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cat

(assume given set of discrete labels) 
{dog, cat, truck, plane, ...}

Image classification
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Images are represented as 
3D arrays of numbers, with 
integers between [0, 255]. 

E.g.  
300 x 100 x 3  

(3 for 3 color channels RGB)

Challenges: Semantic gap
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Challenges: Viewpoint Variation
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Challenges: Illumination
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Challenges: Deformation
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Challenges: Occlusion
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Challenges: Background clutter
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Challenges: Intraclass variation
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Unlike e.g. sorting a list of numbers, 
  
no obvious way to hand-code the algorithm for 
recognizing a cat, or other classes.

Writing an image classifier
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John Canny, “A Computational Approach to Edge Detection”, IEEE TPAMI 1986

Find edges Find corners

?

Attempts have been made
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Example training set

Machine Learning: Data Driven Approach
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Examples of machine learning models
• Nearest neighbor classifiers 
• Linear classifiers

Today

13
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Nearest Neighbor Classifier
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Training data: 
Fruit data:

• label: {apples, oranges, lemons} 
• attributes: {width, height} 

Euclidean distance 

Nearest neighbor classifier

15

(x1, y1), (x2, y2), . . . , (xn, yn)

height

width

d(x1,x2) =

sX

i

(x1,i � x2,i)
2
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Nearest neighbor classifier

16

test data
(a, b) ?

lemon
(c, d) ?

apple
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Decision boundaries: 1NN

17
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k-Nearest neighbor classifier

18

What is the effect of k?

Take majority vote among the k nearest neighbors

outlier
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k-Nearest Neighbor 
find the k nearest images, have them vote on the label

the data NN classifier 5-NN classifier

http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
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Q: what is the accuracy of the nearest 
neighbor classifier on the training data, 
when using the Euclidean distance?

the data NN classifier 5-NN classifier
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For every test image (first column), 
examples of nearest neighbors in rows

Example dataset: CIFAR-10 
10 labels  
50,000 training images 
10,000 test images
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Nearest Neighbor classifier
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Nearest Neighbor classifier

remember the training data
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Nearest Neighbor classifier

for every test image: 
- find nearest train image 

with L1 distance 
- predict the label of 

nearest training image
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Q: Suppose you have N training 
examples. How long does it take to make 
a prediction with a nearest neighbor 
classifier on one test example?

the data NN classifier 5-NN classifier
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What is the best distance to use? 
What is the best value of k to use? 

i.e. how do we set the hyperparameters?
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What is the best distance to use? 
What is the best value of k to use? 

i.e. how do we set the hyperparameters? 

Very problem-dependent.  
Must try them all out and see what works best. 
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Trying out what hyperparameters work best on test set. 
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Trying out what hyperparameters work best on test set: 
Very bad idea. The test set is a proxy for the generalization performance! 
Use only VERY SPARINGLY, at the end.
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      Validation data 
use to tune hyperparameters 
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Cross-validation 
cycle through the choice of which fold 
is the validation fold, average results.
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Example of 
5-fold cross-validation 
for the value of k. 

Each point: single 
outcome.  

The line goes 
through the mean, bars 
indicated standard 
deviation 

(Seems that k ~= 7 works best 
for this data)
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k-Nearest Neighbor on raw images is never used.

- terrible performance at test time 
- distance metrics on level of whole images can be 

very unintuitive

(all 3 images have same L2 distance to the one on the left)
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Nearest neighbor classifier
• All features are equally good
• No training required!
• Slow at test time 

Linear classifiers (next)
• Use all features, but some more than others
• Training required
• Fast at test time! 

So far …

34
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Linear Classification
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Example dataset: CIFAR-10 
10 labels  
50,000 training images 
   each image is 32x32x3 
10,000 test images.
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Parametric approach

[32x32x3] 
array of numbers 0...1 
(3072 numbers total)

f(x,W)
image parameters

10 numbers, 
indicating class 
scores
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Parametric approach: Linear classifier

[32x32x3] 
array of numbers 0...1

10 numbers, 
indicating class 
scores
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Parametric approach: Linear classifier

[32x32x3] 
array of numbers 0...1

10 numbers, 
indicating class 
scores

3072x1

10x1 10x3072

parameters, or “weights”
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Parametric approach: Linear classifier

[32x32x3] 
array of numbers 0...1

10 numbers, 
indicating class 
scores

3072x1

10x1 10x3072

parameters, or “weights”

(+b) 10x1
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Input image

56

231

24

2

56 231

24 2

Flatten tensors into a vector
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)
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Interpreting a Linear Classifier

Q: what does the 
linear classifier 
do, in English?
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Interpreting a Linear Classifier

[32x32x3] 
array of numbers 0...1 
(3072 numbers total)
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Interpreting a Linear Classifier

Example trained weights 
of a linear classifier 
trained on CIFAR-10:
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Interpreting a Linear Classifier

Q2: what would be 
a very hard set of 
classes for a linear 
classifier to 
distinguish?
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Class 1:  
First and third quadrants 

Class 2:  
Second and fourth quadrants

Class 1:  
1 <= L2 norm <= 2 

Class 2: 
Everything else

Class 1:  
Three modes 

Class 2: 
Everything else

Hard cases for a linear classifier
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So far: We defined a (linear) score function: 

Example class  
scores for 3 
images, with a  
random W:

 -3.45 
-8.87 
0.09 
2.9 
4.48 
8.02 
3.78 
1.06 
-0.36 
-0.72 

-0.51 
6.04 
5.31 
-4.22 
-4.19 
3.58 
4.49 
-4.37 
-2.09 
-2.93 

3.42 
4.64 
2.65 
5.1 
2.64 
5.55 
-4.34 
-1.5 
-4.79 
6.14 

really affine



Subhransu Maji — UMass Amherst, Spring 25
COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller 49

Coming up: 
- Loss function 

- Optimization 

- Neural nets!

(quantifying what it means to 
have a “good” W)
(start with random W and find a 
W that minimizes the loss)

(tweak the functional form of f)



Subhransu Maji — UMass Amherst, Spring 25
COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller 50

Summary so far ...   Linear classifier

[32x32x3] 
array of numbers 0...1 
(3072 numbers total)

f(x,W)
image parameters 10 numbers, indicating 

class scores
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Loss function/Optimization

 -3.45 
-8.87 
0.09 
2.9 
4.48 
8.02 
3.78 
1.06 
-0.36 
-0.72 

-0.51 
6.04 
5.31 
-4.22 
-4.19 
3.58 
4.49 
-4.37 
-2.09 
-2.93 

3.42 
4.64 
2.65 
5.1 
2.64 
5.55 
-4.34 
-1.5 
-4.79 
6.14 

1. Define a loss function 
that quantifies our 
unhappiness with the 
scores across the training 
data. 

1. Come up with a way of 
efficiently finding the 
parameters that minimize 
the loss function. 
(optimization)

TODO:
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Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2
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Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Multiclass SVM loss:

Given an example 
where        is the image and 
where       is the (integer) label, 

and using the shorthand for the scores 
vector: 

the SVM loss has the form: 
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Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Multiclass SVM loss:

Given an example 
where        is the image and 
where       is the (integer) label, 

and using the shorthand for the scores 
vector: 

the SVM loss has the form: 

= max(0, 5.1 - 3.2 + 1)  
   +max(0, -1.7 - 3.2 + 1) 
= max(0, 2.9) + max(0, -3.9) 
= 2.9 + 0 
= 2.92.9Losses:
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Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Multiclass SVM loss:

Given an example 
where        is the image and 
where       is the (integer) label, 

and using the shorthand for the scores 
vector: 

the SVM loss has the form: 

= max(0, 1.3 - 4.9 + 1)  
   +max(0, 2.0 - 4.9 + 1) 
= max(0, -2.6) + max(0, -1.9) 
= 0 + 0 
= 00Losses: 2.9
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Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Multiclass SVM loss:

Given an example 
where        is the image and 
where       is the (integer) label, 

and using the shorthand for the scores 
vector: 

the SVM loss has the form: 

= max(0, 2.2 - (-3.1) + 1)  
   +max(0, 2.5 - (-3.1) + 1) 
= max(0, 6.3) + max(0, 6.6) 
= 6.3 + 6.6 
= 12.90Losses: 2.9 12.9
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

0Losses: 2.9 12.9

Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

Multiclass SVM loss:

Given an example 
where        is the image and 
where       is the (integer) label, 

and using the shorthand for the scores 
vector: 

the SVM loss has the form: 

and the full training loss is the mean 
over all examples in the training data:

L = (2.9 + 0 + 12.9)/3  
   = 5.3



Subhransu Maji — UMass Amherst, Spring 25
COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller 58

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

0Losses: 2.9 12.9

Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

Multiclass SVM loss:

Given an example 
where        is the image and 
where       is the (integer) label, 

and using the shorthand for the scores 
vector: 

the SVM loss has the form: 

Q: what if the sum 
was instead over all 
classes?  
(including j = y_i)
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

0Losses: 2.9 12.9

Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

Multiclass SVM loss:

Given an example 
where        is the image and 
where       is the (integer) label, 

and using the shorthand for the scores 
vector: 

the SVM loss has the form: 

Q2: what if we used a 
mean instead of a 
sum here?
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

0Losses: 2.9 12.9

Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

Multiclass SVM loss:

Given an example 
where        is the image and 
where       is the (integer) label, 

and using the shorthand for the scores 
vector: 

the SVM loss has the form: 

Q3: what if we used
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

0Losses: 2.9 12.9

Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

Multiclass SVM loss:

Given an example 
where        is the image and 
where       is the (integer) label, 

and using the shorthand for the scores 
vector: 

the SVM loss has the form: 

Q4: what is the min/
max possible loss?
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

0Losses: 2.9 12.9

Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

Multiclass SVM loss:

Given an example 
where        is the image and 
where       is the (integer) label, 

and using the shorthand for the scores 
vector: 

the SVM loss has the form: 

Q5: usually at 
initialization W are small 
numbers, so all s ~= 0. 
What is the loss?
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Example numpy code:
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Coding tip: Keep track of dimensions:
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.  

cat

frog

car

3.2
5.1
-1.7
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.  

cat

frog

car

3.2
5.1
-1.7

where
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.  

cat

frog

car

3.2
5.1
-1.7

where

Softmax function
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.  

Want to maximize the log likelihood, or (for a loss function)  
to minimize the negative log likelihood of the correct class: cat

frog

car

3.2
5.1
-1.7

where
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.  

Want to maximize the log likelihood, or (for a loss function)  
to minimize the negative log likelihood of the correct class: cat

frog

car

3.2
5.1
-1.7 in summary:

where
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp

unnormalized probabilities
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities 
>0, sum to 1 
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities

L_i = -log(0.13) 
      = 0.89
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities

L_i = -log(0.13) 
      = 0.89
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities

L_i = -log(0.13) 
      = 0.89

Q: What is the min/max 
possible loss L_i?
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities

L_i = -log(0.13) 
      = 0.89

Q2: usually at 
initialization W are small 
numbers, so all s ~= 0. 
What is the loss? 
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Softmax vs. SVM
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Softmax vs. SVM

assume scores: 
[10, -2, 3] 
[10, 9, 9] 
[10, -100, -100] 
and 

Q: Suppose I take a datapoint 
and I jiggle a bit (changing its 
score slightly). What happens to 
the loss in both cases?
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Coming up: 

- Regularization 

- Optimization

f(x,W) = Wx + b
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Regularization
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There is a “bug” with the loss:

E.g. Suppose that we found a W such that L = 0.  
Is this W unique?
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Suppose: 3 training examples, 3 classes. 
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

= max(0, 1.3 - 4.9 + 1)  
   +max(0, 2.0 - 4.9 + 1) 
= max(0, -2.6) + max(0, -1.9) 
= 0 + 0 
= 0

0Losses: 2.9

Before:

With W twice as large:
= max(0, 2.6 - 9.8 + 1)  
   +max(0, 4.0 - 9.8 + 1) 
= max(0, -6.2) + max(0, -4.8) 
= 0 + 0 
= 012.9
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cat

frog

car 2.5
1.3

2.0
Loss:

An example: 
 What is the loss? (POLL)
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cat

frog

car 2.5
1.3   

2.0
0.5Loss:

An example: 
 What is the loss? 
 
 



Subhransu Maji — UMass Amherst, Spring 25
COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller 87

cat

frog

car 2.5
1.3   

2.0
0.5Loss:

An example: 
 What is the loss? 
 
 
How could we change W to eliminate  
the loss?  (POLL)
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cat

frog

car 2.5 5.0
1.3 2.6  

2.0 4.0
0.5 0 Loss:

An example: 
 What is the loss? 
 
 
How could we change W to eliminate  
the loss?  (POLL) 
 
Multiply W (and b) by 2!
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cat

frog

car 2.5 5.0
1.3 2.6  

2.0 4.0
0.5 0 Loss:

An example: 
 What is the loss? 
 
 
How could we change W to eliminate  
the loss?  (POLL) 
 
Multiply W (and b) by 2! 
 
 
Wait a minute! Have we done anything 
useful???
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cat

frog

car 2.5 5.0
1.3 2.6  

2.0 4.0
0.5 0 Loss:

An example: 
 What is the loss? 
 
 
How could we change W to eliminate  
the loss?  (POLL) 
 
Multiply W (and b) by 2! 
 
 
Wait a minute! Have we done anything 
useful??? 
 
No!  Any example that used to be wrong is 
still wrong (on the wrong side of the 
boundary). Any example that is right is still 
right (on the correct side of the boundary).
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Regularization: Prevent the model 
from having too much flexibility.
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Regularization: Prevent the model 
from having too much flexibility.
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Regularization pushes against fitting the data with too much flexibility. If you are going to use 
a complex function to fit the data, you should be doing based on a lot of data!
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Optimization
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Recap
- We have some dataset of (x,y) 
- We have a score function:  
- We have a loss function: 

e.g.

Softmax

SVM

Full loss
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Strategy #1: A first very bad idea solution: Random search
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Let’s see how well this works on the test set...

15.5% accuracy! not bad! 
(SOTA is ~95%)
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How often will a random search succeed?
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p1

p2

p5 p6

⌘1 p3
⌘2 p4
⌘3

step size

local optima = global optima

pk+1  pk � ⌘kg
(k)

take a step down the gradient

g(k)  rpF (p)|pk

compute gradient at the current location

Strategy #2: Follow the slope
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Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

In multiple dimensions, the gradient is the vector of (partial derivatives).
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Numerical evaluation of the gradient...
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current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

gradient dW: 

[?, 
?, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…]
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current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

W + h (first dim): 

[0.34 + 0.0001, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25322

gradient dW: 

[?, 
?, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…]
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gradient dW: 

[-2.5, 
?, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…]

(1.25322 - 1.25347)/0.0001 
= -2.5

current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

W + h (first dim): 

[0.34 + 0.0001, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25322
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gradient dW: 

[-2.5, 
?, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…]

current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

W + h (second dim): 

[0.34, 
-1.11 + 0.0001, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25353
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gradient dW: 

[-2.5, 
0.6, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…]

current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

W + h (second dim): 

[0.34, 
-1.11 + 0.0001, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25353

(1.25353 - 1.25347)/0.0001 
= 0.6
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gradient dW: 

[-2.5, 
0.6, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…]

current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

W + h (third dim): 

[0.34, 
-1.11, 
0.78 + 0.0001, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347



Subhransu Maji — UMass Amherst, Spring 25
COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller 112

gradient dW: 

[-2.5, 
0.6, 
0, 
?, 
?, 
?, 
?, 
?, 
?,…]

current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

W + h (third dim): 

[0.34, 
-1.11, 
0.78 + 0.0001, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

(1.25347 - 1.25347)/0.0001 
= 0
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gradient dW: 

[-2.5, 
0.6, 
0, 
0.2, 
0.7, 
-0.5, 
1.1, 
1.3, 
-2.1,…]

current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…]  
loss 1.25347

dW = ... 
(some function of 
data and W)
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Evaluating the  
gradient numerically
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Evaluating the  
gradient numerically

- approximate 
- very slow to evaluate
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This is silly. The loss is just a function of W:

want “The gradient of the loss L with respect to the parameters 
W”
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This is silly. The loss is just a function of W:

want



1. Developed calculus 
2. Fundamentals of optics 
3. Theory of gravity 

 
...not too shabby!



Subhransu Maji — UMass Amherst, Spring 25
COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller 119

This is silly. The loss is just a function of W:

= ...
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In summary: 
- Numerical gradient: approximate, slow, easy to write 

- Analytic gradient: exact, fast, error-prone 

In practice: Always use analytic gradient, but check 
implementation with numerical gradient. This is called a 
gradient check.
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Gradient Descent
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original W

negative gradient direction
W_1

W_2
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Mini-batch Gradient Descent
- only use a small portion of the training set to compute the gradient.

Common mini-batch sizes are 32/64/128 examples 
e.g. Krizhevsky ILSVRC ConvNet used 256 examples
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Mini-batch Gradient Descent
- only use a small portion of the training set to compute the gradient. 

Why? 
- Goal is to estimate the gradient 
- Trade-off between accuracy and computation 
- No point in doing more computation if it won’t change the updates
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Mini-batch Gradient Descent
- only use a small portion of the training set to compute the gradient.

Common mini-batch sizes are 32/64/128 examples 
e.g. Krizhevsky ILSVRC ConvNet used 256 examples
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Example of optimization progress while 
training a neural network.  

(Loss over mini-batches goes down 
over time.)
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The effects of step size (or “learning rate”)
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Mini-batch Gradient Descent
- only use a small portion of the training set to compute the gradient.

Common mini-batch sizes are 32/64/128 examples 
e.g. Krizhevsky ILSVRC ConvNet used 256 examples

Fancier update formulas 
(momentum, Adagrad, 
RMSProp, Adam, …) — 
taught in 682
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(image credits to Alec Radford)

The effects of 
different 
update form 
formulas


