370: Intro to Computer Vision

Local features

Subhransu Maji March 6 & 11, 2025

College of **INFORMATION AND COMPUTER SCIENCES**

Topics

Why extract features?

Corner detector

Scale-invariant feature detector (or blob detector)

COMPSCI 370

Why extract features?

Motivation: panorama stitching

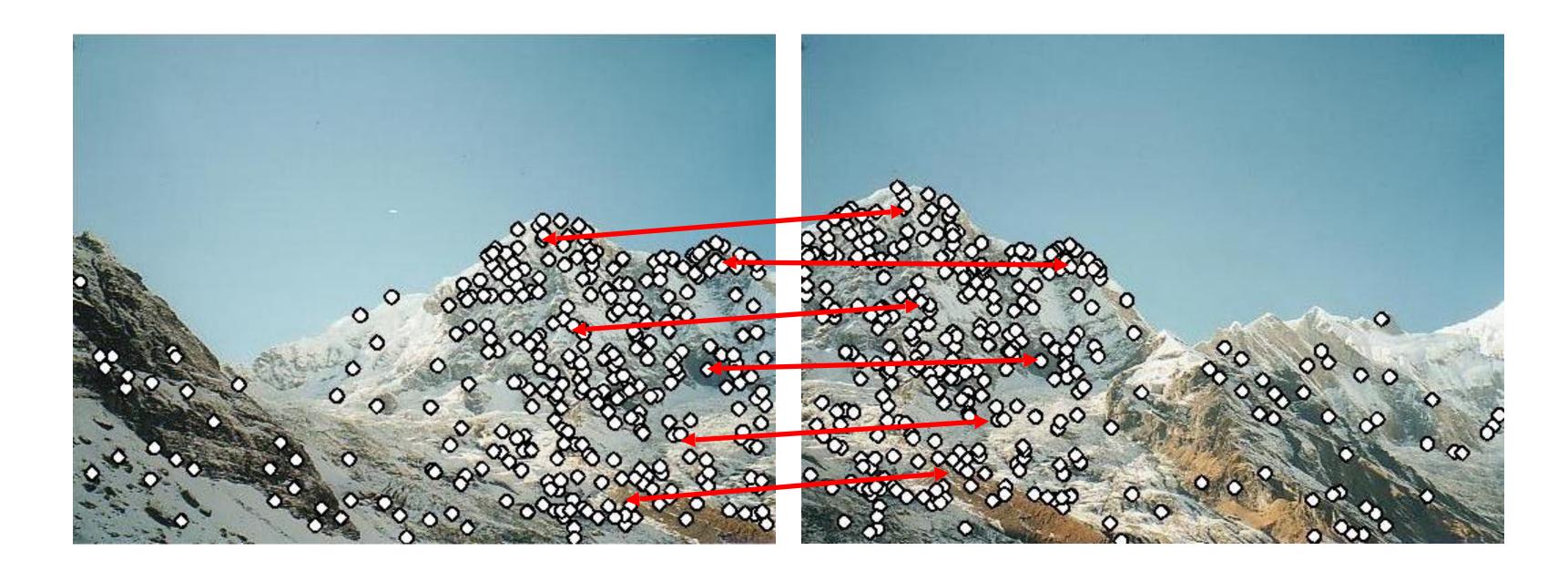
• We have two images – how do we combine them?

Subhransu Maji – UMass Amherst, Spring 25

Why extract features?

Motivation: panorama stitching

• We have two images – how do we combine them?



Step 1: extract features Step 2: match features

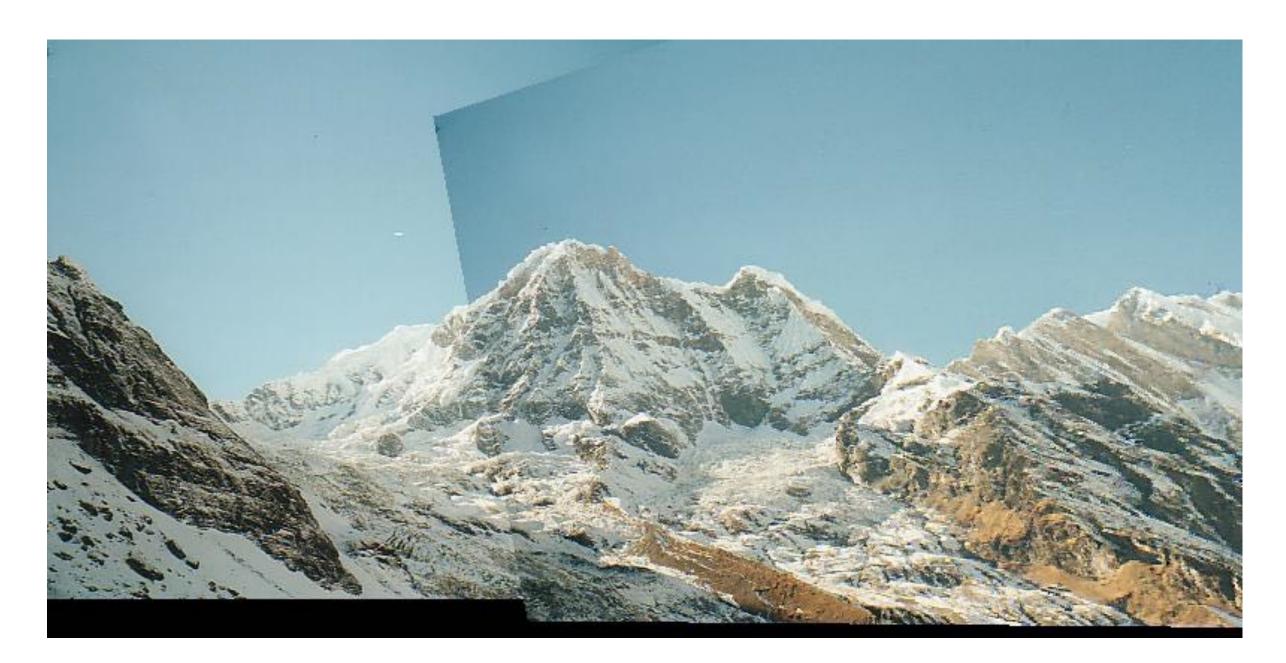
COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 25

Why extract features?

Motivation: panorama stitching

• We have two images – how do we combine them?

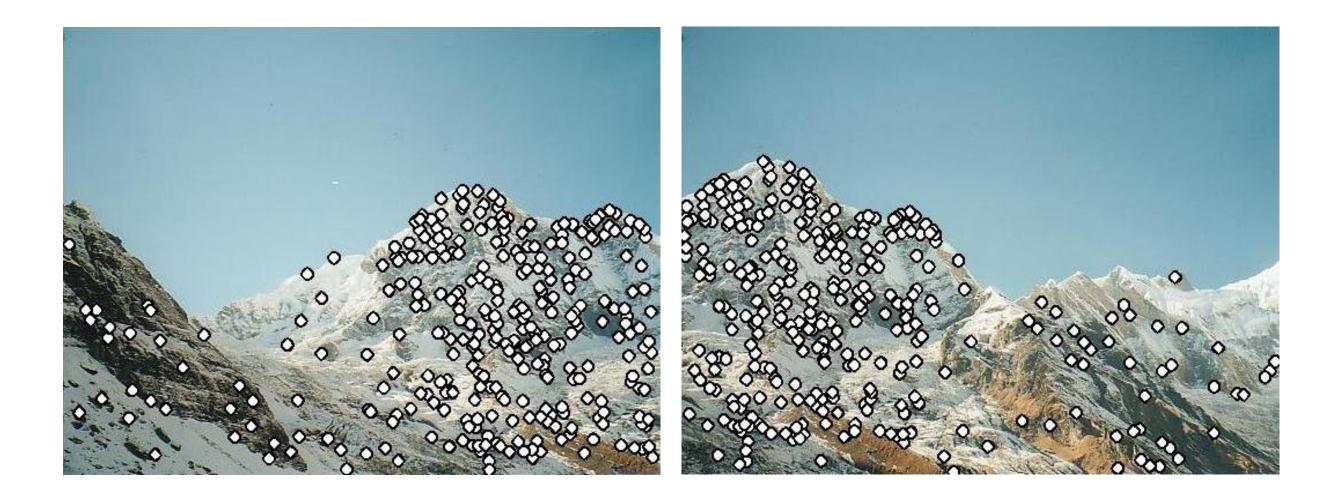


Step 1: extract features Step 2: match features Step 3: align images

Subhransu Maji – UMass Amherst, Spring 25

COMPSCI 370

Characteristics of good features



Repeatability

• The same feature can be found in several images despite geometric and photometric transformations

Saliency

Each feature is distinctive

Compactness and efficiency

- Many fewer features than image pixels Locality
- A feature occupies a relatively small area of the image; robust to clutter and occlusion

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 25

Applications

Feature points are used for:

- Image alignment
- 3D reconstruction
- Motion tracking
- Robot navigation
- Indexing and database retrieval
- Object recognition

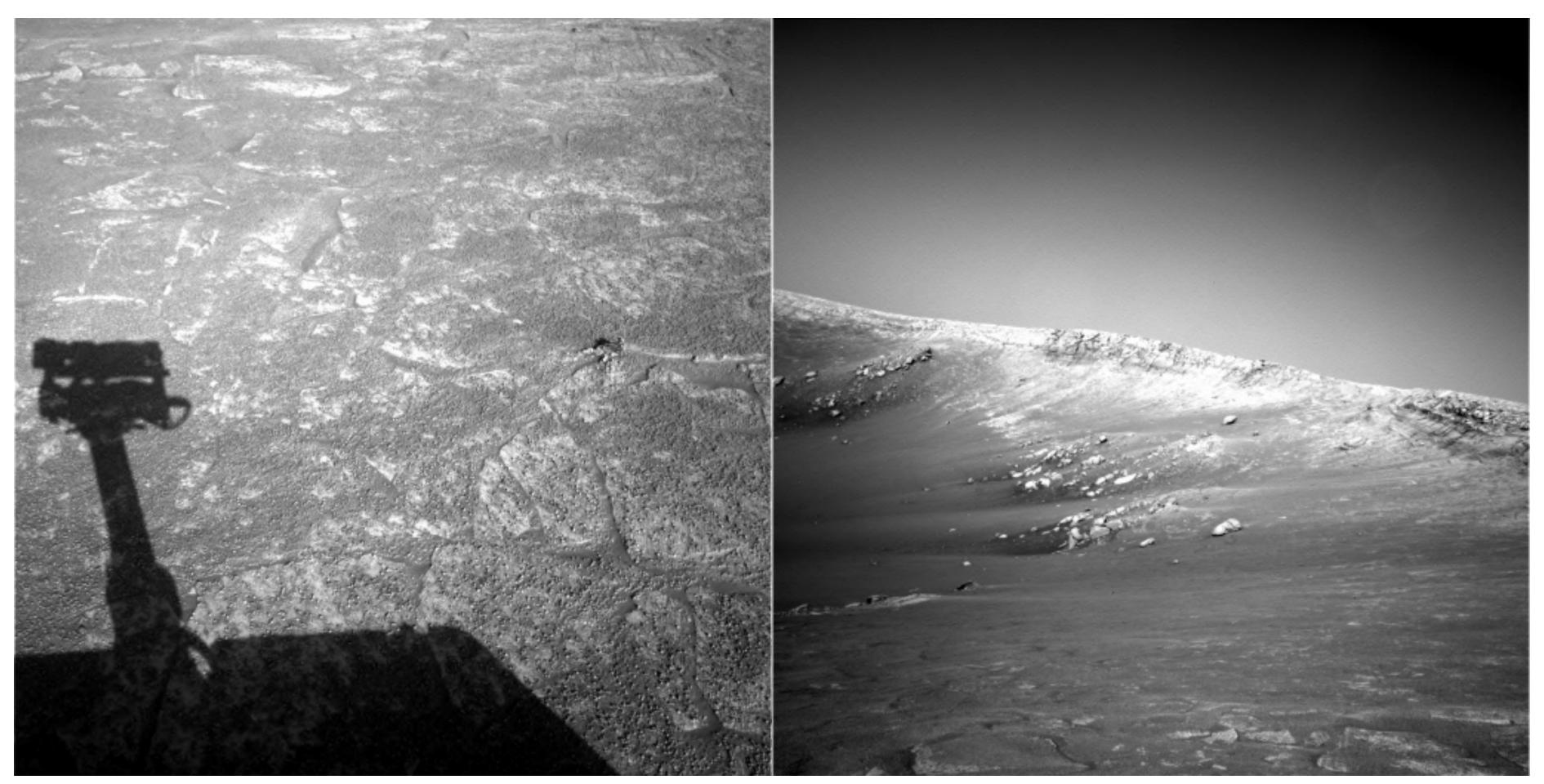
COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 25

Slide credit: L. Lazebnik

7

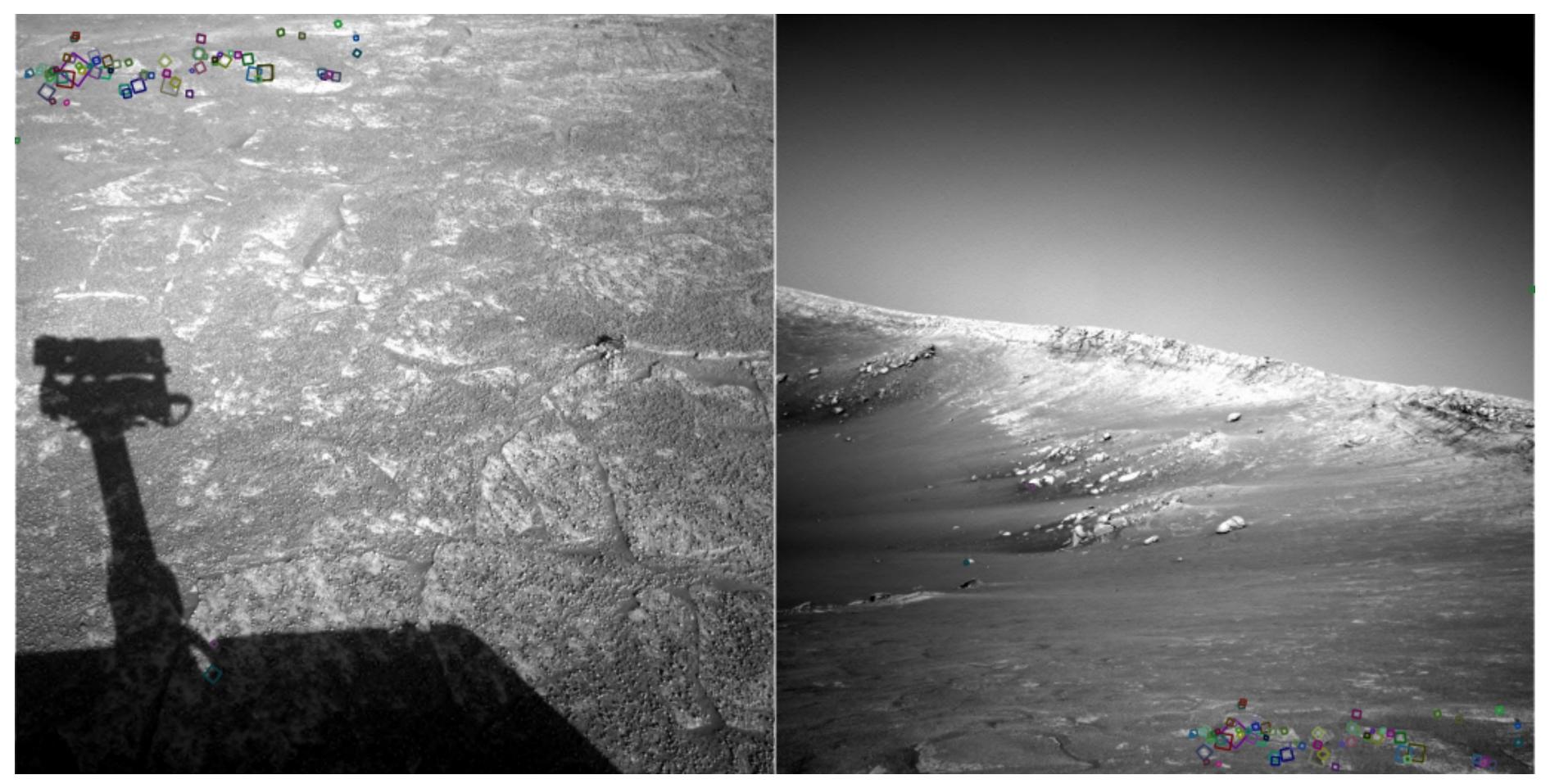
A hard feature matching problem



COMPSCI 370

NASA Mars Rover images

Answer below (look for tiny colored squares...)



NASA Mars Rover images with SIFT feature matches Figure by Noah Snavely

Subhransu Maji — UMass Amherst, Spring 25

COMPSCI 370

Feature extraction: Corners

COMPSCI 370

Subhransu Maji — UMass Amherst, Spring 25

Corner detection: Attempt one

A corner is the intersection of two edges We know how to detect edges

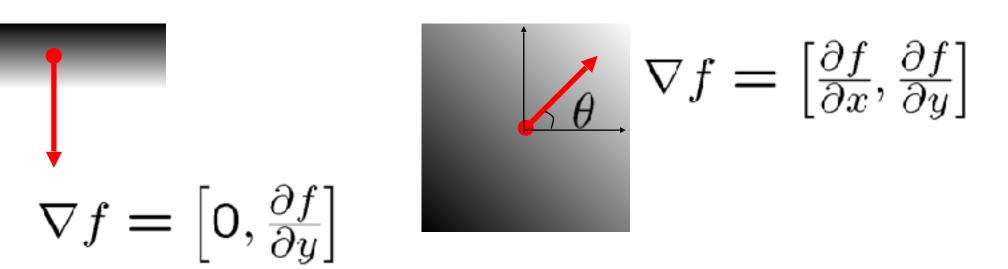
Corner detector (attempt #1)

- Detect edges in images (G_x and G_y)
- Find places where both G_x and G_y are high

Problem: also finds slanted edges!

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

COMPSCI 370

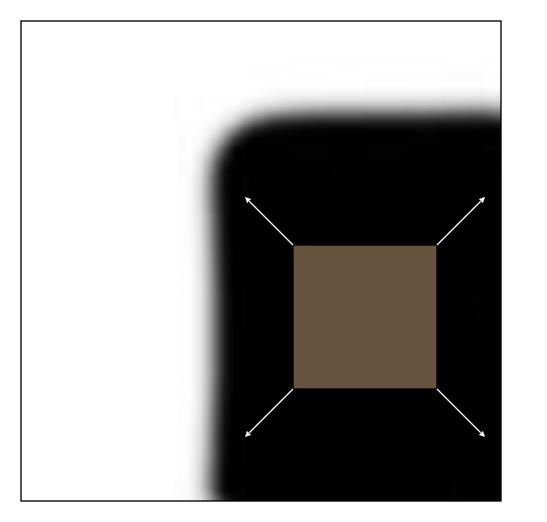


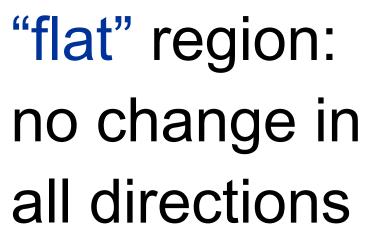
Subhransu Maji – UMass Amherst, Spring 25

11

Corner detection: Attempt two

We should easily recognize the corners by looking through a small window Shifting a window in any direction should give a large change in intensity at a corner

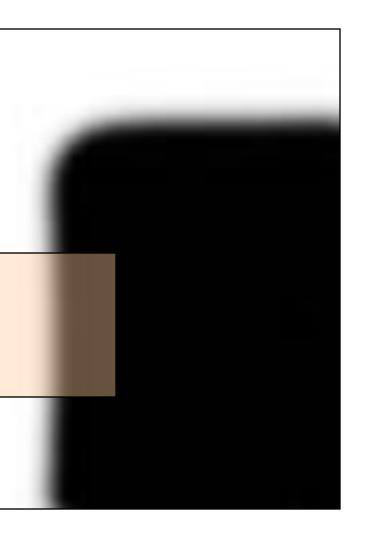


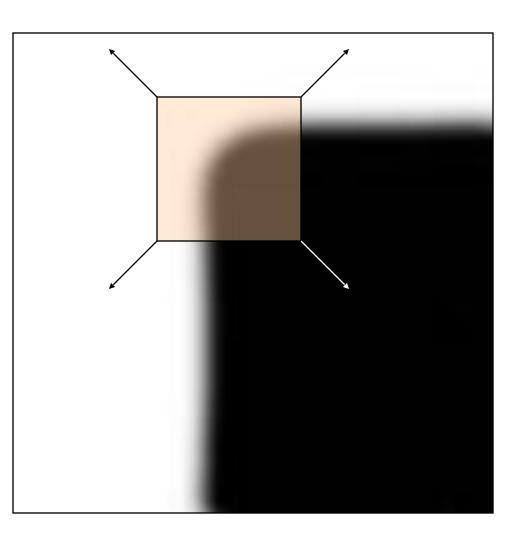


"edge":

Subhransu Maji — UMass Amherst, Spring 25

COMPSCI 370





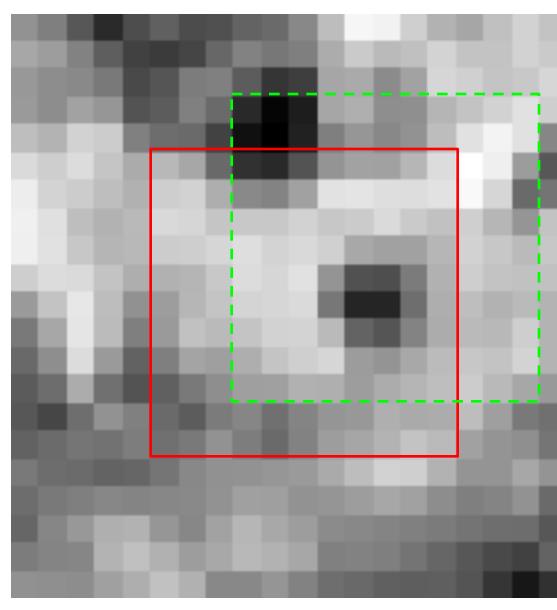
no change along the edge direction

"corner": significant change in all directions

The change in appearance of window W for the shift [u,v]:

 $E(u, v) = \sum_{(x,y)\in W} [I(x,y)]$

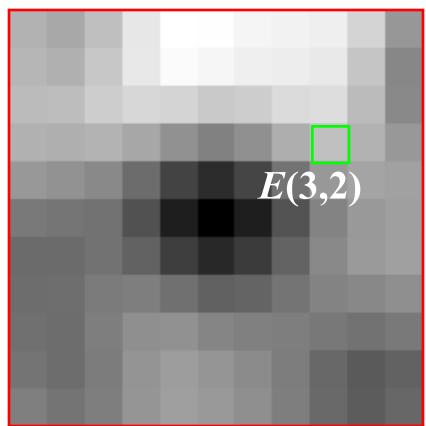
I(x, y)



COMPSCI 370

$$(x+u, y+v) - I(x, y)]^2$$

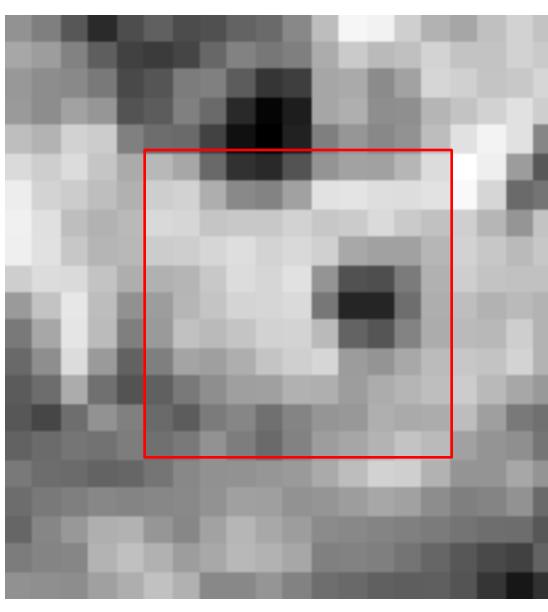
E(u,v)



The change in appearance of window W for the shift [u,v]:

 $E(u, v) = \sum_{(x,y)\in W} [I(x,y)]$

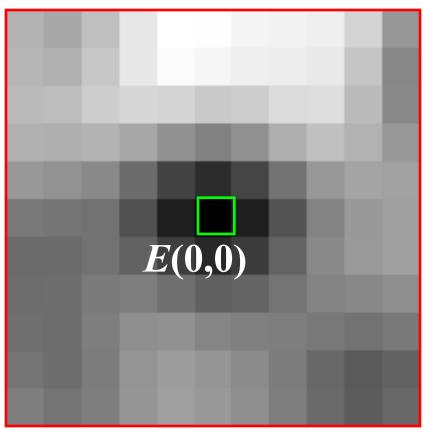
I(x, y)



COMPSCI 370

$$(x+u, y+v) - I(x, y)]^2$$

E(u,v)



The change in appearance of window W for the shift [u, v]:

$$E(u, v) = \sum_{(x,y)\in W} [I(x+u, y+v) - I(x, y)]^2$$

We want to find out how this function behaves for small shifts

COMPSCI 370

First-order Taylor approximation for small motions [*u*, *v*]:

$$I(x+u, y+v) = I(x, y) + I_x u +$$

Let's plug this into E(u,v)

$$E(u, v) = \sum_{(x,y)\in W} [I(x+u, y+v) - I_x)$$
$$\simeq \sum_{(x,y)\in W} [I(x,y) + I_x u + I_y]$$
$$= \sum_{(x,y)\in W} [I_x u + I_y v]^2$$
$$= \sum_{(x,y)\in W} [I_x^2 u^2 + I_x I_y uv + I_y]$$

 $\vdash I_y v$

 $I(x,y)]^2$

v - I(x, y)²

 $I_y I_x uv + I_y^2 v^2]$

The quadratic approximation can be written as

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix}$$

derivatives:

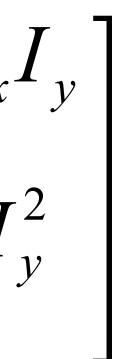
$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x \\ \sum_{x,y} I_x I_y & \sum_{x,y} I \\ x,y & x,y \end{bmatrix}$$

(the sums are over all the pixels in the window W)

COMPSCI 370

 \mathcal{U}

where *M* is a second moment matrix computed from image



Subhransu Maji – UMass Amherst, Spring 25

17

- The surface E(u,v) is locally approximated by a quadratic form. Let's try to understand its shape.
- Specifically, in which directions does it have the smallest/greatest change?

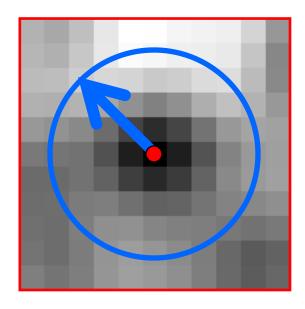
$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix}$

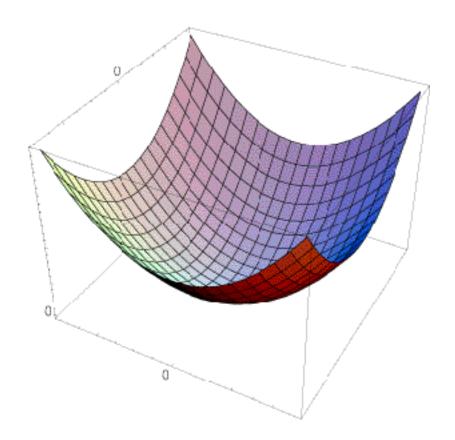
$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \\ x,y & x,y \end{bmatrix}$$

COMPSCI 370

E(u, v)

$$M\begin{bmatrix} u\\ v\end{bmatrix}$$



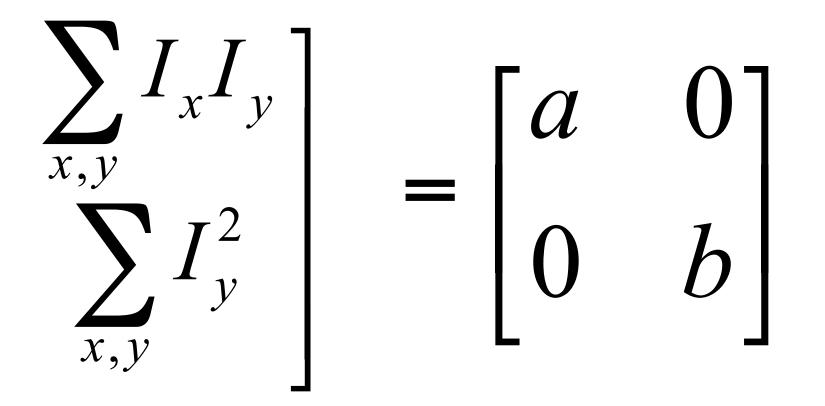


First, consider the axis-aligned case (gradients are either horizontal or vertical)

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 \\ \sum_{x,y} I_x I_y \\ x,y \end{bmatrix}$$

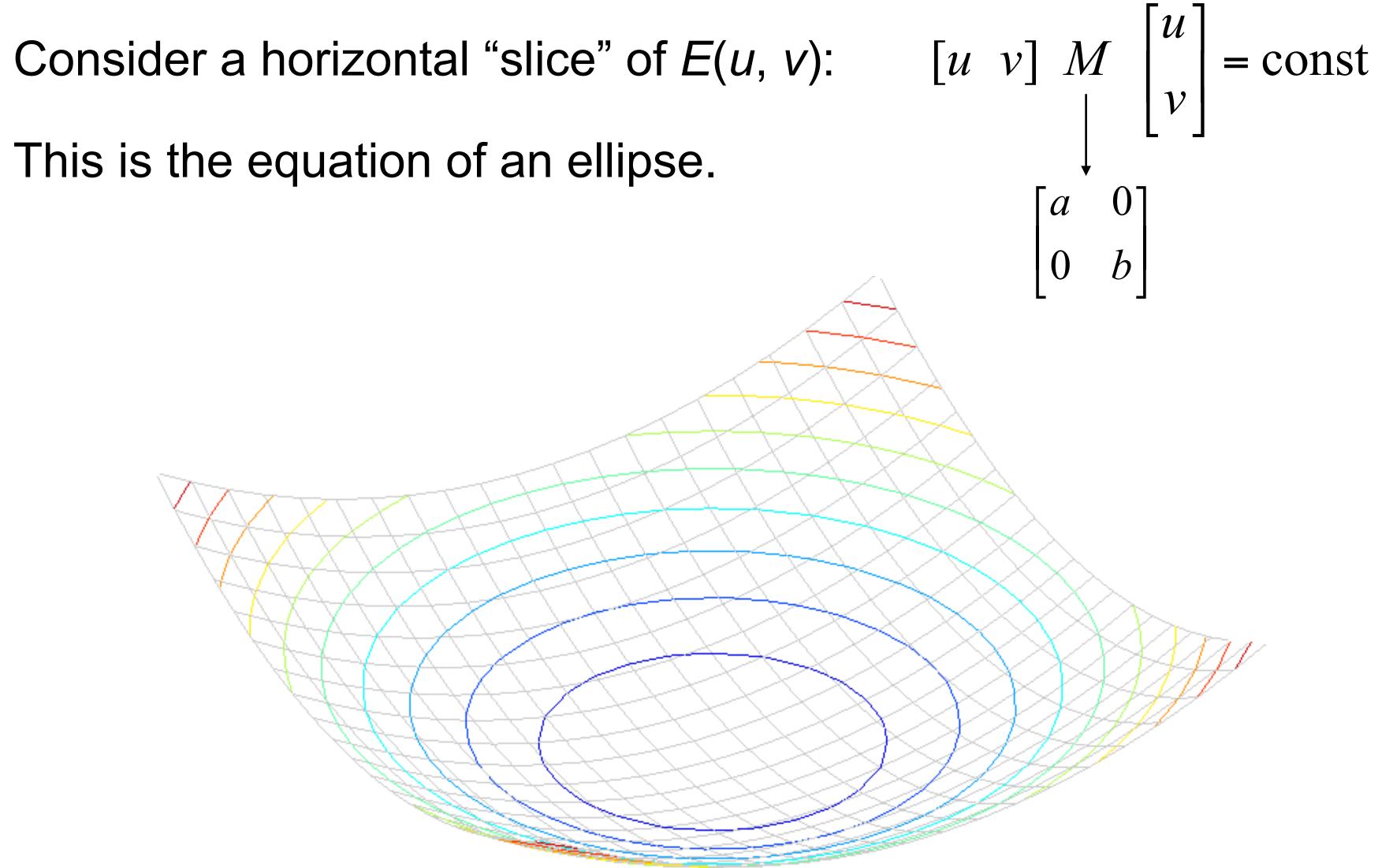
If either a or b is close to 0, then this is **not** a corner, so look for locations where both are large.

COMPSCI 370





This is the equation of an ellipse.



COMPSCI 370

This is the equation of an ellipse.

Diagonalization of M:

The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R

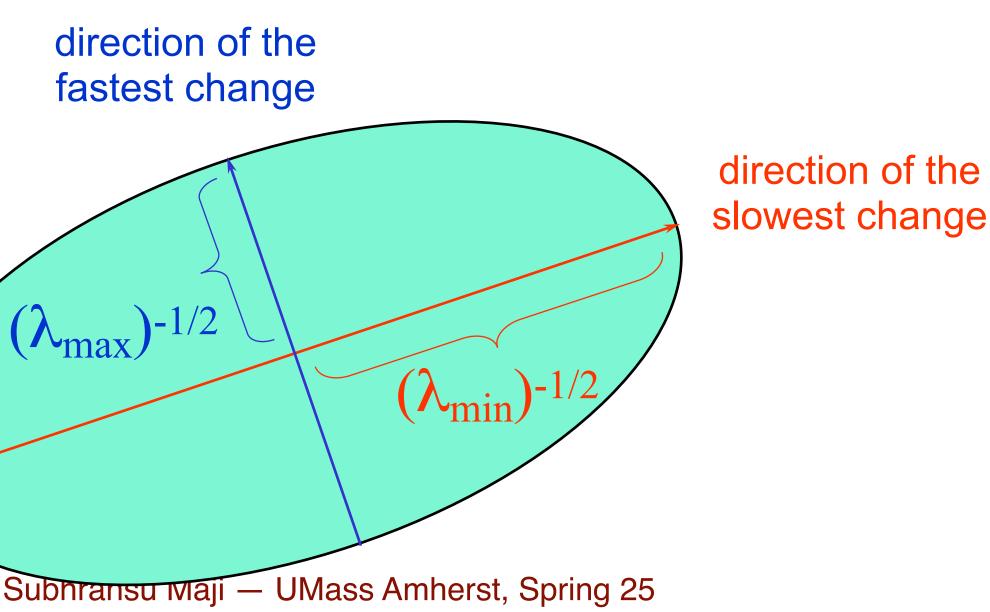
> direction of the fastest change

COMPSCI 370

Consider a horizontal "slice" of E(u, v): $\begin{bmatrix} u & v \end{bmatrix} M \begin{vmatrix} u \\ v \end{vmatrix} = \text{const}$

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

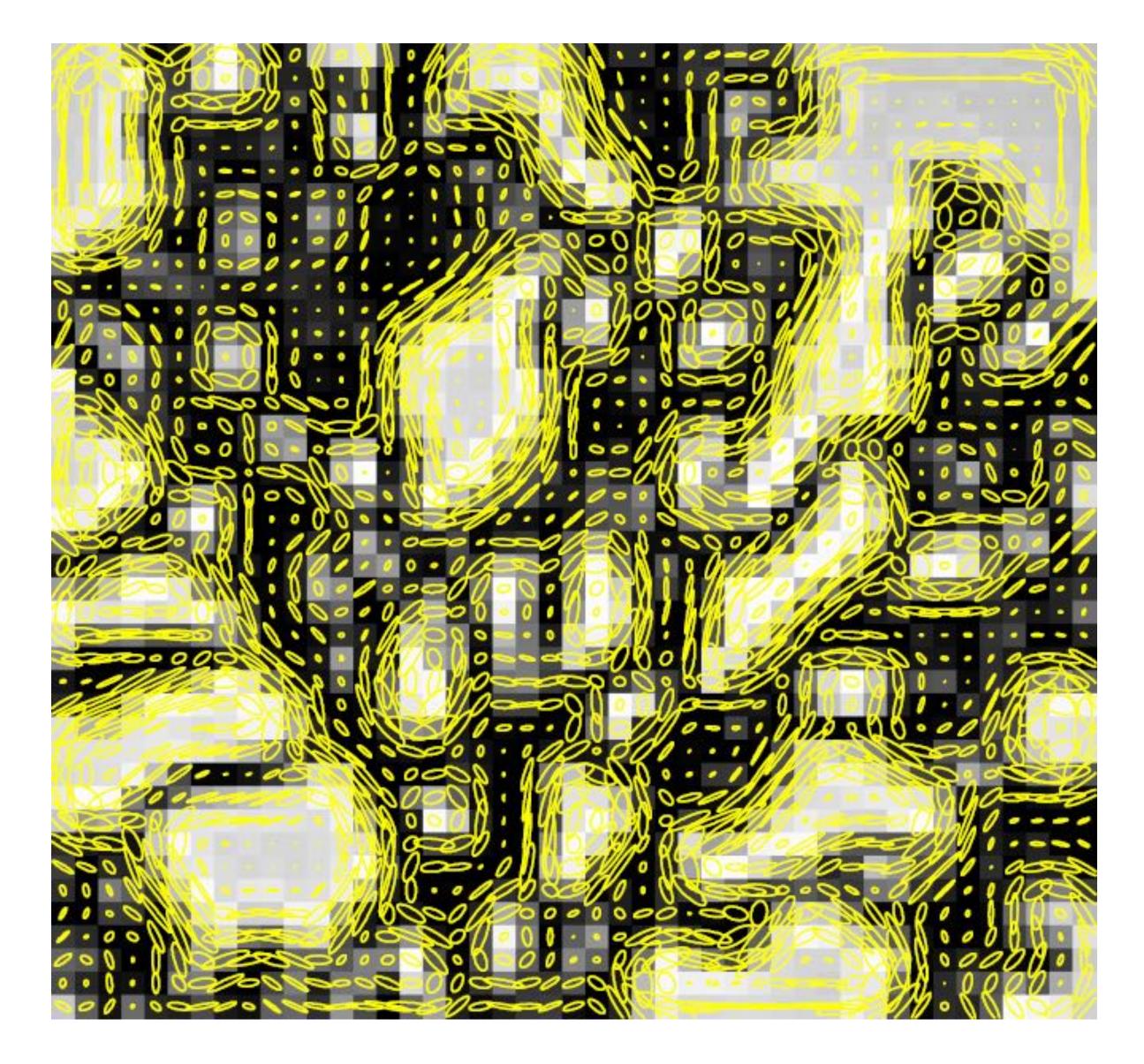
are determined by the



Visualization of second moment matrices

COMPSCI 370

Visualization of second moment matrices



Subhransu Maji – UMass Amherst, Spring 25

COMPSCI 370

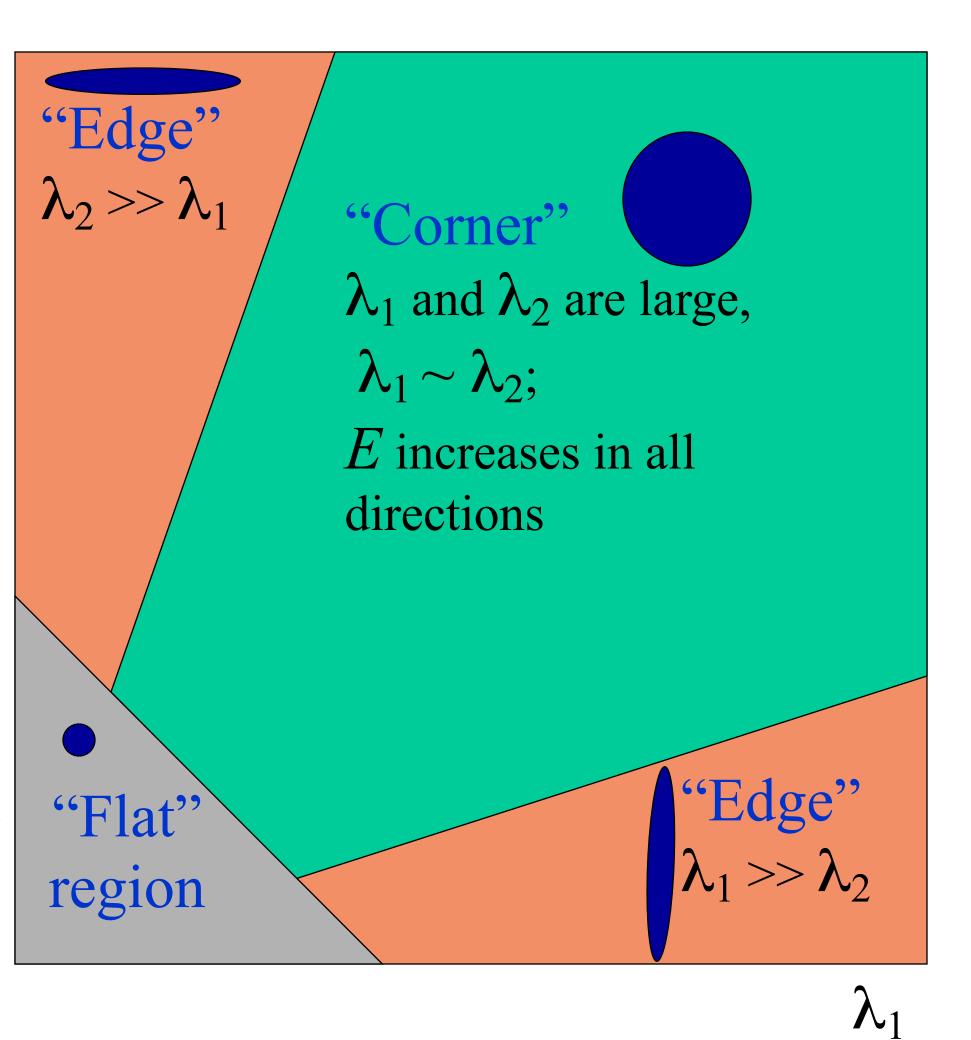
Interpreting the eigenvalues

 λ_1 and λ_2 are small; E is almost constant in all directions

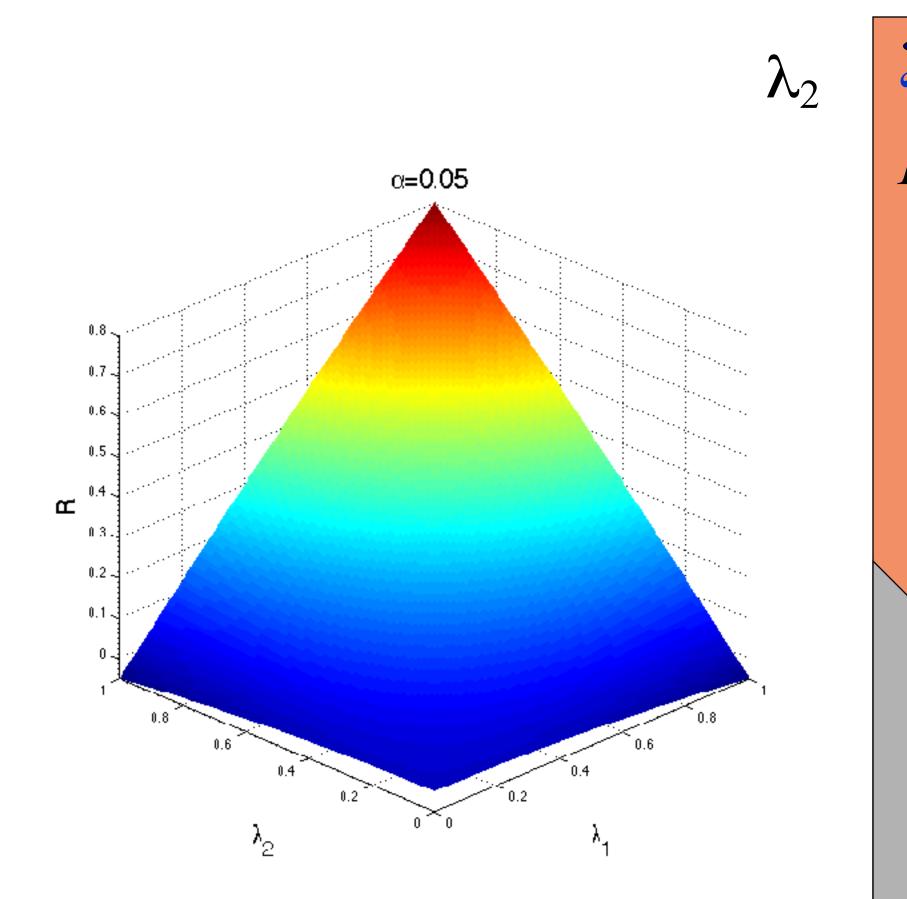
COMPSCI 370

 λ_2

Classification of image points using eigenvalues of M:



Corner response function



COMPSCI 370

$R = \det(M) - \alpha \operatorname{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$ α : constant (0.04 to 0.06) "Edge" R < 0"Corner" R > 0 R small "Edge" "Flat" R < ()region λ_1

The Harris corner detector

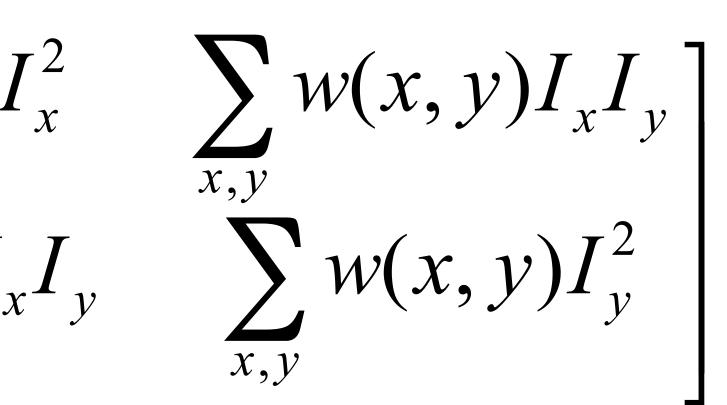
- Compute partial derivatives at each pixel
- 2. Compute second moment matrix M in a Gaussian window around each pixel:

$$M = \begin{bmatrix} \sum_{x,y} w(x,y)I \\ \sum_{x,y} w(x,y)I \\ x,y \end{bmatrix}$$

C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147-151, 1988.

Subhransu Maji – UMass Amherst, Spring 25

COMPSCI 370



The Harris corner detector

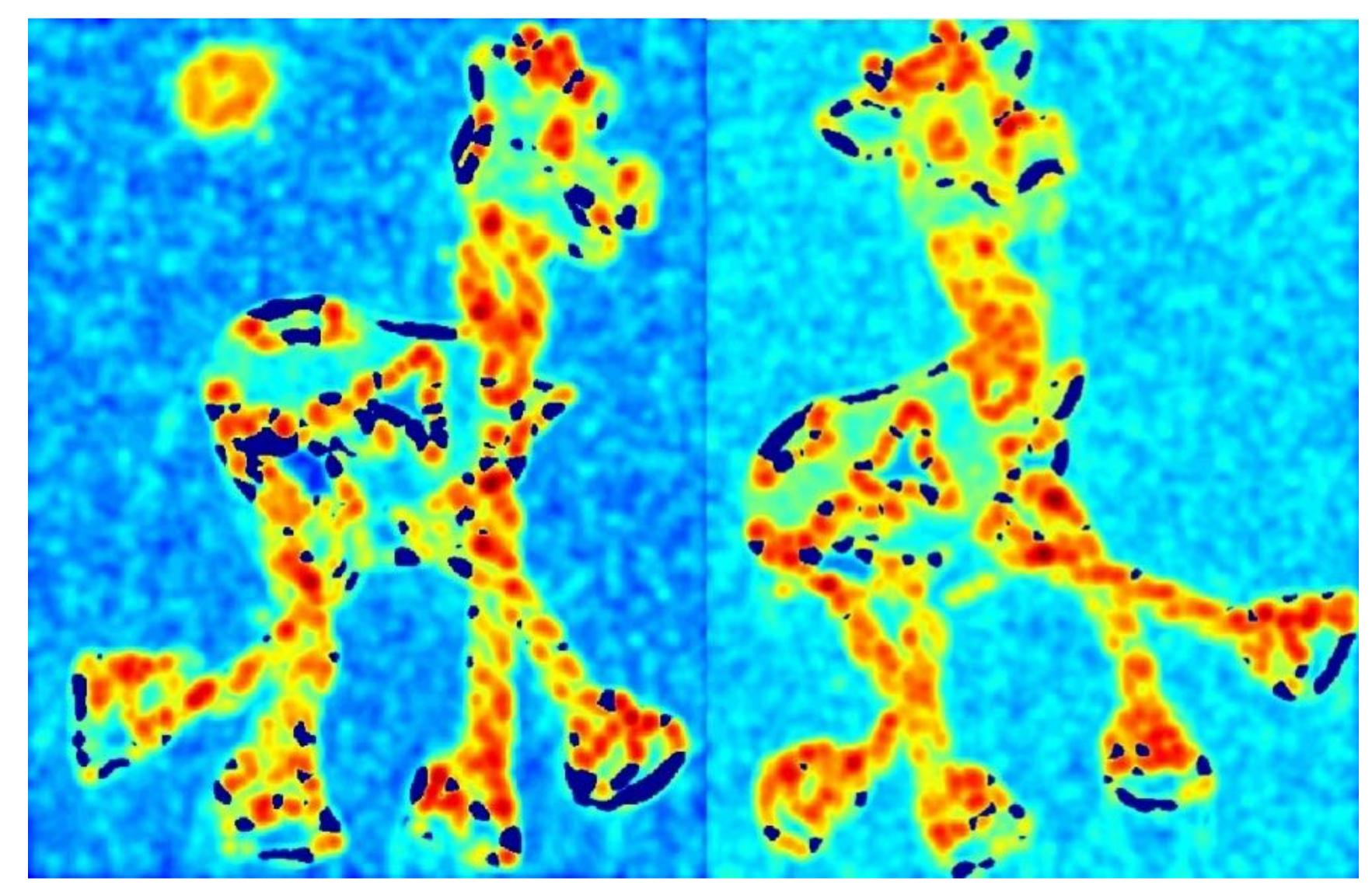
- Compute partial derivatives at each pixel 1.
- 2. Compute second moment matrix M in a Gaussian window around each pixel
- 3. Compute corner response function *R*

C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147–151, 1988.

COMPSCI 370

COMPSCI 370

Compute corner response *R*



COMPSCI 370

The Harris corner detector

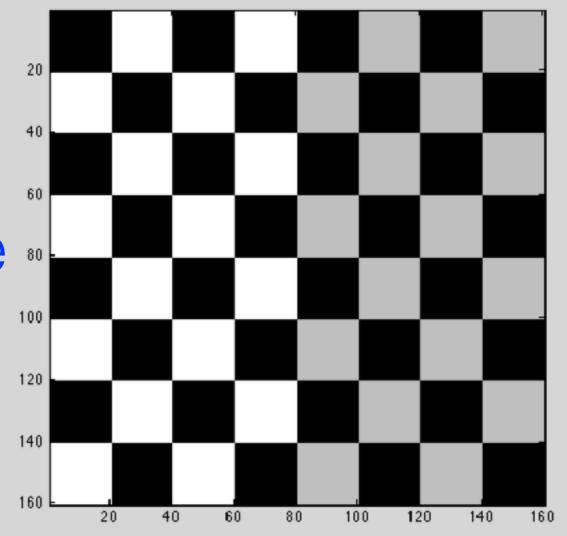
- Compute partial derivatives at each pixel 1.
- 2. Compute second moment matrix M in a Gaussian window around each pixel
- Compute corner response function R 3.
- Threshold R 4.
- 5. Find local maxima of response function (non-maximum suppression)

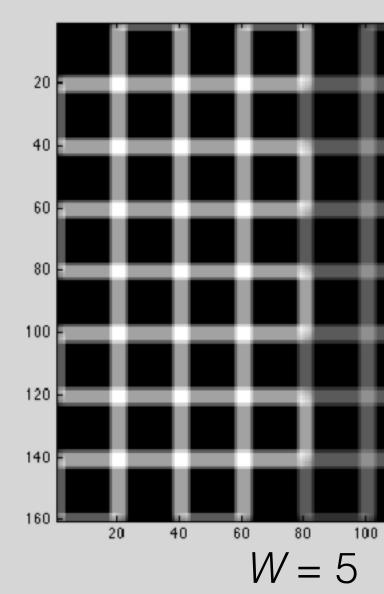
C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

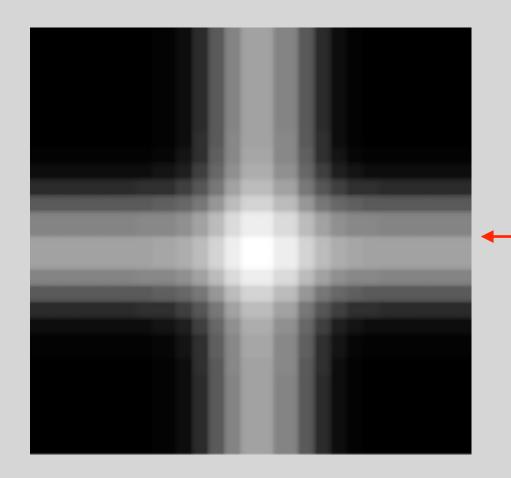
COMPSCI 370

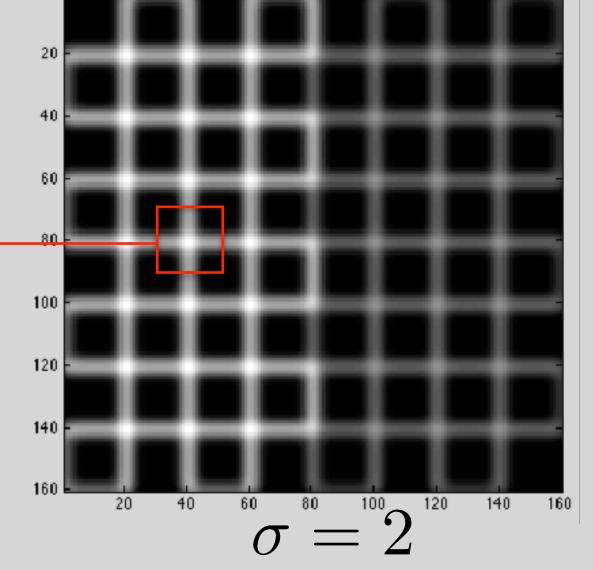
Corner score example

image 🛚



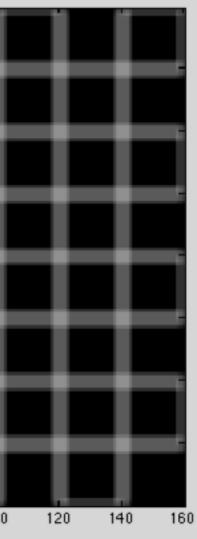


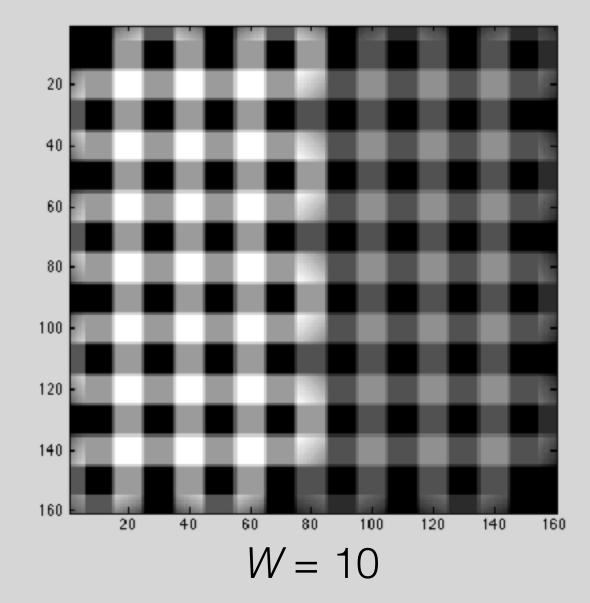




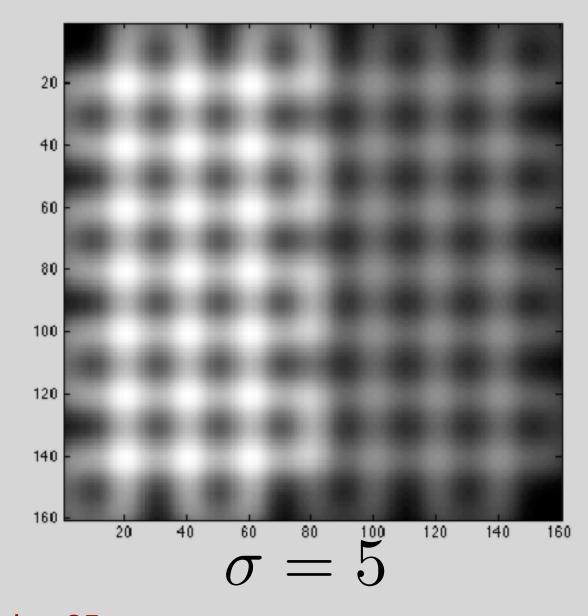
Subhransu Maji – UMass Amherst, Spring 25

COMPSCI 370



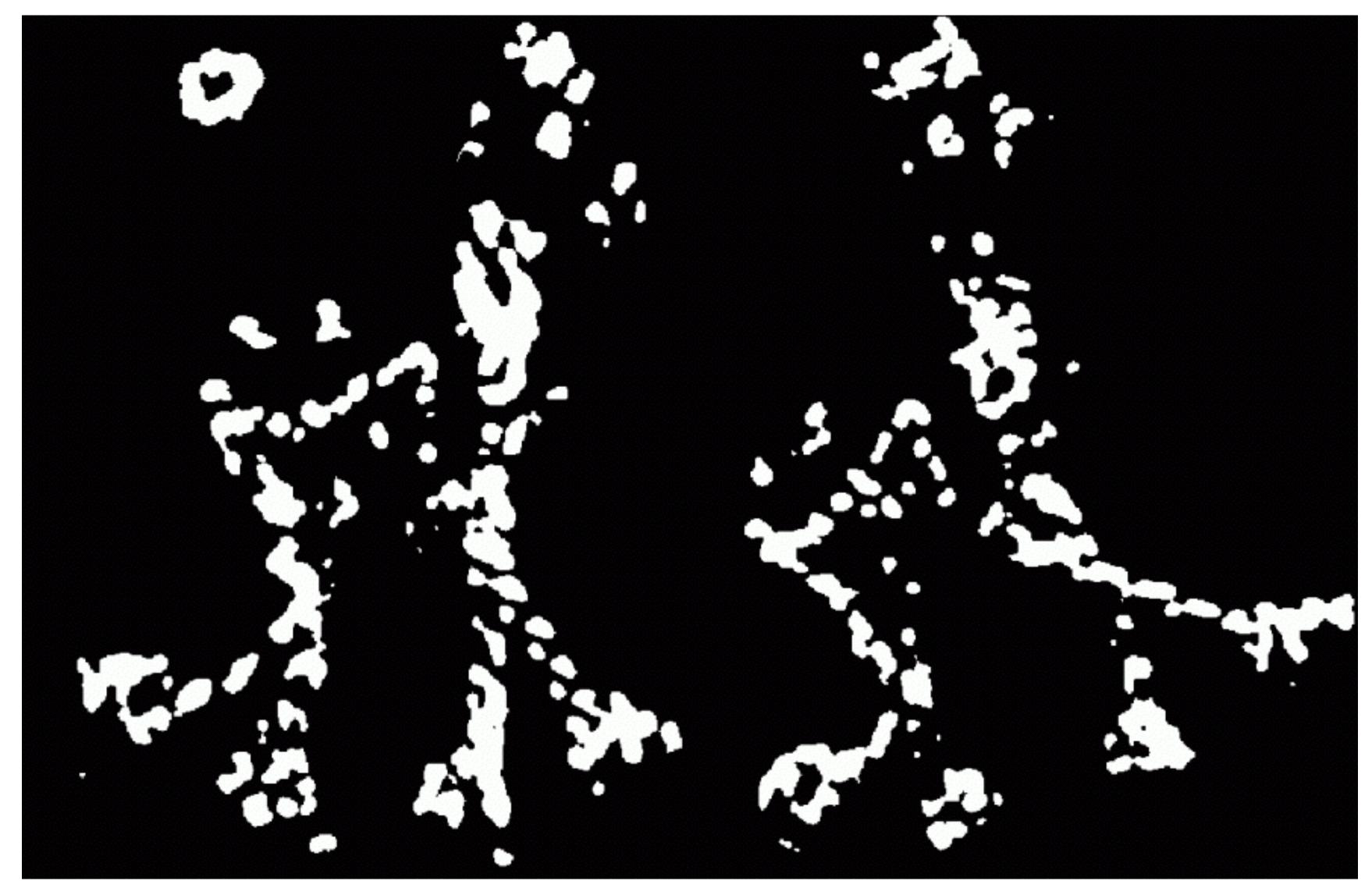


Box filter



Gaussian filter

Find points with large corner response: *R* > threshold



COMPSCI 370

Take only the points of local maxima of R

COMPSCI 370

COMPSCI 370

Further thoughts and readings...

Original corner detector paper

Vision Conference, 1988

Other corner functions

• Can you think of other $f(\lambda_1,\lambda_2)$ that work for finding corners?

C.Harris and M.Stephens, <u>"A Combined Corner and Edge Detector.</u>" Proceedings of the 4th Alvey

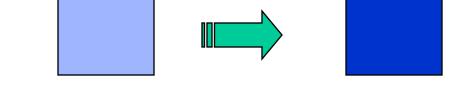
Invariance and covariance

Invariance: transformations *do not change* the corner locations **Covariance or Equivariance:** transformations change corner locations *in a predictable way*

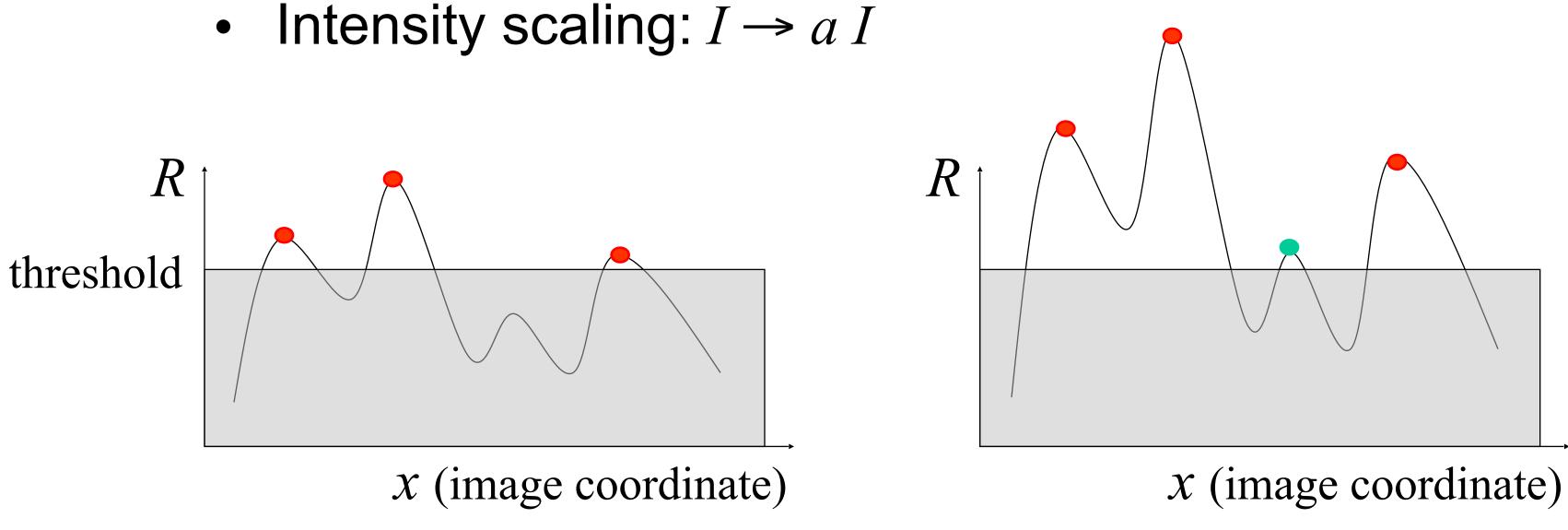
We want corners to be *invariant* to photometric transformations and *covariant* to geometric transformations

COMPSCI 370

Affine intensity change



- to intensity shift $I \rightarrow I + b$



Subhransu Maji – UMass Amherst, Spring 25

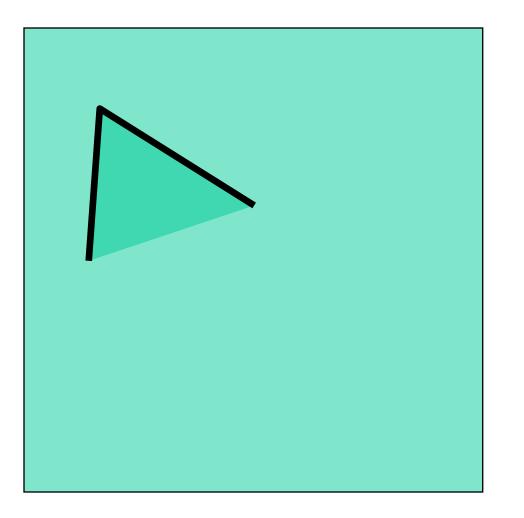
COMPSCI 370

$$I \rightarrow a I + b$$

Only derivatives are used => invariance

Corner location is partially invariant to affine intensity change

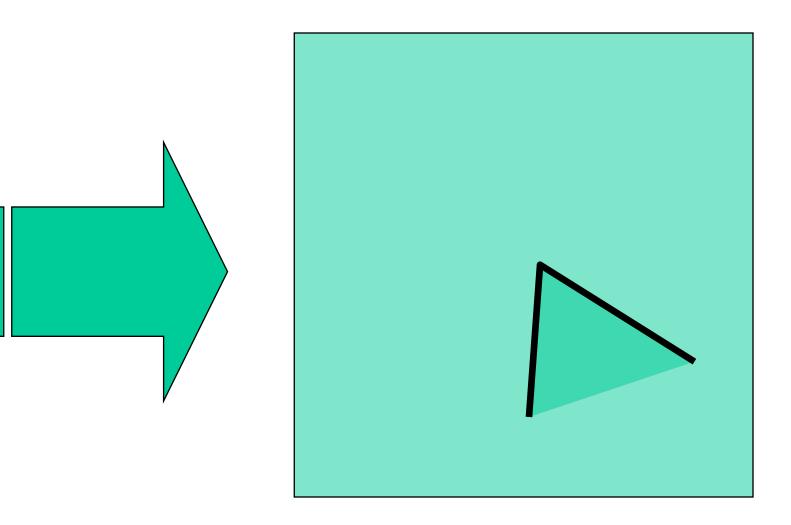
Translation



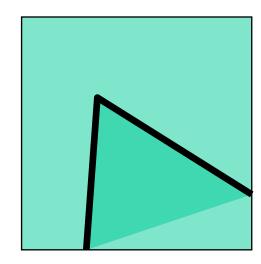
Derivatives and window function are shift-invariant

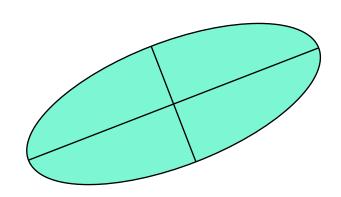
Corner location is covariant w.r.t. translation

COMPSCI 370



Rotation



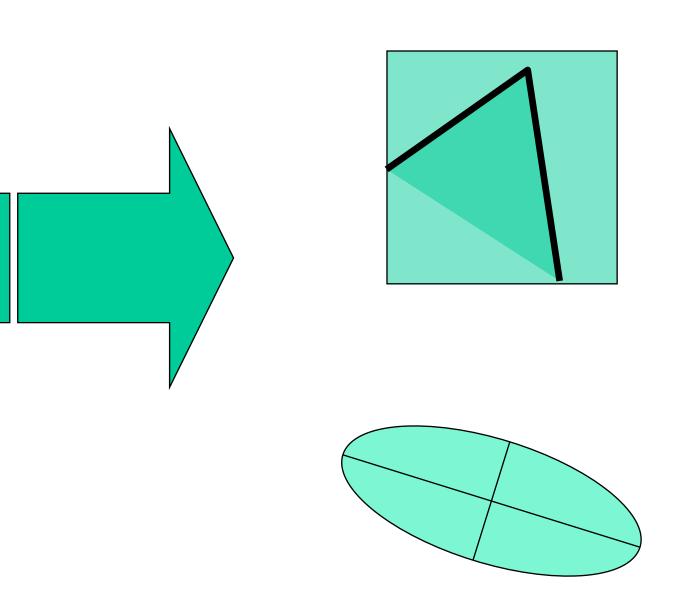


Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

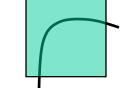
Corner location is covariant w.r.t. rotation

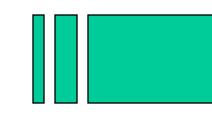
Subhransu Maji — UMass Amherst, Spring 25

COMPSCI 370



Scaling



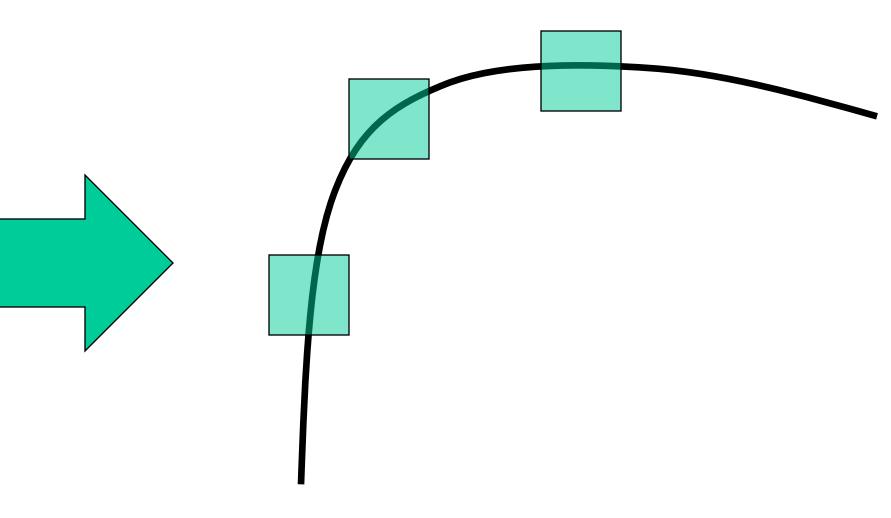


Corner

Corner detection is sensitive to the image scale!

Subhransu Maji – UMass Amherst, Spring 25

COMPSCI 370



All points will be classified as edges

Source: L. Lazebnik

