Blob detection

370: Intro to Computer Vision

March 25, 2025

Subhransu Maji

College of **INFORMATION AND COMPUTER SCIENCES**

Invariance and covariance (a quick review...)

Invariance: transformations *do not change* the corner locations **Covariance or Equivariance:** transformations change corner locations in a predictable way

We want corners to be *invariant* to photometric transformations and *covariant* to geometric transformations

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 24

Affine intensity change

- to intensity shift $I \rightarrow I + b$

Subhransu Maji – UMass Amherst, Spring 24

COMPSCI 370

$$I \rightarrow a I + b$$

Only derivatives are used => invariance

Corner location is partially invariant to affine intensity change

Translation

Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 24

Rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

Subhransu Maji – UMass Amherst, Spring 24

COMPSCI 370

Scaling

Corner

Corner detection is sensitive to the image scale!

Subhransu Maji – UMass Amherst, Spring 24

COMPSCI 370

All points will be classified as edges

Feature detection with scale selection

We want to extract features with characteristic scale that matches the image transformation such as scaling and translation

Matching regions across scales

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 24

Scale covariant features

Scale "covariance"

COMPSCI 370

Subhransu Maji — UMass Amherst, Spring 24

Blob detection: basic idea

Find maxima and minima of blob filter response in space and scale

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 24

Source: N. Snavely

Blob filter

Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

COMPSCI 370

 \boldsymbol{O} $=\frac{\circ}{2}+\frac{1}{2}$ 2-7

Subhransu Maji — UMass Amherst, Spring 24

Recall: edge detection

f*g

g

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 24

Edge detection using a Laplacian

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 24

From edges to blobs

Edge — ripple

Blob — superposition of two ripples

of the Laplacian is "matched" to the scale of the blob

Spatial selection: the magnitude of the Laplacian response will achieve a maximum at the center of the blob, provided the scale

Scale selection

looking for the maximum response However, the Laplacian response decays as scale increases:

Find the characteristic scale of the blob by convolving it with Laplacians at several scales and

Subhransu Maji – UMass Amherst, Spring 24

Source: L. Lazebnik

Scale normalization

The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases

Subhransu Maji – UMass Amherst, Spring 24

Source: L. Lazebnik

Scale normalization

The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases To keep response the same (scale-invariant), must multiply Gaussian derivative by σ Laplacian is the second Gaussian derivative, so it must be multiplied by σ^2

Subhransu Maji – UMass Amherst, Spring 24

Effect of scale normalization

COMPSCI 370

Scale-normalized Laplacian response

Subhransu Maji – UMass Amherst, Spring 24

Source: L. Lazebnik

Blob detection in 2D

Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

Subhransu Maji – UMass Amherst, Spring 24

COMPSCI 370

 $\partial^2 g$ ' g 2 normo

Scale selection

radius r?

image

At what scale does the Laplacian achieve a maximum response to a binary circle of

Laplacian Subhransu Maji – UMass Amherst, Spring 24

Scale selection

At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?

To get maximum response, the zeros of the Laplacian have to be aligned with the circle The Laplacian is given by (up to scale): $(x^2 + y)$

Therefore, the maximum response occurs at

circle

image

$$(2 - 2\sigma^2) e^{-(x^2 + y^2)/2\sigma^2}$$

Characteristic scale

response in the blob center

characteristic scale

International Journal of Computer Vision **30** (2): pp 77--116.

Subhransu Maji – UMass Amherst, Spring 24

COMPSCI 370

We define the characteristic scale of a blob as the scale that produces peak of Laplacian

T. Lindeberg (1998). "Feature detection with automatic scale selection."

Scale-space blob detector

1. Convolve image with scale-normalized Laplacian at several scales

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 24

Scale-space blob detector: Example

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 24

Scale-space blob detector: Example

COMPSCI 370

sigma = 11.9912

Subhransu Maji – UMass Amherst, Spring 24

Scale-space blob detector

- Convolve image with scale-normalized Laplacian at several scales 1.
- 2. Find maxima of squared Laplacian response in scale-space

Subhransu Maji – UMass Amherst, Spring 24

Scale-space blob detector: Example

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 24

Efficient implementation

Is the Laplacian separable?

$$L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$

(Laplacian)

Approximating the Laplacian with a difference of Gaussians:

 $DoG = G(x, y, k\sigma) - G(x, y, \sigma)$

(Difference of Gaussians)

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 24

Efficient implementation

. . .

David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

Subhransu Maji – UMass Amherst, Spring 24

COMPSCI 370

Gaussian (DOG)

Scale covariant features

Scale "covariance"

COMPSCI 370

"blob" detection

Source: L. Lazebnik

Subhransu Maji – UMass Amherst, Spring 24

From feature detection to description

Scaled and translated versions of the same neighborhood will give rise to blobs that are related by the same transformation

What to do if we want to compare the appearance of these image regions?

- **Normalization:** transform these regions into same-size circles
- **Problem:** rotational ambiguity

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 24

Source: L. Lazebnik

Eliminating rotation ambiguity

To assign a unique orientation to circular image windows:

- Create histogram of local gradient directions in the patch
- Assign canonical orientation at peak of smoothed histogram \bullet

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 24

SIFT features

Detected features with characteristic scales and orientations:

COMPSCI 370

Subhransu Maji – UMass Amherst, Spring 24

David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

Run SIFT demo