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Prediction

Steps — a classical perspective
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f(x) = label of the training example nearest to x

Classifiers: Nearest neighbor
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All we need is a distance function for our inputs
No training required!
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Find a linear function to separate the classes:

f(x) = sign(w ⋅ x + b)

Classifiers: Linear
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The machine learning approach: today
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Features (examples)
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Histograms, bags of features

GIST descriptors Histograms of oriented gradients(HOG)

Raw pixels (and simple 
functions of raw pixels)
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Any transformation of an image into a new representation
Example: transform an image into a binary edge map

What is a feature map?
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Image source: wikipedia
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Introduce invariance to nuisance factors
• Illumination changes

• Small translations, rotations, scaling, shape deformations


Preserve useful information: e.g., spatial structure

Feature map goals
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Image: [Fergus05]
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Two popular image features
• Histogram of Oriented Gradients (HOG)

• Bag of Visual Words (BoVW)


Applications of these features

We will discuss …

9
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Introduced by Dalal and Triggs (CVPR 2005)
An extension of the SIFT feature
HOG properties:

• Preserves the overall structure of the image

• Provides robustness to illumination and small deformations

Histogram of Oriented Gradients

10

HOG feature



Subhransu Maji — UMass Amherst, Spring 25COMPSCI 370

Divide the image into blocks
Compute histograms of gradients for each regions

HOG feature: basic idea
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HOG feature: full pipeline

12

additional 
invariance
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Smaller bin-size: better spatial resolution

Larger bin-size: better invariance to deformations

Optimal value depends on the object category being modeled


• e.g. rigid vs. deformable objects

Effect of bin-size
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10x10	cells	

20x20	cells	
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Compute the HOG feature map for the image
Convolve the template with the feature map to get score
Find peaks of the response map (non-max suppression)

Apply it at multiple scales

Template matching with HOG

14

TemplateHOG feature map Detector response map
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Compute HOG of the whole image at multiple resolutions
Score each sub-windows of the feature pyramid

(a) (b) (c) (d) (e) (f) (g)
Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

would help to improve the detection results in more general
situations.
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Image pyramid HOG feature pyramid

p
b+Q`2(A, T) = w · �(A, T)

Multi-scale detection
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Example detections

16

Introduction

Detect & localize upright people
in static images

Challenges
Wide variety of articulated poses
Variable appearance/clothing
Complex backgrounds
Unconstrained illumination
Occlusions, different scales

Applications
Pedestrian detection for smart cars
Film & media analysis
Visual surveillance

Histograms of Oriented Gradients for Human Detection – p. 2/13
N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005
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Example detections

17

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005



Subhransu Maji — UMass Amherst, Spring 25COMPSCI 370

Introduced by Dalal and Triggs (CVPR 2005)
An extension of the SIFT feature
HOG properties:

• Preserves the overall structure of the image

• Provides robustness to illumination and small deformations

Summary: Histogram of Oriented Gradients

18

HOG feature
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Two popular image features
• Histogram of Oriented Gradients (HOG)

• Bag of Visual Words (BoVW)

We will discuss …

19
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Origin and motivation of the “bag of words” model
Algorithm pipeline

• Extracting local features

• Learning a dictionary — clustering using k-means

• Encoding methods — hard vs. soft assignment

• Spatial pooling — pyramid representations

• Similarity functions and classifiers

Bag of visual words

20

Figure from Chatfield et al.,2011
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Bag of features

21

Properties: 

• Spatial structure is not preserved

• Invariance to large translations


Compare this to the HOG feature
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Texture is characterized by the repetition of basic elements or textons

For stochastic textures, it is the identity of the textons, not their spatial arrangement, that matters

Origin 1: Texture recognition

22

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Subhransu Maji — UMass Amherst, Spring 25COMPSCI 370

Origin 1: Texture recognition

23

Universal texton dictionary

histogram
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Orderless document representation: frequencies of words from a dictionary  Salton & McGill (1983)

Origin 2: Bag-of-words models

24
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Orderless document representation: frequencies of words from a dictionary  Salton & McGill (1983)

US Presidential Speeches Tag Cloud 
http://chir.ag/projects/preztags/

Origin 2: Bag-of-words models

25
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Orderless document representation: frequencies of words from a dictionary  Salton & McGill (1983)

US Presidential Speeches Tag Cloud 
http://chir.ag/projects/preztags/

Origin 2: Bag-of-words models

26
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Orderless document representation: frequencies of words from a dictionary  Salton & McGill (1983)

US Presidential Speeches Tag Cloud 
http://chir.ag/projects/preztags/

Origin 2: Bag-of-words models

27
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Origin and motivation of the “bag of words” model
Algorithm pipeline

• Extracting local features

• Learning a dictionary — clustering using k-means

• Encoding methods — hard vs. soft assignment

• Spatial pooling — pyramid representations

• Similarity functions and classifiers

Lecture outline

28

Figure from Chatfield et al.,2011
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Regular grid or interest regions

Local feature extraction

29

corner detector
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Normalize patch

Detect patches

Compute 
descriptor

Slide credit: Josef Sivic

Local feature extraction

30

Choices of descriptor:

• Pixels

• SIFT

• Shape context

• Geometric blur

• …



Subhransu Maji — UMass Amherst, Spring 25COMPSCI 370

Origin and motivation of the “bag of words” model
Algorithm pipeline

• Extracting local features

• Learning a dictionary — clustering using k-means

• Encoding methods — hard vs. soft assignment

• Spatial pooling — pyramid representations

• Similarity functions and classifiers

Lecture outline

31

Figure from Chatfield et al.,2011
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…

Learning a dictionary

32Slide credit: Josef Sivic
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Clustering

…

Slide credit: Josef Sivic

Learning a dictionary

33
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Clustering

…
Visual vocabulary

Slide credit: Josef Sivic

Learning a dictionary

34
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Initialize k centers by picking k points randomly among all the points
Repeat till convergence (or max iterations)

• Assign each point to the nearest center (assignment step)


• Estimate the mean of each group (update step)

Lloyd’s algorithm for k-means

35

argmin
S
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k-means for image segmentation

36

Grouping pixels based

 on intensity similarity

feature space: intensity value (1D)

K=2

K=3
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Example codebook

37

…

Source: B. Leibe

Appearance codebook
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Another codebook
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Appearance codebook
…

Source: B. Leibe
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Origin and motivation of the “bag of words” model
Algorithm pipeline

• Extracting local features

• Learning a dictionary — clustering using k-means

• Encoding methods — hard vs. soft assignment

• Spatial pooling — pyramid representations

• Similarity functions and classifiers

Lecture outline

39

Figure from Chatfield et al.,2011
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Assigning words to features

Encoding methods

40

Visual vocabulary

1

2 3

…

partition of space

encoded as vector 

1 0 0 0 0 1
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Assigning words to features

Encoding methods

41

Visual vocabulary

1

2 3

partition of space

similar features

soft assignment

0.6 0 0.4 0.4 0 0.6

soft assignment

hard assignment

1 0 0 0 0 1

↵i / e�f(d(x,ci))



Subhransu Maji — UMass Amherst, Spring 25COMPSCI 370

What should be the size of the dictionary?
• Too small: don’t capture the variability of the dataset

• Too large: have too few points per cluster


Speed of embedding
• Exact nearest neighbor is slow if the dictionary is large

• Approximate nearest neighbor techniques


• Search trees — organize data in a tree

• Hashing — create buckets in the feature space

Encoding considerations

42
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Origin and motivation of the “bag of words” model
Algorithm pipeline

• Extracting local features

• Learning a dictionary — clustering using k-means

• Encoding methods — hard vs. soft assignment

• Spatial pooling — pyramid representations

• Similarity functions and classifiers

Lecture outline

43Figure from Chatfield et al.,2011
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Spatial pyramids

44

level 0

Lazebnik, Schmid & Ponce (CVPR 2006)

pooling: aggregate features within a region
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Spatial pyramids

45

level 0 level 1

Lazebnik, Schmid & Ponce (CVPR 2006)

Same motivation as SIFT — keep coarse layout information

pooling: aggregate features within a region
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Spatial pyramids

46

level 0 level 1 level 2

Lazebnik, Schmid & Ponce (CVPR 2006)

Same motivation as SIFT — keep coarse layout information

pooling: aggregate features within a region
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Origin and motivation of the “bag of words” model
Algorithm pipeline

• Extracting local features

• Learning a dictionary — clustering using k-means

• Encoding methods — hard vs. soft assignment

• Spatial pooling — pyramid representations

• Similarity functions and classifiers

Lecture outline

47

Figure from Chatfield et al.,2011
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Bags of features representation
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I

image similarity = feature similarity

h = �(I)
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Euclidean distance:

L1 distance: 

Use k-NN classifiers with these distances, or linear classifiers

Similarity functions and classifiers
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Origin and motivation of the “bag of words” model
Algorithm pipeline

• Extracting local features

• Learning a dictionary — clustering using k-means

• Encoding methods — hard vs. soft assignment

• Spatial pooling — pyramid representations

• Similarity functions and classifiers

Lecture outline

50Figure from Chatfield et al.,2011

Putting it all

 together
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Results: scene category dataset

51

Multi-class classification results 
(100 training images per class)
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Results: Caltech-101 dataset
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Multi-class classification results (30 training images per class)
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Local binary pattern — homework
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https://www.pickpik.com/kitten-black-white-cat-cute-domestic-136197

8 bit number
T. Ojala, M. Pietikäinen, and D. Harwood “Performance evaluation of texture measures with classification based on Kullback discrimination of distributions”, ICPR’94

https://en.wikipedia.org/wiki/Matti_Pietik%C3%A4inen_(academic)
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All about embeddings (detailed experiments and code)
• K. Chatfield et al., The devil is in the details: an evaluation of recent feature encoding methods, 

BMVC 2011

• http://www.robots.ox.ac.uk/~vgg/research/encoding_eval/

• Includes discussion of advanced embeddings such as Fisher vector representations and locally 

linear coding (LLC) 

Further thoughts and readings …
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http://www.robots.ox.ac.uk/~vgg/research/encoding_eval/

