Image processing

370: Intro to Computer Vision

February 27 & March 4

Subhransu Maji

College of **INFORMATION AND COMPUTER SCIENCES**

Overview of the next two lectures

Digitizing an image

Image processing

• Example: Improving contrast

Convolution and filtering

- Mathematical model
- Implementation details

Applications

- Denoising
- Sharpening
- Edge detection

COMPSCI 370

Download	Gallery	Documentation	Community Guidelines	O Source	Search docum	nentation
Stable (release 0.18.1 - Decen 2020 O Download	n <mark>otes</mark>) nber	Image p scikit-image charge and code, writte	rocessing in Pytho e is a collection of algorithm free of restriction. We prid en by an active community	on ns for image prod le ourselves on h <mark>of volunteers</mark> .	cessing. It is ava high-quality, pee	ailable <mark>free c</mark> er-reviewed
	Search proje	ects	Q		Help Sponsor	Login Re
opencv- pip install	- pytho	on 4.5.1.48				✓ Latest Released: Jan
O PyTorch	G	et Started Ecosyste	m Mobile Blog Tuto	orials Docs ~	Resources 🗸	GitHub
FRO	M					
RE	SEA	RCH T	0			
PRO An open source ma	DUC achine learning	Framework that accelerate	s the path from			

Image formation

COMPSCI 370

Pre-digitization image

What is an image before you digitize it?

- Continuous range of wavelengths
- 2-dimensional extent
- Continuous range of power at each point

Brightness images

To simplify, consider only a brightness image

- Two-dimensional (continuous range of locations)
- Continuous range of brightness values

This is equivalent to a two-dimensional function over a plane

An image as a surface

How do we represent this continuous two dimensional surface efficiently?

COMPSCI 370

Discretization

Sampling strategies

- Spatial sampling
 - How many pixels?
 - What arrangement of pixels?
- Brightness sampling
- How many brightness values?
- Spacing of brightness values?
- For video, also the question of time sampling.

Signal quantization

discrete (digital) levels.

I(x,y) = .1583 volts

= ???? Digital value

COMPSCI 370

Goal: determine a mapping from a continuous signal (e.g. analog video signal) to one of K

Quantization

 $I(x,y) = continuous signal: 0 \le I \le M$ Want to quantize to K values 0,1,....K-1 K usually chosen to be a power of 2:

Mapping from input signal to output signal is to be determined. Several types of mappings: uniform, logarithmic, etc.

Subhransu Maji – UMass Amherst, Spring 25

COMPSCI 370

S	#Bits
	1
	2
	3
	4
	5
	6
	7
	8

Choice of K

Original

Linear Ramp

COMPSCI 370

Choice of K

COMPSCI 370

K=2 (each color)

K=4 (each color)

Choice of the function: uniform

Uniform sampling divides the signal range [0-M] into K equal-sized intervals. The integers 0,...K-1 are assigned to these intervals. All signal values within an interval are represented by the associated integer value. Defines a mapping:

COMPSCI 370

Logarithmic quantization

Signal is: log I(x,y) Effect is:

Detail enhanced in the low signal values at expense of detail in high signal values.

COMPSCI 370

Signal Value

Logarithmic quantization

COMPSCI 370

Quantization Curve

Color displays

Given a 24 bit color image (8 bits for R, G, B) Turn on 3 subpixels with power proportional to RGB values

> V CR XO-1 LCD

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 25

LCD

"White" text on color display

http://en.wikipedia.org/wiki/Subpixel_rendering

Subhransu Maji – UMass Amherst, Spring 25

COMPSCI 370

sample

Lookup tables

8 bit image: 256 different values. Simplest way to display: map each number to a gray value:

- ▶ $0 \rightarrow (0.0, 0.0, 0.0)$ or (0,0,0)
- ▶ $1 \rightarrow (0.0039, 0.0039, 0.0039)$ or (1, 1, 1)
- ▶ $2 \rightarrow (0.0078, 0.0078, 0.0078)$ or (2,2,2)
- ▶ $255 \rightarrow (1.0, 1.0, 1.0)$ or (255, 255, 255)

This is called a grayscale mapping.

Color to gray and colormaps

File Edit Options Buffers Tools Python Help

from skimage import io import matplotlib.pyplot as plt

```
im = io.imread('mnms.jpeg');
plt.figure(1);
plt.imshow(im)
```

gray = im[:,:,0]*0.3 + im[:,:,1]*0.6 + im[:,:,2]*0.1;

plt.figure(2); plt.imshow(gray, cmap='gray') plt.show()

R:G:B:0.3:0.6:0.1

Non-gray lookup tables

We can also use other mappings:

- ▶ $0 \rightarrow (17, 25, 89)$
- ▶ $1 \rightarrow (45, 32, 200)$

▶ $255 \rightarrow (233, 1, 4)$

These are called lookup tables.

COMPSCI 370

More colormaps

jet

winter

Colormap Name	Color Scale
parula	
jet	
hsv	
hot	
cool	
spring	
summer	
autumn	
winter	
gray	
bone	
copper	
pink	
lines	
colorcube	
prism	
flag	
white	

Enhancing images

What can we do to "enhance" an image after it has already been digitized?

- ▶ We can make the information that is there easier to visualize.
- We can guess at data that is not there, but we cannot be sure, in general.

Increasing the contrast

Removing motion blur

Contrast enhancement

Two methods:

- Normalize the data (non-linear mapping, contrast stretching)
- Transform the data (histogram equalization)

Logarithmic quantization

COMPSCI 370

Quantization Curve

Contrast stretching

After contrast stretching

COMPSCI 370

Contrast stretching

Basic idea: scale the brightness range of the image to occupy the full range of values

Question: When is contrast stretching not effective?

COMPSCI 370

$$floor\left(\frac{I-\min(I)}{\max(I)-\min(I)}\times 255\right)$$

Histogram equalization

COMPSCI 370

Remap data to create a uniform distribution Why is this good?

https://en.wikipedia.org/wiki/Histogram_equalization

Cumulative distribution function

pdf(v) = #pixels with value = v

cdf(v) = #pixels with value <= v

COMPSCI 370

Probability density function (aka histogram)

Cumulative distribution function

Histogram equalization ...

What happens to the *cdf* after equalization? What value should pixels=v be mapped to?

$$h(v) = ext{round} \left(rac{cdf(v) - cdf_{min}}{(M imes N) - cdf_{min}} imes (L-1)
ight)$$

Subhransu Maji — UMass Amherst, Spring 25

COMPSCI 370

M x N pixels L levels

Denoising

How can we reduce noise in a photograph?

COMPSCI 370

Moving average

Let's replace each pixel with a weighted average of its neighborhood The weights are called the *filter kernel* Weights for the average of a 3x3 neighborhood

COMPSCI 370

"box filter"

Subhransu Maji – UMass Amherst, Spring 25

Source: D. Lowe

Filtering

Filtering computes the correlation between the g and f at each location Convolution is filtering with a flipped g (by notation)

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 25

Let f be the image and g be the kernel. The output of filtering f with g denoted f^*g is given by:

$$\int f[m+k, n+l]g[k, l]$$

Source: F. Durand

Filtering: multi-channel case

Let f be the image and g be the kernel. The output of filtering f with g denoted f^*g is given by:

k,l,c

multi-channel

Subhransu Maji – UMass Amherst, Spring 25

COMPSCI 370

$(f * g)[m, n] = \sum f[m + k, n + l, c]g[k, l, c]$

multi-channel

Key properties

Linearity: filter($f_1 + f_2$) = filter(f_1) + filter(f_2)

Shift invariance: same behavior regardless of pixel location: filter(shift(f)) = shift(filter(f))

<u>Theoretical result</u>: any linear shift-invariant operator can be represented as a convolution

Properties in more detail

Commutative: a * b = b * a

- Conceptually no difference between filter and signal Associative: a * (b * c) = (a * b) * c
- Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$ • This is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$ Distributes over addition: a * (b + c) = (a * b) + (a * c)Scalars factor out: ka * b = a * kb = k (a * b)Identity: unit impulse *e* = [..., 0, 0, 1, 0, 0, ...], *a* * *e* = *a*

Annoying details

What is the size of the output?

Python: scipy.ndimage.correlate / convolve

- *shape* = 'full': output size is sum of sizes of f and g •
- shape = 'same': output size is same as f •
- *shape* = 'valid': output size is difference of sizes of f and g

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 25

g

g
Annoying details

What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods: lacksquare
 - clip filter (black) correlate(f, g, mode='constant', cval=0.0)
 - wrap around correlate(f, g, mode='wrap')
 - copy edge correlate(f, g, mode='nearest')
 - reflect across edge correlate (f, g, mode='reflect')

Subhransu Maji – UMass Amherst, Spring 25

Source: S. Marschner

Original

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 25

Original

COMPSCI 370

Filtered (no change)

Subhransu Maji – UMass Amherst, Spring 25

Original

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 25

Original

COMPSCI 370

Shifted *left* By 1 pixel

Subhransu Maji – UMass Amherst, Spring 25

Source: D. Lowe

41

Original

COMPSCI 370

 $\frac{1}{9}$

Subhransu Maji – UMass Amherst, Spring 25

Original

COMPSCI 370

 $\frac{1}{9}$

Blur (with a box filter)

Subhransu Maji – UMass Amherst, Spring 25

(Note that filter sums to 1)

Original

7

Subhransu Maji – UMass Amherst, Spring 25

Original

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 25

Sharpening filter: accentuates differences with local average

Sharpening

before

COMPSCI 370

after

Subhransu Maji – UMass Amherst, Spring 25

Smoothing with box filter revisited

What's wrong with this picture? What's the solution?

Subhransu Maji — UMass Amherst, Spring 25

Source: D. Forsyth

Smoothing with box filter revisited

What's wrong with this picture? What's the solution?

closeness to the center

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 25

• To eliminate edge effects, weight contribution of neighborhood pixels according to their

"fuzzy blob"

Gaussian kernel

Constant factor at front makes volume sum to 1 (can be ignored when computing the filter values, as we should *renormalize* weights to sum to 1 in any case)

 $\tilde{\mathcal{G}}_{\sigma} = \frac{1}{2^{\tau}}$

COMPSCI 370

$$\frac{1}{\tau\sigma^2}e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

Source: C. Rasmussen

Subhransu Maji – UMass Amherst, Spring 25

49

Gaussian kernel

Standard deviation σ : determines extent of smoothing

COMPSCI 370

Source: K. Grauman

Choosing kernel width

The Gaussian function has infinite support, but discrete filters use finite kernels

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 25

Source: K. Grauman

Choosing kernel width

Rule of thumb: set filter half-width to about 3σ

COMPSCI 370

Gaussian filters

Remove high-frequency components from the image (*low-pass filter*) Convolution with self is another Gaussian

- So can smooth with small- σ kernel, repeat, and get same result as larger- σ kernel would have
- Convolving two times with Gaussian kernel with std. dev. σ is same as convolving once with kernel with std. dev. $\sigma\sqrt{2}$

Separable kernel

- Factors into product of two 1D Gaussians
- Discrete example:

scipy.ndimage.gaussian_filter(input, sigma, order=0, output=None, mode='reflect', cval=0.0, truncate=4.0)

COMPSCI 370

$\begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 \\ 2 \\ 1 \end{vmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 \end{vmatrix}$

Subhransu Maji – UMass Amherst, Spring 25

Source: K. Grauman

Separability of the Gaussian filter

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

COMPSCI 370

$$-\frac{x^2 + y^2}{2\sigma^2}$$

$$\exp^{-\frac{x^2}{2\sigma^2}} \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

Source: D. Lowe

Why is separability useful?

Separability means that a 2D convolution can be reduced to two 1D convolutions (one among rows and one among columns)

- What is the complexity of filtering an $n \times n$ image with an $m \times m$ kernel?
- O(n² m²)

What if the kernel is separable?

• $O(n^2 m)$

Question: Is the box filter separable?

COMPSCI 370

55

Types of noise

COMPSCI 370

- Salt and pepper noise: contains random occurrences of black and white pixels
- **Impulse noise:** contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Source: S. Seitz

Gaussian noise

Mathematical model: sum of many independent factors Good for small standard deviations Assumption: independent, zero-mean noise

COMPSCI 370

 $\eta(x,y) \sim \mathcal{N}(\mu,\sigma)$

Source: M. Hebert

Reducing Gaussian noise

also blurs the image

COMPSCI 370

σ=0.2

no smoothing

σ=1 pixel

Smoothing with larger standard deviations suppresses noise, but

Reducing salt-and-pepper noise

What's wrong with the results?

Gaussian smoothing with increasing standard deviation

COMPSCI 370

Alternative idea: Median filtering

A median filter operates over a window by selecting the median intensity in the window

Question: is median filtering linear?

Subhransu Maji – UMass Amherst, Spring 25

COMPSCI 370

Source: K. Grauman

Median filter

What advantage does median filtering have over Gaussian filtering?

Source: K. Grauman

Median filter

Salt-and-pepper noise

scipy.ndimage.median_filter(input, size=None, footprint=None, output=None, mode='reflect', cval=0.0, origin=0)

COMPSCI 370

Median filtered

Subhransu Maji – UMass Amherst, Spring 25

Source: M. Hebert

Sharpening

before

COMPSCI 370

after

Source: D. Lowe

Sharpening

What does blurring take away?

Let's add it back:

α ╋

COMPSCI 370

Sharpening filter

I = blurry(I) + sharp(I)

COMPSCI 370

sharp(I) = I - blurry(I) $= I * e - I * g_{\sigma}$

Hybrid Images

A. Oliva, A. Torralba, P.G. Schyns, "Hybrid Images," SIGGRAPH 2006

Gaussian Filter

Laplacian Filter

COMPSCI 370

Changing expression

COMPSCI 370

- -----

Surprised

dolphin and car

© 2006 Antonio Torralba and Aude Oliva

Edge detection

COMPSCI 370

Winter in Kraków photographed by Marcin Ryczek

Edge detection

Goal: Identify sudden changes (discontinuities) in an image

- Intuitively, most semantic and shape information from the image can be encoded in the edges
- More compact than pixels \bullet

Ideal: artist's line drawing (but artist is also using object-level knowledge)

Attneave's Cat (1954)

Source: D. Lowe

Origin of edges

Edges are caused by a variety of factors:

COMPSCI 370

- surface normal discontinuity
- depth discontinuity
- surface color discontinuity
 - illumination discontinuity

Subhransu Maji – UMass Amherst, Spring 25

Source: Steve Seitz

Edge detection

An edge is a place of rapid change in the image intensity function

COMPSCI 370

One dimensional derivatives

From Calc101

COMPSCI 370

Two dimensional derivatives

For 2D function f(x), one can compute a derivative for each direction v

$$\nabla_{\mathbf{v}} f(\mathbf{x}) = \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{v}) - h}{h}$$

Directional derivatives of the function along the axes are called partial derivatives. For example the partial derivative with respect to x is:

$$\frac{\partial f(x, y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon}$$

Subhransu Maji – UMass Amherst, Spring 25

COMPSCI 370

Source: K. Grauman

Partial derivatives with convolutions

For 2D function f(x,y), the partial derivative is:

$$\frac{\partial f(x, y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x)}{f(x)}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x+1, x)}{\partial x}$$

Question: To implement the above as correlation, what would be the associated filter?

COMPSCI 370

 $+\varepsilon, y) - f(x, y)$

3

(x, y) - f(x, y)

Subhransu Maji – UMass Amherst, Spring 25

Source: K. Grauman

Partial derivatives of an image

Which one shows changes with respect to x?

Subhransu Maji – UMass Amherst, Spring 25

COMPSCI 370

 $\frac{\partial f(x,y)}{\partial y}$

Image gradient

The gradient of an image: $\nabla f =$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

The gradient points in the direction of most rapid increase in intensity

The gradient direction is given by θ =

COMPSCI 370

$$\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

How does this direction relate to the direction of the edge? — they are orthogonal

$$= \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

The gradient strength is given by the magnitude $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$

Source: Steve Seitz

78

Partial derivatives of an image

Which one shows changes with respect to x?

COMPSCI 370

Edge detection in Python

~ — IPython: Users/smaji — ipython

File Edit Options Buffers Tools Python Help

import numpy as np import scipy.ndimage as ndi import matplotlib.pyplot as plt from skimage import data

```
im = data.checkerboard()
```

```
# Filters along x and y
fx = np.array([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]])
fy = fx.transpose()
```

```
# Apply filters and compute magnitude
gx = ndi.correlate(im, fx)
gy = ndi.correlate(im, fy)
mag = np.sqrt(np.maximum(gx**2 + gy**2, 0))
```

```
# Optionally convert this to a 0-255 image for display
mag = np.uint8(mag/mag.max()*255)
```

```
# Visualize outputs
plt.subplot(2,2,1)
plt.imshow(im, cmap='gray')
plt.title('Checkerboard image')
```

plt.subplot(2,2,2) plt.imshow(gx, cmap='gray') plt.title('Gradient along x')

```
plt.subplot(2,2,3)
plt.imshow(gy, cmap='gray')
plt.title('Gradient along y')
```

```
plt.subplot(2,2,4)
               plt.imshow(mag, cmap='gray')
               plt.title('Gradient magnitude')
COMPSCI 370
               plt.show()
```


Edge detection example

image

$$\mathbf{G}_{\mathbf{x}} = \begin{bmatrix} -1 & 0 & +1 \\ -1 & 0 & +1 \\ -1 & 0 & +1 \end{bmatrix} * \mathbf{A}$$

COMPSCI 370

edge magnitude

and
$$\mathbf{G}_{\mathbf{y}} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ +1 & +1 & +1 \end{bmatrix} * \mathbf{A}$$

https://en.wikipedia.org/wiki/Prewitt_operator

Effects of noise

Consider a single row or column of the image

Where is the edge?

COMPSCI 370

Source: S. Seitz

Solution: smooth first

COMPSCI 370

Source: S. Seitz

Smooth derivative filters

Differentiation is convolution, and convolution is associative: dx

This saves us one operation:

COMPSCI 370

$$f * g) = f * \frac{d}{dx}g$$

Source: S. Seitz

Derivative of Gaussian filters

x-direction

1) Which one finds horizontal edges? 2) Are these filters separable?

COMPSCI 370

Scale of Gaussian derivative filter

1 pixel

Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales"

COMPSCI 370

3 pixels 7 pixels

Source: D. Forsyth

Smoothing and derivative filters

Smoothing filters

- Gaussian: remove "high-frequency" components; "low-pass" filter
- Can the values of a smoothing filter be negative?
- What should the values sum to? ullet
 - **One:** constant regions are not affected by the filter

Derivative filters

- Derivatives of Gaussian lacksquare
- Can the values of a derivative filter be negative?
- What should the values sum to? lacksquare
 - **Zero:** no response in constant regions
- High absolute value at points of high contrast

