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Image classification

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

cat

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25



Challenges: Semantic gap

Images are represented as
3D arrays of numbers, with
iIntegers between [0, 255].

E.g.
300 x 100 x 3

(3 for 3 color channels RGB)

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller
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Challenges: Viewpoint Variation
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COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25



Challenges: lllumination

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25



Challenges: Deformation

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 6



Challenges: Occlusion
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COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25



Challenges: Background clutter

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25



Challenges: Intraclass variation

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25



Writing an image classifier

def predict(image):

return class label

Unlike e.g. sorting a list of numbers,

no obvious way to hand-code the algorithm for
recognizing a cat, or other classes.

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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Attempts have been made

COMPSCI 370
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Subhransu Maji — UMass Amherst, Spring 25

Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller



Machine Learning: Data Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning algorithms to train a classifier
3. Evaluate the classifier on new images

Example training set

return model

return test labels

def train(train_images, train_labels):

# bulild a model for 1lmages -> labels...

def predict(model, test_images):
# predict test_labels using the model...
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COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller
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Examples of machine learning models
* Nearest neighbor classifiers
e Linear classifiers

COMPSCI 370 Subhransu Maji — UMass Amherst, Spring 24 13



Nearest Neighbor Classifier

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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Nearest neighbor classifier

Training data: (Xl, y1), (Xz, yz), Loy (Xm yn)
Fruit data:

» |abel: {apples, oranges, lemons}
o attributes: {width, height}

Euclidean distance d(Xl, Xz) — \/Z (Xl,i — X2,7L)2
g

y %

height

width

COMPSCI 370 Subhransu Maji — UMass Amherst, Spring 24
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Nearest neighbor classifier

COMPSCI 370

11

Fruit data

7.

10
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el * apples |
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4 | | | I | [
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width (cm)

Subhransu Maji — UMass Amherst, Spring 24
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test data

(e, 0)

?

(001

16



Fruit data

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
width (cm)

COMPSCI 370 Subhransu Maji — UMass Amherst, Spring 24 17



kK-Nearest neighbor classifier

Take majority vote among the k nearest neighbors

Fruit data
11 . .
L
10 .‘
2
" L
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. « outher
£ sl g’ .
O ° .30‘
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% L e c:c.o *
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What is the effect of k?
6_
el e apples |
orange
* |emons
%.5 3] 6.5 7 7.5 8 85 é 9.15 10
width (cm)

COMPSCI 370 Subhransu Maji — UMass Amherst, Spring 24



K-Nearest Neighbor

find the k nearest images, have them vote on the label

the data NN classifier 5-NN classifier
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http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
COMPSCI 370

Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 19
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Q: what is the accuracy of the nearest
neighbor classifier on the training data,
when using the Euclidean distance?

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25

the data NN classifier 5-NN classifier
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Example dataset: CIFAR-10
10 labels

50,000 training images
10,000 test images

airplane ﬁ.-% > ---=&
automobile E- ~. . = “ h-g‘
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For every test image (first column),
examples of nearest neighbors in rows
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COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25



import numpy as np Nearest Neighbor classifier

class NearestNeighbor:
def init (self):
pass

def train(self, X, y):
"X 1s N x D where each row is an example. Y is 1-dimension of size N """
# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr =y

def predict(self, X):
"t X 1s N x D where each row is an example we wish to predict label for
num test = X.shape[0]
# lets make sure that the output type matches the 1nput type
Ypred = np.zeros(num test, dtype = self.ytr.dtype)

# loop over all test rows
for i in xrange(num test):
# find the nearest training 1mage to the 1'th test 1mage
# using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(sel7.Xtr - X[1i,:]), axis = 1)
min index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25



import numpy as np

class NearestNeighbor:
def init (self):
pass

def train(self, X, y):
"X 1is N x D where each row is an example. Y is l-dimension of size N

+ | 4 = - . ~ ~
the training data

# the nearest neighbor classifier simply remembers all
self.Xtr = X
self.ytr = y

def predict(self, X):
"X 1s N x D where each row 1s an example we wish to predict label for

num test = X.shape[0O]

(e sure that the output type matches the 1nput type

selT.ytr.dtype)

4
-

K
Ypred = np.zeros(num test, dtype

# loop over test rows
for i in xrange(num test):
# find the neares? raining image to the 1'th
# using the L1 distance (sum of absolute value differe
distances = np.sum(np.abs(sel?.Xtr - X[1,:]), axis = 1)
min index = np.argmin(distances) # get the index wi

P . R :
1ct the Llabel of

Ypred[i] = self.ytr[min index] # pred

return Ypred

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Subhransu Maji — UMass Amherst, Spring 25

Nearest Neighbor classifier

remember the training data

23



import numpy as np

class NearestNeighbor:
def init (self):
pass

def train(self, X, y):
"X 1is N x D where each row is an example. Y is 1-dimension of size N """
# the nearest neighbor classifier simply remembers all the training data

self.Xtr = X
self.ytr =y

def predict(self, X):
"X 1s N x D where each row 1s an example we wish to predict label for
num test = X.shape[0O]

# lets make sure that the output type matches the 1nput

Ypred = np.zeros(num test, dtype = self.ytr.dtype)

<=

L _‘r"’ P’-) @

*; 1/,' . 23 7F2aT & ’\77 : - = all;
# loop over all test rows

for 1 1n xrange(num test):
# find the nearest ning i1mage to the 1'th test 1mage

—

T S g e o an 7S b iy R S e E e R e GRS ]
# US1Ng the L1 distance (sum of absolute value agirrerences)

distances = np.sum(np.abs(sel?.Xtr - X[1,:]), axis = 1)
min index = np.argmin(distances) # get the index with smallest distance

1

Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Subhransu Maji — UMass Amherst, Spring 25

Nearest Neighbor classifier

for every test image:

- find nearest train image
with L1 distance

- predict the label of
nearest training image

24



the data NN classifier 5-NN classifier
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Q: Suppose you have N training
examples. How long does It take to make
a prediction with a nearest neighbor
classifier on one test example?

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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What Is the best distance to use?
What is the best value of k to use?

.e. how do we set the hyperparameters?

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25



What Is the best distance to use”?
What is the best value of k to use?

.e. how do we set the hyperparameters?

Very problem-dependent.
Must try them all out and see what works best.

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25



Trying out what hyperparameters work best on test set.

| |

test data

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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Trying out what hyperparameters work best on test set:

Very bad idea. The test set is a proxy for the generalization performance!
Use only VERY SPARINGLY, at the end.

| |

test data

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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test data
v
fold 1 fold 2 fold 3 fold 4 fold 5 test data

use to tune hyperparameters

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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train data test data
v
fold 1 fold 2 fold 3 fold 4 fold 5 test data

N

Cross-valldatlon

cycle through the choice of which fold
Is the validation fold, average results.

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25



Cross-validation on k

0.32

031 °

0.30 |

<
N
W

0.28 |-

Cross-validation accuracy

<
N
~J

0.26 |

0.25 |

Example of
5-fold cross-validation
for the value of k.

Each point: single
outcome.

The line goes

through the mean, bars
iIndicated standard
deviation

(Seems that k ~= 7 works best
for this data)

0.24

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

-20 0 20 40

60 80 100 120

Subhransu Maji — UMass Amherst, Spring 25
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k-Nearest Neighbor on raw images is never used.

- terrible performance at test time
- distance metrics on level of whole images can be
very unintuitive

original shifted messed up darkened

(aII 3 |mages haVe same L2 distance to the one on the Ieft)

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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So far ...

Nearest neighbor classifier
* All features are equally good
* No training required!
* Slow at test time
Linear classifiers (next)
* Use all features, but some more than others
* Training required
* Fast at test time!

COMPSCI 370 Subhransu Maji — UMass Amherst, Spring 24

34



Linear Classification

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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COMPSCI 370

Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller
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10 labels

50,000 training images
each image iIs 32x32x3

10,000 test images.

.u_., Example dataset: CIFAR-10

N
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Parametric approach

Image parameters

f(x,W)

[32x32x3]
array of numbers 0...1
(3072 numbers total)

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25

10 numbers,
iIndicating class
SCores

37



Parametric approach: Linear classifier

flx, W) =Wx

10 numbers,
iIndicating class
i SCores

[32x32x3]
array of numbers 0...1

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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Parametric approach: Linear classifier

:@@ 3072x1

10x1 10x3072
\ - 10 numbers,

iIndicating class
e scores

[32x32x3]
array of numbers 0...1

parameters, or "weights”

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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Parametric approach: Linear classifier

—[Whg %71 |(+b)|10x1

10x1 10x3072
\ - 10 numbers,

iIndicating class
e scores

[32x32x3]
array of numbers 0...1

parameters, or "weights”

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

| i

231
24
Input image 9
COMPSCI 370

Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 41



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

stretch pixels into single column

PRy
Input image

COMPSCI 370

06

231

1.1

02 |05 0.1 | 20

19 | 13 | 21 | OO0

U (F029 (E0:2 HIF=0.3
|14

Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Subhransu Maji — UMass Amherst, Spring 25

24

3.2

-96.8

2

-1.2

437.9

L ;

61.90

f(mi; Wa b)

cat score

dog score

ship score
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Interpreting a Linear Classifier

airplane '3!4- "' ..=&!
automobile Eaﬂh..t

f(z;,W,b) = Wz; +b

bird Bl yERE
cat 4 Ol bl LATER & Q: what does the
: E“'& 4213 linear classifier
og RIS e O T - .
frog ot ’;;\.. . dO, In Eng“Sh?
horse R REEETER
ship sl T 1=
truck e i B = o B BTN
COMPSCI 370

Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 43



Interpreting a Linear Classifier
f(xi, W,b) = Wz; + b

B\ car classifier

[32x32x3]
array of numbers 0...1
(3072 numbers total)

deer classifier

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 44



Interpreting a Linear Classifier

airplane aﬁ..% y.=ﬂz_

automobile E..H‘ f(wz’ W, b) — sz + b
v Sl NS ¥ S

« T P . .
Example trained weights
dog e | 0[S : .

- EEEsEpsasE of alinear classifier

e EmeeUmEEL®  trained on CIFAR-10:

-
LN
‘.
< 9

truck ol ) g M T s O (Ml
horse

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25




Interpreting a Linear Classifier

airplane M..V y..-=&

e e — -

womente 2 D i B S
hp e - : 9 > k‘.'?’f

oo gl W ¥
£\ = D

« FEUDSEEEsP
— ' T - T — |

oo [ OV O R
-. _.,;..»_ < .t e -,J ot -~ .

71 - - \ A

w03 [HEEl=Ery T
: Y 4 '4‘\_\ ' v .

v BEEEDD NS

g é b . /' 1wl

norse il RO A ] 9 1 I R T U

S =T
{8 . y B, <\ m

truck ool U R S o ]

COMPSCI 370
Slide cre

f(z;, W,b) =Wz; +b
Q2: what would be
a very hard set of
classes for a linear

classifier to
distinguish?

dit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 46



Hard cases for a linear classifier

Class 1. Class 1.
First and third quadrants 1 <=L2 norm <=2
Class 2: Class 2:

Second and fourth quadrants Everything else

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25

Class 1:
Three modes

Class 2:
Everything else

47



So far: We defined a (linear) score function: f(z:,w,b) = Wz, +

/

really affine
airplane -3.45 -0.51 3.47
Example class sutomoie 0+ 6.04 4.64
bird 0.03 5.31 2 .05
scores for 3 | 2.9 4 o5 .
ca
- - 4.48 _
Images, with a i .19 2. 64
) 3.02 3.58 5.55
random W: °9 3.78 4.49 _4.34
frog 1.06 —4 .37 ~1.5
horse -0.36 -2.009 —4.79
ship -0.72 -2 .93 0.14
truck

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 48



Coming up:

- Loss function
- Optimization
- Neural nets!

COMPSCI 370

fle, W) =Wz

(quantifying what it means to
have a “good” W)

(start with random W and find a
W that minimizes the loss)

(tweak the functional form of f)

Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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Summary so far ...

>

[32x32x3]

array of numbers 0...1

(3072 numbers total)

Linear classifier

Image parameters

f(x,W)

stretch pixels into single column

14

3.2

-96.8

-1.2

437.9

02 |-05| 01| 20 56
15| 13 | 21 | 0.0 231
R 0 |025| 02 | -03 24
%% 2
£L;
COMPSCI 370

Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

61.95

f(wi; Wa b)

cat score

dog score

ship score

10 numbers, |
class scores

ndicating

car classifier

-
airplane classifier Q

/

deer classifier

plane car bird cat deer dog frog horse ship truck
o o "“
N l ' -

Subhransu Maji — UMass Amherst, Spring 25
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Loss function/Optimization
TODO:

airplane
automobile
bird

cat

deer

dog

frog

horse

ship

truck

COMPSCI 370

Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

-3.45
-8.87

0.09
2.9
4.48
3.02
3.78
1.06
-0.30
-0.72

-0.51
6.04
5.31

-4 .22

-4.19
3.58
4.49

-4 .37

-2.09

-2.93

3.472
4.04
2.05

2 .04
5.9
-4 .34
-1.5
-4.79
0.14

Subhransu Maji — UMass Amherst, Spring 25

1.

Define a loss function
that quantifies our
unhappiness with the
scores across the training
data.

Come up with a way of
efficiently finding the
parameters that minimize
the loss function.
(optimization)

51



Suppose: 3 training examples, 3 classes.
With some W the scores f(xz, W) = Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 2.0 -3.1

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25

52



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(xz, W) = Wz are:

Given an example (CUz‘, yz)
where XI; is the image and
where v; is the (integer) label,

and using the shorthand for the scores
vector: s; = flx;, W)

the SVM loss has the form:

cat 3.2 1.3
car 5.1 4.9
fr()g -1.7 20

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 53



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (iUz', yz)
where &I; is the image and
where ; is the (integer) label,

and using the shorthand for the scores
vector: s; = f(x;, W)

the SVM loss has the form:

cat 1.3 2.2 — % .
car 4.9 2.0 - max(0, 5.1 - 3.2 + 1)
+max(0, -1.7-3.2+ 1)
frog 20 '31 = max(0, 2.9) + max(0, -3.9)
=29+0
Losses: =29

Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 54



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (iUz', yz)
where XI; is the image and
where v; is the (integer) label,

and using the shorthand for the scores
vector: s; = flx;, W)

the SVM loss has the form:

cat 3.2
car 5.1

frog -1.7
Losses: 2.9

= max(0, 1.3-4.9 + 1)
+max(0, 2.0-4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

=0+0

=0

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 55



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (iUz', yz)
where XI; is the image and
where v; is the (integer) label,

and using the shorthand for the scores
vector: s; = flx;, W)

the SVM loss has the form:

cat 3.2
car 5.1

frog -1.7
Losses: 2.9

= max(0, 2.2 -(-3.1) + 1)
+max(0, 2.5 - (-3.1) + 1)
= max(0, 6.3) + max(0, 6.6)
=6.3+6.6

=12.9

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 56



Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) =Wz are:

cat

3.2
5.1

-1.7
2.9 0

1.3
4.9
2.0

2.2
2.9

-3.1
12.9

car

frog

Losses:

COMPSCI 370

Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25

Multiclass SVM loss:

Given an example (iUz', yz)
where XI; is the image and
where v; is the (integer) label,

and using the shorthand for the scores
vector: s; = flx;, W)

the SVM loss has the form:

LZ' — Zj#yi max(O, Sj — Sy, -+ 1)

and the full training loss is the mean
over all examples in the training data:

N
= % iz Li

| =(2.9+ 0+ 12.9)/3

= 3.3
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

cat 3.2
car 5.1

frog -1.7

Given an example (iUz', yz)
where XI; is the image and
where v; is the (integer) label,

and using the shorthand for the scores
vector: s; = flx;, W)

the SVM loss has the form:

Li =} ., max(0,s; — sy, + 1)
1.3 2.2 Q: what if the sum
4.9 2.5 was instead over all

20 _3.1 classes?

Losses: 2.9

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

INncluding | =v |
0 o9 | |nouwdnoi=yy

Subhransu Maji — UMass Amherst, Spring 25 58



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

cat 3.2
car 5.1

frog -1.7

Given an example (iUz', yz)
where XI; is the image and
where v; is the (integer) label,

and using the shorthand for the scores
vector: s; = flx;, W)

the SVM loss has the form:

13 22 Lizzj#yimax(o,sj—syi—l—l)
4.9 2.5 Q2: what if we used a

mean instead of a
2.0 -3.1 sum here?

Losses: 2.9

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

0 12.9

Subhransu Maji — UMass Amherst, Spring 25 59



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

cat 3.2
car 5.1

frog -1.7

Given an example (:Bz', yz)
where g . Is the image ana
where Y; Is the (integer) label,

and using the shorthand for the scores
vector: s; = flx;, W)

the SVM loss has the form:

1 3 2 2 = Zj#yi max (0, s; — sy, + 1)

4.9 2.5 Q3: what if we used
2.0 -3.1

Li =), max(0,s; — sy, + 1)°

Losses: 2.9

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

0 12.9

Subhransu Maji — UMass Amherst, Spring 25 60



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

cat 3.2
car 5.1

frog -1.7

Given an example (:Bz', yz)
where g . Is the image ana
where Y; Is the (integer) label,

and using the shorthand for the scores

vector: s; = f(xi, W)

the SVM loss has the form:
1 3 2 2 Ly = Zj;éyi max(0,s; — sy, + 1)
4.9 2.5 Q4: what is the min/
20 3.1 max possible loss?

Losses: 2.9

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

0 12.9

Subhransu Maji — UMass Amherst, Spring 25 61



Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) =Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.9
frog -1.7 2.0 -3.1
Losses: 2.9 0 12.9

Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25

Multiclass SVM loss:

Given an example (:Ei, yz)
where g, Is the image and
where Y; Is the (integer) label,

and using the shorthand for the scores
vector: s; = flx;, W)

the SVM loss has the form:
LZ' — Zj#yi max(O, Sj — Sy, -+ 1)

Q5: usually at
initialization W are small

numbers, so all s ~= 0.
What is the loss?
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Example numpy code:

Li — Zj#yi max(O, Sj — Sy, + 1)

def L 1 vectorized(x, y, W):
scores = W.dot(x)
margins = np.maximum(©®, scores - scoresly] + 1)
margins[y] = 0
Lloss 1 = np.sum(margins)
return loss 1

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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Coding tip: Keep track of dimensions:

X.shape[0]
= X.shape[1]

W.shape[1]

scores=X.dot(W) # (N,DY*(D,C)=(N,C)

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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Softmax Classifier (Multinomial Logistic Regression)

cat 3.2
car 5.1

frog -1.7

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Subhransu Maji — UMass Amherst, Spring 25
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Softmax Classifier (Multinomial Logistic Regression)

)

cat 3.2
car 5.1

frog -1.7

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Subhransu Maji — UMass Amherst, Spring 25

scores = unnormalized log probabilities of the classes.

s = f(zi; W)
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Softmax Classifier (Multinomial Logistic Regression)

PY =KX =1z)=$x5

cat 3.2
car 5.1

frog -1.7

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Subhransu Maji — UMass Amherst, Spring 25

where

scores = unnormalized log probabilities of the classes.

s = f(zi; W)

o/



Softmax Classifier (Multinomial Logistic Regression)

P(Y =KX =) =5

cat 3.2
car 5.1

frog -1.7

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

where

scores = unnormalized log probabilities of the classes.

s = f(zi; W)

Softmax function

Subhransu Maji — UMass Amherst, Spring 25
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

P(Y — k‘X — 2132) — 5.816633_ where e = f({]jz; W)

Want to maximize the log likelihood, or (for a loss function)
cat 3 2 to minimize the negative log likelihood of the correct class:

I = —loe Y —=5%IX =&
car 5.1 og P Yi i)

frog -1.7

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25



Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

P(Y — k‘X — 2132) = 5.816633_ where e = f({]jz; W)

Want to maximize the log likelihood, or (for a loss function)
cat 3 2 to minimize the negative log likelihood of the correct class:

I = —loe Y —=5%IX =&
car 5.1 og P Yi i)

frog -1.7 insummary: [, = — l()g( 2t . )

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25



Softmax Classifier (Multinomial Logistic Regression)

Li — — lOg( esyis.)

cat

car

frog

unnormalized log probabilities

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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Softmax Classifier (Multinomial Logistic Regression)

Li — — lOg( esyis.)

__ unnormalized probabilities

cat 24.5
car i 164.0
frog 0.18

unnormalized log probabilities

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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Softmax Classifier (Multinomial Logistic Regression)

Li — — lOg( esyis.)

cat
car
frog
. e robabilities
unnormalized log probabilities P
J P >0, sum to 1
COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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Softmax Classifier (Multinomial Logistic Regression)

Li — —lOg( esyis.)

cat
car
frog
unnormalized log probabilities probabilities
g%“gzz%:t?lzgi-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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Softmax Classifier (Multinomial Logistic Regression)

Li — —lOg( esyis.)

cat
car
frog
unnormalized log probabilities probabilities
g%“gzz%:t?lzgi-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25

/5



Softmax Classifier (Multinomial Logistic Regression)

Q: What is the min/max
possible loss L 17

cat

car

frog

unnormalized log probabilities probabillities

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 76



Softmax Classifier (Multinomial Logistic Regression)

Q2: usually at
iInitialization W are small
numbers, so all s ~= 0.
What is the loss?

cat

car

frog

unnormalized log probabilities probabillities

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Amherst, Spring 25 Va4



Softmax vs. SVM

L — _]'Og( Zsyc;] )

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lz‘ — Zﬁéyi maX(O, S; — Sy, + 1)

Subhransu Maji — UMass Ambherst, Spring 25
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matrix multiply + bias offset

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

-2.85

0.86

0.28

exp

Subhransu Maji — UMass Amherst, Spring 25

hinge loss (SVM)

max(0, -2.85 - 0.28 + 1) +
max(0, 0.86 - 0.28 + 1)

1.58

cross-entropy loss (Softmax)

0.058 0.016
normalize '
236 | — 5 | 0.631 | -109(0.353)
(to sum =
to one) 0.452
i 0.353
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Softmax vs. SVM

L —_ —IOg( Zsyc;] )

assume scores:
[10, -2, 3]
110, 9, 9]
110, -100, -100]
and y, =0

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Subhransu

Lz‘ — Zj#yi maX(O, S; — Sy, + 1)

Q: Suppose | take a datapoint
and | jiggle a bit (changing its
score slightly). What happens to
the loss in both cases?

Maji — UMass Amherst, Spring 25 80



Coming up: f(x,W)=Wx + b

- Regularization
- Optimization




Regularization

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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There is a "bug” with the loss:
f(@, W) = Wa A
N |

L = % b el Zj#yi max(0, f(zi; W); — f(zi; W)y, +$’

E.g. Suppose that we found a W such that L = 0.
Is this W unique?

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 83



Suppose: 3 training examples, 3 classes.
With some W the scores f(xz, W) = Wz are:

Before:

= max(0, 1.3-4.9+ 1)
+max(0, 2.0-4.9 + 1)
= max(0, -2.6) + max(0, -1.9)

=0+0

= 0
el 3.2 2.2 With W twice as large:
- > 2.9 ] Trﬁﬁ(x?b,zfd iy )1)
frog -1.7 -3 1 = max(0,-6.2) + max(0, 4.
Losses: 2.9 12.9 =0

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 84



cat
car

frog

An example:
What is the loss? (POLL)

LOSS:

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Subhransu Maji — UMass Amherst, Spring 25
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cat 1.3
car 2.5
frog 2.0

Loss: 0.5

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Subhransu Maji — UMass Amherst, Spring 25

An example:

What is the loss?
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cat 1.3
car 2.5
frog 2.0

An example:
What is the loss?

How could we change W to eliminate
the loss? (POLL)

Loss: 0.5

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Subhransu Maji — UMass Amherst, Spring 25
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cat 1.3
car 2.5
frog 2.0

An example:
What is the loss?

How could we change W to eliminate
the loss? (POLL)

Multiply W (and b) by 2!

2.0
5.0
4.0

Loss: 0.5

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

O

Subhransu Maji — UMass Amherst, Spring 25
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cat 1.3
car 2.5
frog 2.0

2
50 useful???

4

An example:
What is the loss?

How could we change W to eliminate
the loss? (POLL)

Multiply W (and b) by 2!

0

Wait a minute! Have we done anything

.0

Loss: 0.5

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

O

Subhransu Maji — UMass Amherst, Spring 25
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cat 1.3
car 2.5
frog 2.0

An example:
What is the loss?

How could we change W to eliminate
the loss? (POLL)

Multiply W (and b) by 2!

2 6 Wait a minute! Have we done anything
] useful???
5 . O No! Any example that used to be wrong is
still wrong (on the wrong side of the
4 O boundary). Any example that is right is still

right (on the correct side of the boundary).

Loss: 0.5

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

O

Subhransu Maji — UMass Amherst, Spring 25
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Regularization

)\.= regularization strength
(hyperparameter)

=~ ZL (@i, W), yi) + AR(W)

_

~

Data loss: Model predictions
should match training data

Simple examples

L2 reqularization: R(W) =3, >, W2,
L1 regularization: R(W) =Y, >, [Wy|

Elastic net (L1 +L2): ROW) =5, 3,61

COMPSCI 370

J w_/
Regularization: Prevent the model
from having too much flexibility.

More complex:
Dropout
Batch normalization
78+ Wi Stochastic depth, fractional pooling, etc

Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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Regularization )\.= regularization strength
(hyperparameter)

ZL (i, W), 4i) + AR(W)

y, R/_/
Y
Data loss: Mode.l predictions Regularization: Prevent the model
should match training data from having too much flexibility.

Why reqgularize?
- EXxpress preferences over weights
- Make the model simple so it works on test data
- Improve optimization by adding curvature

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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Regularization: Expressing Preferences

L2 Regularization

z=[1,1,1,1] RW) =%, W2
wl [130)0? O]

wsy = [0.25,0.25,0.25, 0.25]

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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Regularization: Expressing Preferences

L2 Regularization

r=[1,1,1,1] RW) =Y, W2

L2 regularization likes to
‘spread out” the weights

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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Regularization: Prefer Simpler Models

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25

05



Regularization: Prefer Simpler Models

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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Regularization: Prefer Simpler Models

X

Regularization pushes against fitting the data with too much flexibility. If you are going to use
a complex function to fit the data, you should be doing based on a lot of data!

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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Optimization

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25
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Recap

- We have some dataset of (x,y) 6.
- We have a score function: s= f(x; W) =Wg
- We have a loss function:

Syz-
Lz —_— ].Og( e. 63]. ) SOftmaX regularization loss
L Z : O _I_ 1 W score function u = iy _l,
~ e — . s e G B . ataloss |
N .
L==>:"1L+RW) Fulloss 1 Yi
COMPSCI 370

Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 99



Strategy #1: A first very bad idea solution: Random search

bestloss = float("inf")
for num in xrange(1000):
W = np.random.randn(10, 3073) * 0.0001
loss = L(X train, Y train, W)
if loss < bestloss:
bestloss = loss
bestW = W
print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 100



Let's see how well this works on the test set...

scores = Wbest.dot(Xte cols)
Yte predict = np.argmax(scores, axis = 0)

np.mean(Yte predict == Yte)

15.5% accuracy! not bad!
(SOTA Is ~95%)

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 101



1 random search suc

: . A - | . T -
\.“ - . ‘? f . v S o
. VAN : o = 9
. §78 M \h'{'i; : - .

X |
/ ’ o e

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25




Strategy #2: Follow the slope

g(k) <~ V,pF(p)|p,

\ o
s 05 compute gradient at the current location
step size i
\P3 (k)
7 Pk+1 < Pk — NMkg
AN take a step down the gradient

\ local optima = global optima

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 103



Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

if(z) _ . flz+h) - f(@)
dx h —0 h

In multiple dimensions, the gradient is the vector of (partial derivatives).

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 104



Numerical evaluation of the gradient...

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 105



current W: gradient dW:

10.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

S

“l A~ | “l “l Wl A~ |
“l

“l

1O BELO BETO BETO RTO BTO BT BT®

“l

|

|
]

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 106



current W: W + h (first dim): gradient dW:

10.34, [0.34 + 0.0001,
-1.11, -1.11,

0.78, 0.78,

0.12, 0.12,

0.55, 0.55,

2.81, 2.81,

-3.1, -3.1,

-1.5, -1.5,

0.33,...] 0.33,...]

loss 1.25347 loss 1.25322

S

Wl A~ |
A~ |

A~ |

A~ | A~ |

“l

D D ) D ) D ) )

“l

|

|
H

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 107



current W: W + h (first dim): gradient dW:

10.34, 10.34 + 0.0001, [-2.5

J

-1.11, -1.11, ?.

0.78, 0.78, ?. \
0.12, 0.12, -

0.55 0.55 (=1;§§5322 - 1.25347)/0.0001
2.81, 2.81,
-3.1, -3.1,
-1.5, -1.5, .
0.33,...] 0.33,...] ?,...]
loss 1.25347 loss 1.25322

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 108




current W-:

10.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

COMPSCI 370

Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

W + h (second dim);

10.34,

-1.11 + 0.0001,
0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25353

Subhransu Maji — UMass Ambherst, Spring 25

gradient dW:

N
5

TORETO BETO RETO ETO RTO BTO BTS

A~ |

A~ |

“l

A~ |

“l

|
|
H
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current W-:

10.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

COMPSCI 370

Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

W + h (second dim);

[0.34,

-1.11 + 0.0001,
0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25353

gradient dW:

[-2.5,
0.6,.

2\

(1.25353 - 1.25347)/0.0001
= 0.6

df(@) _ . flz+h) - f(@)
dx h —0 h
7, ]

Subhransu Maji — UMass Ambherst, Spring 25
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current W-:

10.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

COMPSCI 370

Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

W + h (third dim):

10.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Subhransu Maji — UMass Ambherst, Spring 25

gradient dW:

-2.5,
0.6,

D

A~ | Wl

“l

A~ |

“l

D D D D ) )

“l

|

|
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current W-:

10.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

COMPSCI 370

Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

W + h (third dim):

10.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

-2.5,
0.6,

Subhransu Maji — UMass Ambherst, Spring 25
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current W: gradient dW:

[0.34, [-2.5,
-1_11, dWw = ... 06,
0.78, (some function of 0

0.12, data and W) 0.2,
0.55, 0.7.
2.81 o s
-3.1, 11,

-1.5, 1.3,
0.33,...] 2.1...]

loss 1.25347

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 113



def eval numerical gradient(f, x):

Evaluating the

a naive implementation of numerical gradient of f at X

u [ |
rad Ient n UI I |er| CaII - f should be a function that takes a single argument
g y - X is the point (numpy array) to evaluate the gradient at

fx = f(x) #
grad = np.zeros(x.shape)

af(z) _ fl+h)— {2

- — lim ? SR -
L h —0 it = np.nditer(x, flags=['multi index'], op flags=['readwrite'])
while not it.finished:

ix = it.multi index

old value = x[ix]

X[ix] = old value + h #
Txh = T{X) i

x[ix] = old value +

gradfix] = (fxh = Tx) [ h
it.iternext() |

return grad

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 114



Eva I u ati n g th e de'fl"‘:‘Val_numerical_gradient(f, x) :

a naive implementation of numerical gradient of f at Xx

. L
rad Ient n UI I |er| CaII - T should be a function that takes a single argument
g y - X is the point (numpy array) to evaluate the gradient at

fx = f(x)
grad = np.zeros(x.shape)

if@) . f@+h) - f(x)

e e h

it = np.nditer(x, flags=['multi index'], op flags=['readwrite'])
while not it.finished:

ix = it.multi index
old value = x[ix]
X[ix] = old value + h

- approximate fxh = £(x)
x[ix] = old value
- very slow to evaluate

grad[ix] = (fxh - fx) / h
it.iternext()

return grad

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 115



This is silly. The loss is just a function of W:
g = %Z?LIL?: +Zka2

Li — Zﬁéyi maX(O, Sj — Sy, -+ 1)

s= fle;: W)= Wg

“The gradient of the loss L with respect to the parameters

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 116



This is silly. The loss is just a function of W:

N
L = %Zz‘ﬂLi +Zka2
Li — Zj#yi maX(O, Sj — Sy, + 1)
s=f(x; W) =Wg

want Vy L

’ ‘ f": £
I f " |
HIx
) » ’ U
i Lf '
Y THE

Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 117

COMPSCI 370



During a pandemic, Isaac Newton had to work from home,
too. He used the time wisely.

1. Developed calculus
2. Fundamentals of optics
3. Theory of gravity

...not too shabby!

A later portrait of Sir Isaac Newton by Samuel Freeman. (British Library/National Endowment for the Humanities)

By Gillian Brockell

March 12, 2020 at 2:18 p.m. EDT

Isaac Newton was in his early 20s when the Great Plague of London hit. He wasn’t a “Sir” yet, didn’t



This is silly. The loss is just a function of W:
g = %ZfilLi +Zka2

Lz' — Zj?éyi maX(O, Sj — Sy, -+ 1)

s= fle;: W)= Wg

VwL

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 119



In summary:

- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

In_practice: Always use analytic gradient, but check
Implementation with numerical gradient. This Is called a
gradient check.

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 120



Gradient Descent

while
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad
COMPSCI 370

Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 121



original W

—

negative gradient direction

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 122



Mini-batch Gradient Descent

only use a small portion of the training set to compute the gradient.

while :
data batch = sample training data(data, 256)

weights grad = evaluate gradient(loss fun, data batch, weights)

weights += - step size * weights grad

Common mini-batch sizes are 32/64/128 examples
e.g. Krizhevsky ILSVRC ConvNet used 256 examples

123

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25



Mini-batch Gradient Descent

- only use a small portion of the training set to compute the gradient.
Why?
- Goal is to estimate the gradient
- Trade-off between accuracy and computation
- No point in doing more computation if it won't change the updates

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 124



Mini-batch Gradient Descent

only use a small portion of the training set to compute the gradient.

while :
data batch = sample training data(data, 256)

weights grad = evaluate gradient(loss fun, data batch, weights)

weights += - step size * weights grad

Common mini-batch sizes are 32/64/128 examples
e.g. Krizhevsky ILSVRC ConvNet used 256 examples

125

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25



ZD

Example of optimization progress while
training a neural network.

20}

(Loss over mini-batches goes down
over time.)

Loss

0.0

0 20 40 60 80 100
Epoch &

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 126



The effects of step size (or “learning rate™)

ZD

0SS

20}

low learning rate

Loss

high learning rate

good learning rate

0.0

0 20 40 60 80 100

wpoch . epoch

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 127



Mini-batch Gradient Descent

- only use a small portion of the training set to compute the gradient.

while
data batch = sample training data(data, 256)
weights grad = evaluate gradient(loss fun, data batch, weights)

\ Fancier update formulas
Common mini-batch sizes are 32/64/128 examples (momentum, Adagrad,

. RMSProp, Adam, ...) —
e.d. Krizhevsky ILSVRC ConvNet used 256 examples taught in 682

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 128



\\\\“'\—\—\QD\

T_he effects of Y — MomentumE
different —— NAG
- Adagrad |

update form = N aars
formulas —| — Rmsprop

(image credits to Alec Radford)

COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller Subhransu Maji — UMass Ambherst, Spring 25 129



