Optical flow
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Visual motion
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Motion and perceptual organization

Sometimes, motion is the only cue
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Motion and perceptual organization

Even “impoverished” motion data can evoke a strong percept

G. Johansson, “Visual Perception of Biological Motion and a Model For Its
Analysis’, Perception and Psychophysics 14, 201-211, 19/73.
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Motion field

The motion field is the projection of the 3D scene motion into the image
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Optical flow

Definition: optical flow is the apparent motion of brightness patterns in the image

ldeally, optical flow would be the same as the motion field
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Estimating optical flow

Given two subsequent frames, estimate the apparent motion field u(x,y) and v(x,y) between
them
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Key assumptions

 Brightness constancy: projection of the same point looks the same in every frame
« Small motion: points do not move very far

e Spatial coherence: points move like their neighbors
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The brightness constancy constraint

(z,y) ‘
‘\dlsplacement = (u,v)

@)
(x 4+ u,y + v)

[(x,y,t—l) I(Xzyat)

3rightness Constancy Equation:

[(x,y,t=1)=I(x+u(x,y),y+v(x,y),t)

Linearizing the right side using Taylor expansion:
[, y,t =) =1(x,y,0)+ 1 u(x,y)+1,v(x,y)

Hence, [ u+l v+l =0
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The brightness constancy constraint

l.u+l v+1, =0

e \What does this constraint mean?
VI-(u,v)+1, =0

* The component of the flow perpendicular to the
gradient (i.e., parallel to the edge) is unknown

COMPSCI 370 Subhransu Maji — UMass Amherst, Spring 25

10



The brightness constancy constraint

lu+l v+1, =0
e \What does this constraint mean?

VI-(u,v)+1 =0

* The component of the flow perpendicular to the
gradient (i.e., parallel to the edge) is unknown

gradient

If (U, v) satisfies the equation,
so does (u+u’, v+v') if VI-(u',v')=0
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Adding more constraints

How to get more equations for a pixel?

Spatial coherence: pretend the pixel’s neighbors have the same flow
 E.g., if we use a 5x5 window, that gives us 25 linear constraints per pixel

VI(x) [u,v]+1(x;)=0

1(x) 1,(x) L(x,)
I.(X,) 1,(X,)]| [u 1,(X,)
. : ol
[.(x,) [I,(x,) I,(x,)

B. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674—

679, 1981.
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http://www.ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_1/lucas_bruce_d_1981_1.pdf
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Adding more constraints

Least squares:

[.(x;) [1,(x)) 1,(x;)
[.(X,) 1,(X)][u 1,(x,)
: : ol
[ .(x,) 1,(x,) I,(x,)

When is this system solvable?

B. Lucas and T. Kanade. An iterative image registration technigue with an application to
stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674—

679, 1981.
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L ucas-Kanade flow

Linear least squares problem
-[x(x1) ]y(xl)- -It(Xl)-

1) Lx)|[u]  |1(x,) Ad=Db

. . v E nx2 2x1 nxl
L) L)L)

Solution given by (A"A)d=A"b

The summations are over all pixels in the window

B. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674—

679, 1981.
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Lucas-Kanade flow — when does it work?

e M= ATA is the second moment matrix

 \We can figure out whether the system is solvable
by looking at the eigenvalues of the second
moment matrix
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Classification of image points using eigenvalues of
the second moment matrix:

A

COMPSCI 370 Subhransu Maji — UMass Amherst, Spring 25

16



Conditions for solvability

“Bad” case: single straight edge
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Conditions for solvability

“Good” case: corner
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Example

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Uniform region

100

1580
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— gradients have small magnitude
— small A4, small A,

— system is ill-conditioned
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Edge

COMPSCI 370

— gradients have one dominant direction
— large A4, small A,

— system is ill-conditioned
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High-texture or corner region

— gradients have different directions, large magnitudes
— large A4, large A,
— system is well-conditioned
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Coming up!

Optical flow demo in OpenCV
Depth estimation

Point tracking

Video interpolation

Challenges in estimating flow and modern approaches
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Different ways to v
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(d) Motion visualization
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Encode direction as the hue and magnitude as saturation

(d) Motion visualization
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Coming up!

Optical flow demo in OpenCV
Depth estimation

Point tracking

Video interpolation

Challenges in estimating flow and modern approaches
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Depth estimation

COMPSCI 370

Dense depth map

Some of following slides adapted from Steve Seitz and Lana Lazebnik
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Depth from flow

Goal: recover depth by finding image coordinate x’ that corresponds to x

O Baseline O
B
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Depth from flow

COMPSCI 370

O Baseline O’
B

B-f

disparity = x —x' =
z

Disparity is inversely proportional to depth.
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Point tracking

What are good features for tracking? Corners!

Kanade-Lucas-Tomasi (KLT) Tracker
* Estimate optical flow using Lucas-Kanade
* Detect corners in each frame
« Store displacement of each corner using estimate flow
* Chain displacements to form long trajectories
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Video interpolation

Given two frames estimate multiple intermediate frames
Can be use to play the video at a higher frame rate (or in slow motion)

Source https://www.freecodecamp.org/news/understanding-linear-interpolation-in-ui-animations-74/01eb9957¢/
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Video interpolation

https://jlanghz.me/projects/superslomo/

Io FO—>1 Fl—)O
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Super SloMo: High Quality Estimation of Multiple Intermediate Frames

for Video Interpolation
Huaizu Jiang! Deqing Sun? Varun Jampani?
Ming-Hsuan Yang®?  Erik Learned-Miller'  Jan Kautz? A
'UMass Amherst *NVIDIA *UC Merced ”Ft—>1 — Fy_q ”2

{hzjiang, elm}@cs.umass.edu,{deqings,vjampani, jkautz}@nvidia.com, mhyang@ucmerced.edu



Errors in Lucas-Kanade

The motion is large (larger than a pixel)
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* Exhaustive neighborhood search (feature matching)

A point does not move like its neighbors
* Motion segmentation

Brightness constancy does not hold
* Exhaustive neighborhood search with normalized correlation

COMPSCI 370
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Alternative optical flow methods

Apply a smoothness constraint or regularization on the entire flow field (Horn-Schunck method)
Estimate flow by solving an optimization problem across all pixels:

Z U(lu+ Lv+ 1)+ aL(|Vu]) + aL(|Vv|)

Brightness constancy

Smoothness constraints

Tends to give dense, highly-accurate flow, but requires non-trivial optimization techniques.
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Modern approaches (e.g., RAFT)

https://github.com/princeton-vl/RAFT
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Optical Flow
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Training data

Often trained on synthetic data! Figure from MPI Sintel Dataset, Butler et al., ECCV’12 https://
ps.is.mpg.de/code/sintel-optical-flow-dataset
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