram equalization

26

Remap data to create a uniform distribution

Why is this good?

h

https://en.wikipedia.org/wiki/Histogram_equalization

https://en.wikipedia.org/wiki/Histogram_equalization
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Cumulative distribution function

27

pdf(v) = #pixels with value = v

cdf(v) = #pixels with value <= v

cdf

pdf

Probability density function (aka histogram)

Cumulative distribution function
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Histogram equalization …

28

What happens to the cdf after equalization?

What value should pixels=v be mapped to? 

h

 M x N pixels
L levels
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How can we reduce noise in a photograph?

Denoising

30
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Let’s replace each pixel with a weighted average of its neighborhood
The weights are called the filter kernel

Weights for the average of a 3x3 neighborhood

Moving average

31

111

111

111

“box filter”

Source: D. Lowe
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Let f be the image and g be the kernel. The output of filtering f with g denoted f *g is given by:

Filtering

32Source: F. Durand

f

(f ⇤ g)[m,n] =
X

k,l

f [m+ k, n+ l]g[k, l]

Filtering computes the correlation between the g and f at each location
Convolution is filtering with a flipped g (by notation)
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f

Let f be the image and g be the kernel. The output of filtering f with g denoted f *g is given by:

Filtering: multi-channel case

33

(f ⇤ g)[m,n] =
X

k,l,c

f [m+ k, n+ l, c]g[k, l, c]

gg

multi-channel

multi-channel
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Linearity: filter(f1 + f2) = filter(f1) + filter(f2)
Shift invariance: same behavior regardless of pixel location: filter(shift(f)) = shift(filter(f))
Theoretical result: any linear shift-invariant operator can be represented as a convolution

Key properties

34
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Commutative: a * b = b * a
Conceptually no difference between filter and signal


Associative: a * (b * c) = (a * b) * c
Often apply several filters one after another: (((a * b1) * b2) * b3)

This is equivalent to applying one filter: a * (b1 * b2 * b3)


Distributes over addition: a * (b + c) = (a * b) + (a * c)
Scalars factor out: ka * b = a * kb = k (a * b)
Identity: unit impulse e = […, 0, 0, 1, 0, 0, …], a * e = a

Properties in more detail

35
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What is the size of the output?
Python: scipy.ndimage.correlate / convolve
• shape = ‘full’: output size is sum of sizes of f and g
• shape = ‘same’: output size is same as f
• shape = ‘valid’: output size is difference of sizes of f and g 

Annoying details

36

f

gg

gg

f

gg

gg

f

gg

gg

full same valid
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What about near the edge?
• the filter window falls off the edge of the image

• need to extrapolate

• methods:


• clip filter (black) — correlate(f, g, mode=‘constant’, cval=0.0)

• wrap around — correlate(f, g, mode=‘wrap’)

• copy edge — correlate(f, g, mode=‘nearest’)

• reflect across edge –– correlate (f, g, mode=‘reflect’)

Annoying details

37Source: S. Marschner
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Practice with linear filters

38

000
010
000

Original

?

Source: D. Lowe
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Practice with linear filters

39

000
010
000

Original Filtered 
(no change)

Source: D. Lowe
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Practice with linear filters

40

000
100
000

Original

?

Source: D. Lowe
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Practice with linear filters

41

000
100
000

Original Shifted left
By 1 pixel

Source: D. Lowe
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Practice with linear filters

42

Original

?
111
111
111

Source: D. Lowe
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Practice with linear filters

43

Original

111
111
111

Blur (with a
box filter)

Source: D. Lowe



Subhransu Maji — UMass Amherst, Spring 25COMPSCI 370

Practice with linear filters

44

Original

111
111
111

000
020
000 - ?

(Note that filter sums to 1)

Source: D. Lowe
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Practice with linear filters

45

Original

111
111
111

000
020
000 -

Sharpening filter: accentuates differences with local average

Source: D. Lowe
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Sharpening

46Source: D. Lowe
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What’s wrong with this picture?
What’s the solution?

Smoothing with box filter revisited

47Source: D. Forsyth



Subhransu Maji — UMass Amherst, Spring 25COMPSCI 370

What’s wrong with this picture?
What’s the solution?
• To eliminate edge effects, weight contribution of neighborhood pixels according to their 

closeness to the center

Smoothing with box filter revisited

48

“fuzzy blob”
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Constant factor at front makes volume sum to 1 (can be ignored when computing the filter 
values, as we should renormalize weights to sum to 1 in any case)

Gaussian kernel

49

0.003   0.013   0.022   0.013   0.003

0.013   0.059   0.097   0.059   0.013

0.022   0.097   0.159   0.097   0.022

0.013   0.059   0.097   0.059   0.013

0.003   0.013   0.022   0.013   0.003

5 x 5, σ = 1

Source: C. Rasmussen 
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Standard deviation σ: determines extent of smoothing

Gaussian kernel

50

σ = 2 with 30 x 30 
kernel

σ = 5 with 30 x 30 
kernel

Source: K. Grauman
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The Gaussian function has infinite support, but discrete filters use finite kernels

Choosing kernel width

51Source: K. Grauman
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Rule of thumb: set filter half-width to about 3σ

Choosing kernel width

52
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Remove high-frequency components from the image (low-pass filter)
Convolution with self is another Gaussian
• So can smooth with small-σ kernel, repeat, and get same result as larger-σ kernel would have

• Convolving two times with Gaussian kernel with std. dev. σ  

is same as convolving once with kernel with std. dev. 

Separable kernel
• Factors into product of two 1D Gaussians

• Discrete example:

Gaussian filters

53Source: K. Grauman
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scipy.ndimage.gaussian_filter(input, sigma, order=0, output=None, mode='reflect', cval=0.0, truncate=4.0)
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Separability of the Gaussian filter

54

Source: D. Lowe
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Separability means that a 2D convolution can be reduced to two 1D convolutions (one among 
rows and one among columns)
What is the complexity of filtering an n×n image with an m×m kernel? 
• O(n2 m2)

What if the kernel is separable?
• O(n2 m)


Question: Is the box filter separable?

Why is separability useful?

55
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Salt and pepper noise: contains random 
occurrences of black and white pixels

Impulse noise: contains random occurrences of 
white pixels

Gaussian noise: variations in intensity drawn from a 
Gaussian normal distribution

Types of noise

56
Source: S. Seitz
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Mathematical model: sum of many independent factors
Good for small standard deviations
Assumption: independent, zero-mean noise

Gaussian noise

57
Source: M. Hebert
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Smoothing with larger standard deviations suppresses noise, but 
also blurs the image

Reducing Gaussian noise

58

noise
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What’s wrong with the results?

Reducing salt-and-pepper noise

59

3x3 5x5 7x7

Gaussian smoothing with increasing standard deviation
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A median filter operates over a window by selecting the median intensity in the window  
 
 
 
 
 
 

Alternative idea: Median filtering

60

Question: is median filtering linear?
Source: K. Grauman
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What advantage does median filtering have over Gaussian filtering?

Median filter

61
Source: K. Grauman

Robustness to outliers



Subhransu Maji — UMass Amherst, Spring 25COMPSCI 370

scipy.ndimage.median_filter(input, size=None, footprint=None, output=None, mode='reflect', cval=0.0, origin=0)

Salt-and-pepper noise Median filtered

Source: M. Hebert

Median filter

62
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Sharpening

63
Source: D. Lowe
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What does blurring take away?

Sharpening

64

original smoothed (5x5)

–

detail

=

sharpened

=

Let’s add it back:

original detail

+ α
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Sharpening filter

65

Gaussian
unit impulse

Laplacian of Gaussian

I = blurry(I) + sharp(I) sharp(I) = I � blurry(I)

= I ⇤ e� I ⇤ g�
= I ⇤ (e� g�)
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A. Oliva, A. Torralba, P.G. Schyns, “Hybrid Images,” SIGGRAPH 2006

Hybrid Images

66

Gaussian Filter

Laplacian Filter

http://cvcl.mit.edu/hybridimage.htm
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motorcycle and bicycle



dolphin and car
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Edge detection

70

Winter in Kraków photographed by Marcin Ryczek

http://www.likecool.com/Winter_in_Krak_w_photographed_by_Marcin_Ryczek--Pic--Gear.html
http://www.likecool.com/Winter_in_Krak_w_photographed_by_Marcin_Ryczek--Pic--Gear.html
http://www.likecool.com/Winter_in_Krak_w_photographed_by_Marcin_Ryczek--Pic--Gear.html
http://www.likecool.com/Winter_in_Krak_w_photographed_by_Marcin_Ryczek--Pic--Gear.html
http://www.likecool.com/Winter_in_Krak_w_photographed_by_Marcin_Ryczek--Pic--Gear.html
http://www.likecool.com/Winter_in_Krak_w_photographed_by_Marcin_Ryczek--Pic--Gear.html
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Goal:  Identify sudden changes (discontinuities) in an 
image
• Intuitively, most semantic and shape information from the 

image can be encoded in the edges

• More compact than pixels 

Ideal: artist’s line drawing (but artist is also using 
object-level knowledge)

Edge detection

71
Source: D. Lowe

Attneave's Cat (1954)
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Edges are caused by a variety of factors:

Origin of edges

72

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Source: Steve Seitz
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An edge is a place of rapid change in the image intensity function

Edge detection

73

image
intensity function 

(along horizontal scanline) first derivative

edges correspond to 
extrema of derivative
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From Calc101 

One dimensional derivatives

74

y = f(x) m =
�y

�x

m =
f(x+ h)� f(x)

(x+ h)� x
=

f(x+ h)� f(x)

h

Gradient

https://en.wikipedia.org/wiki/Derivative

https://en.wikipedia.org/wiki/Derivative
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For 2D function f(x), one can compute a derivative for each direction v

Directional derivatives of the function along the axes are called partial derivatives. 
For example the partial derivative with respect to x is:

Two dimensional derivatives

75

ε

ε
ε

),(),(lim),(
0

yxfyxf
x
yxf −+
=

∂

∂
→

Source: K. Grauman
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For 2D function f(x,y), the partial derivative is:

For discrete data, we can approximate using finite differences:

Question: To implement the above as correlation, what would be the associated filter?

Partial derivatives with convolutions

76

ε

ε
ε

),(),(lim),(
0

yxfyxf
x
yxf −+
=

∂

∂
→

1
),(),1(),( yxfyxf

x
yxf −+
≈

∂

∂

Source: K. Grauman
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Partial derivatives of an image

77

Which one shows changes with respect to x?

-1     
1

1     
-1or-1    1

x
yxf

∂

∂ ),(
y
yxf

∂

∂ ),(
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The gradient points in the direction of most rapid increase in intensity 
 
 

The gradient of an image: 

Image gradient

78

The gradient direction is given by

Source: Steve Seitz

The gradient strength is given by the magnitude

How does this direction relate to the direction of the edge? — they are orthogonal
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Partial derivatives of an image

79

Which one shows changes with respect to x?

-1     
1

1     
-1or-1    1

x
yxf

∂

∂ ),(
y
yxf

∂

∂ ),(
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Edge detection in Python

80
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Edge detection example

81

https://en.wikipedia.org/wiki/Prewitt_operator

edge magnitudeimage

https://en.wikipedia.org/wiki/Prewitt_operator
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Consider a single row or column of the image

Effects of noise

82

Where is the edge?
Source: S. Seitz
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Solution: smooth first

83

• To find edges, look for peaks in )( gf
dx
d

∗

f

g

f * g

)( gf
dx
d

∗

Source: S. Seitz
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Differentiation is convolution, and convolution is associative: 

This saves us one operation:

g
dx
d

fgf
dx
d

∗=∗ )(

Smooth derivative filters

84

g
dx
d

f ∗

f

g
dx
d

Source: S. Seitz
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1) Which one finds horizontal edges?
2) Are these filters separable?

Derivative of Gaussian filters

85

x-direction y-direction



Subhransu Maji — UMass Amherst, Spring 25COMPSCI 370

Smoothed derivative removes noise, but blurs edge. Also finds edges at different “scales”

1 pixel 3 pixels 7 pixels

Scale of Gaussian derivative filter

86
Source: D. Forsyth
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Smoothing filters
• Gaussian: remove “high-frequency” components;  

“low-pass” filter

• Can the values of a smoothing filter be negative?

• What should the values sum to?


• One: constant regions are not affected by the filter


 

Derivative filters
• Derivatives of Gaussian

• Can the values of a derivative filter be negative?

• What should the values sum to? 


• Zero: no response in constant regions

• High absolute value at points of high contrast

Smoothing and derivative filters

87


