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A weakness of linear models is that they are linear
• Nearest neighbor, decision trees, kernel SVMs can model non-linear boundaries 
• Neural networks are yet another non-linear classifier 

Takes the biological inspiration further by chaining together perceptrons
Allows us to use what we learned about linear models:

• Loss functions, regularization, optimization

Motivation

2

neuron



Subhransu Maji — UMass Amherst, Spring 25COMPSCI 370

Traditional recognition approach

3

Hand-designed 
feature extraction

Trainable 
classifier

Image/ Video 
Pixels

• Features are not learned 
• Trainable classifier is often generic (e.g. SVM)

Object 
Class
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Circa 2010: Features have played a key role in recognition
Multitude of hand-designed features currently in use

• SIFT, HOG, …………. 
Where next? Better classifiers? Or keep building more features?

Traditional recognition approach

4

Felzenszwalb,  Girshick,  
McAllester and Ramanan, PAMI 2007

Yan & Huang  
(Winner of PASCAL 2010 classification competition)
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• Learn a feature hierarchy all the way from pixels to classifier 
• Each layer extracts features from the output of previous layer 
• Train all layers jointly

What about learning the features?

5

Layer 1 Layer 2 Layer 3 Simple  
Classifier

Image/ 
Video 
Pixels
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“Shallow” vs. “deep” architectures
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Hand-designed 
feature extraction

Trainable 
classifier

Image/ 
Video 
Pixels

Object 
Class

Layer 1 Layer N Simple 
classifier

Object 
Class

Image/ 
Video 
Pixels

Traditional recognition: “Shallow” architecture

Deep learning: “Deep” architecture

…



7

Neural Networks
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Neural networks: the original linear classifier

(Before) Linear score function:
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(Before) Linear score function:

(Now) 2-layer Neural Network 
      

(In practice we will usually add a learnable bias at each layer as well)

Neural networks: the original linear classifier



Subhransu Maji — UMass Amherst, Spring 25
COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Why do we want non-linearity?

x

y

Cannot separate red 
and blue points with 
linear classifier
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x

y

r

θ

f(x, y) = (r(x, y), θ(x, y)) 

Cannot separate red 
and blue points with 
linear classifier

After applying feature 
transform, points can be 
separated by linear 
classifier

Why do we want non-linearity?
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(Before) Linear score function:

(Now) 2-layer Neural Network 
      

Neural networks: also called fully connected network

(In practice we will usually add a learnable bias at each layer as well)

“Neural Network” is a very broad term; these are more accurately called 
“fully-connected networks” or sometimes “multi-layer perceptrons” (MLP)
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Neural networks: 3 layers

(Before) Linear score function:

(Now) 2-layer Neural Network 
   or 3-layer Neural Network 
      

(In practice we will usually add a learnable bias at each layer as well)
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(Before) Linear score function:

(Now) 2-layer Neural Network 
      

Neural networks: hierarchical computation

x hW1 sW2

3072 100 10
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(Before) Linear score function:

(Now) 2-layer Neural Network 
      

Neural networks: learning 100s of templates

x hW1 sW2

3072 100 10

Learn 100 templates instead of 10.                               Share templates between classes
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The function                   is called the activation function. 
Q: What if we try to build a neural network without one?

(Before) Linear score function:

(Now) 2-layer Neural Network 
      

Neural networks: why is max operator important?



Subhransu Maji — UMass Amherst, Spring 25
COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

The function                   is called the activation function. 
Q: What if we try to build a neural network without one?

(Before) Linear score function:

(Now) 2-layer Neural Network 
      

Neural networks: why is max operator important?

A: We end up with a linear classifier again!
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Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Activation functions ReLU is a good default 
choice for most problems
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“Fully-connected” layers
“2-layer Neural Net”, or 
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or 
“2-hidden-layer Neural Net”

Neural networks: Architectures



Subhransu Maji — UMass Amherst, Spring 25
COMPSCI 370
Slide credit: Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Example feed-forward computation of a neural network
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Plugging in neural networks with loss functions

Nonlinear score function

SVM Loss on predictions

Regularization

Total loss: data loss + regularization
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If we can compute                     then we can learn W1 and W2 

Problem: How to compute gradients? 

Nonlinear score function

SVM Loss on predictions

Regularization

Total loss: data loss + regularization
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Derive             on paper

Problem: What if we want to 
change loss? E.g. use softmax 
instead of SVM? Need to re-
derive from scratch =(

Problem: Very tedious: Lots of 
matrix calculus, need lots of paper

Problem: Not feasible for very 
complex models!
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Full implementation of training a 2-layer Neural Network needs ~20 lines:
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Forward pass
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Forward pass

Calculate the analytical gradients
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Gradient descent

Forward pass

Calculate the analytical gradients
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Setting the number of layers and their sizes

more neurons = more capacity
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(Web demo with ConvNetJS: http://cs.stanford.edu/
people/karpathy/convnetjs/demo/classify2d.html)

Do not use size of neural network as a regularizer. Use stronger regularization instead:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
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Easy to get gradients wrong!

Solution — Automatic differentiation

Main idea
• All computations are compositions of elementary operations (+,-,*, /, cos, sin, max, etc.) 
• We can write code to differentiate these basic operations 
• For a complex function we can apply the chain rule of derivatives to write down a function that 

computes the gradients 

Modern libraries will let you write an arbitrary forward function and will give you a function that 
computes the gradients (e.g., pytorch, tensorflow, Jax)

Practical issues: gradient descent

31
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Computational and memory complexity
• Large size of gradients and activations on training examples 
• Solution: mini-batch gradients 

Poor convergence
• Learning rate: start with a high value and reduce it when the validation error stops decreasing 
• Momentum: move out small local minima 

• Usually set to a high value: β = 0.9 

Practical issues: gradient descent

32
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Initialization didn’t matter for linear models
• Guaranteed convergence to global minima as long as step size is suitably chosen since the 

objective is convex 
Neural networks are sensitive to initialization

• Many local minima 
• Symmetries: reorder the hidden units and change the weights accordingly to get another network 

that produces identical outputs 
Train multiple networks with randomly initialized weights

Practical issues: initialization

33

pick the best
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This image by Fotis Bobolas is 
licensed under CC-BY 2.0

https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho 
is licensed under CC-BY 3.0 

dendrite

cell 
body

axon

presynaptic    
  terminal

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho 
is licensed under CC-BY 3.0 

dendrite

cell 
body

axon

presynaptic    
  terminal

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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sigmoid activation function

Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho 
is licensed under CC-BY 3.0 

dendrite

cell 
body

axon

presynaptic    
  terminal

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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This image is CC0 Public Domain

Biological Neurons:  
Complex connectivity patterns

Neurons in a neural network: 
Organized into regular layers for 
computational efficiency

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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This image is CC0 Public Domain

Biological Neurons:  
Complex connectivity patterns

But neural networks with random 
connections can work too!

Xie et al, “Exploring Randomly Wired Neural Networks for Image Recognition”, arXiv 2019

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Biological Neurons: 
● Many different types 
● Dendrites can perform complex non-linear computations 
● Synapses are not a single weight but a complex non-linear dynamical system

[Dendritic Computation. London and Hausser]

Be very careful with your brain analogies!



Convolutional Neural Networks

41
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Images are not just a collection of pixels
• Locality: edges, corners, blobs 
• Translation invariance 

The convolution operation:

Convolutional neural networks

42

absolute value of the output of
convolution of the image and filter

image

filter: horizontal edge
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Images are not just a collection of pixels
• Locality: edges, corners, blobs 
• Translation invariance 

The convolution operation:

Convolutional neural networks

43

absolute value of the output of
convolution of the image and filter

image

filter: vertical edge
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3072
1

Recap: Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072  
weights

activationinput

1
10
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3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072  
weights

activationinput

1 number:  
the result of taking a dot product 
between a row of W and the input (a 
3072-dimensional dot product)

1
10
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32

32

3

Convolution Layer
32x32x3 image -> preserve spatial structure

width

height

depth
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32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image 
i.e. “slide over the image spatially, 
computing dot products”
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32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image 
i.e. “slide over the image spatially, 
computing dot products”

Filters always extend the full 
depth of the input volume
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32

32

3

Convolution Layer
32x32x3 image 
5x5x3 filter

1 number:  
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image 
(i.e. 5*5*3 = 75-dimensional dot product + bias)
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32

32

3

Convolution Layer
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32

32

3

Convolution Layer
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32

32

3

Convolution Layer
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32

32

3

Convolution Layer
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32

32

3

Convolution Layer
32x32x3 image 
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28
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32

32

3

Convolution Layer
32x32x3 image 
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter
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32

3

3x32x32 image

32

6 activation maps, 
each 1x28x28

Consider 6 filters, 
each 3x5x5 

Convolution 
Layer

6x3x5x5 
filters Stack activations to get a 

6x28x28 output image!

Convolution Layer

Slide inspiration: Justin Johnson

58
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32

3

3x32x32 image

32

6 activation maps, 
each 1x28x28

Also 6-dim bias vector:

Convolution 
Layer

6x3x5x5 
filters Stack activations to get a 

6x28x28 output image!

Convolution Layer

Slide inspiration: Justin Johnson

59
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32

3

3x32x32 image

32

28x28 grid, at each 
point a 6-dim vector

Also 6-dim bias vector:

Convolution 
Layer

6x3x5x5 
filters Stack activations to get a 

6x28x28 output image!

Convolution Layer

Slide inspiration: Justin Johnson

60
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Preview: ConvNet is a sequence of Convolution Layers

32

32

3

28

28

6

CONV 
e.g. 6 
5x5x3 
filters
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Preview: ConvNet is a sequence of Convolution Layers

32

32

3

CONV 

e.g. 6 
5x5x3 
filters 28

28

6

CONV 

e.g. 10 
5x5x6 
filters

CONV
….

10

24

24
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with 
activation functions

32

32

3

CONV 
ReLU 
e.g. 6 
5x5x3 
filters 28

28

6

CONV 
ReLU 
e.g. 10 
5x5x6 
filters

CONV 
ReLU

….

10

24

24
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32

32

3

28

28

Conv ReLU

Linear classifier: One template per class
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MLP: Bank of whole-image templates

32

32

3

28

28

Preview: What do convolutional filters learn? 

Conv ReLU
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First-layer conv filters: local image templates 
(Often learns oriented edges, opposing colors)

AlexNet: 64 filters, each 3x11x11

32

32

3

28

28

Conv ReLU

68
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example 5x5 filters 
(32 total)

We call the layer convolutional 
because it is related to convolution 
of two signals:

elementwise multiplication and sum of a 
filter and the signal (image)

one filter =>  
one activation map

Figure	copyright	Andrej	Karpathy.
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Examples time:

Input volume: 32x32x3 
10 5x5 filters with stride 1, pad 2 

Number of parameters in this layer?
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Examples time:

Input volume: 32x32x3 
10 5x5 filters with stride 1, pad 2 

Number of parameters in this layer? 
each filter has 5*5*3 + 1 = 76 params      (+1 for bias) 

=> 76*10 = 760
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Pooling layer 
- makes the representations smaller and more manageable  
- operates over each activation map independently 
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1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING 
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1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING 

• No learnable parameters 
• Introduces spatial invariance
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Within or across feature maps
Before or after spatial pooling

Normalization

71

Feature Maps 
Feature Maps 

After Contrast Normalization
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C1: Convolutional layer with 6 filters of size 5x5
Output: 6x28x28
Number of parameters: (5x5+1)*6 = 156
Connections: (5x5+1)x(6x28x28) = 122304
Connections in a fully connected network: (32x32+1)x(6X28x28)

Example: LeNet5

72

6 5x5 2x2 16 6x6 2x2 120 5x5 full fullimage

LeCun 98
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S2: Subsampling layer
Subsample by taking the sum of non-overlapping 2x2 windows

• Multiply the sum by a constant and add bias 
Number of parameters: 2x6=12
Pass the output through a sigmoid non-linearity
Output: 6x14x14

Example: LeNet5

73

6 5x5 2x2 16 6x6 2x2 120 5x5 full fullimage
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C3: Convolutional layer with 16 filters of size 6x6
Each is connected to a subset: 
Number of parameters: 1,516
Number of connections: 151,600
Output: 16x10x10

Example: LeNet5

74

6 5x5 2x2 16 6x6 2x2 120 5x5 full fullimage
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S4: Subsampling layer
Subsample by taking the sum of non-overlapping 2x2 windows

• Multiply by a constant and add bias 
Number of parameters: 2x16 = 32
Pass the output through a sigmoid non-linearity
Output: 16x5x5

Example: LeNet5

75

6 5x5 2x2 16 6x6 2x2 120 5x5 full fullimage
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C5: Convolutional layer with 120 outputs of size 1x1
Each unit in C5 is connected to all inputs in S4
Number of parameters: (16x5x5+1)*120 = 48120

Example: LeNet5

76

6 5x5 2x2 16 6x6 2x2 120 5x5 full fullimage
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F6: fully connected layer 
Output: 1x1x84
Number of parameters: (120+1)*84 = 10164

OUTPUT: 10 Euclidean RBF (Gaussian) units (one for each class)

Example: LeNet5

77

6 5x5 2x2 16 6x6 2x2 120 5x5 full fullimage
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MNIST dataset

78

http://yann.lecun.com/exdb/mnist/
3-layer NN, 300+100 HU [distortions] 

Test error: 2.5%

http://yann.lecun.com/exdb/mnist/
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MNIST dataset: errors on the test set

79
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Convolutional Networks: LeCun et al, 1998

1998	
LeNet

1959	
Hubel	&	Wiesel

1963	
Roberts

1970s	
David	Marr

1979	
Gen.	Cylinders

1986	
Canny

1997	
Norm.	Cuts

AI	Winter

200
1	

V&J

199
9	

SIFT

1958	
Perceptron

1969		
Minsky	&	Papert

1980	
Neocognitron

1985	
Backprop

Applied	backprop	algorithm	to	a	Neocognitron-like	architecture	
Learned	to	recognize	handwritten	digits	
Was	deployed	in	a	commercial	system	by	NEC,	processed	handwritten	checks	
Very	similar	to	our	modern	convolutional	networks!

2004,	2007	
Caltech101;	
PASCAL

Slide	inspiration:	Justin	Johnson
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2000s:	“Deep	Learning”

1998	
LeNet

1959	
Hubel	&	Wiesel

1963	
Roberts

1970s	
David	Marr

1979	
Gen.	Cylinders

1986	
Canny

1997	
Norm.	Cuts

AI	Winter

200
1	

V&J

199
9	

SIFT

2007	
PASCAL

1958	
Perceptron

1969		
Minsky	&	Papert

1980	
Neocognitron

1985	
Backprop

2006	
Deep	Learning

People	tried	to	train	neural	networks	that	
were	deeper	and	deeper	

Not	a	mainstream	research	topic	at	this	time	

Hinton	and	Salakhutdinov,	2006	
Bengio	et	al,	2007	
Lee	et	al,	2009	
Glorot	and	Bengio,	2010
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2000s:	“Deep	Learning”

1998	
LeNet

1959	
Hubel	&	Wiesel

1963	
Roberts

1970s	
David	Marr

1979	
Gen.	Cylinders

1986	
Canny

1997	
Norm.	Cuts

AI	Winter

200
1	

V&J

199
9	

SIFT

2007	
PASCAL

1958	
Perceptron

1969		
Minsky	&	Papert

1980	
Neocognitron

1985	
Backprop

2006	
Deep	Learning

People	tried	to	train	neural	networks	that	
were	deeper	and	deeper	

Not	a	mainstream	research	topic	at	this	time	

No	good	dataset	to	work	on	

Hinton	and	Salakhutdinov,	2006	
Bengio	et	al,	2007	
Lee	et	al,	2009	
Glorot	and	Bengio,	2010
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ImageNet Challenge 2010-17

83

[Deng et al. CVPR 2009] 

• 14+ million labeled images, 20k classes 
• Images gathered from Internet 
• Human labels via Amazon Turk  
• The challenge dataset: 1.2 million training 

images, 1000 classes
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ImageNet Challenge 2012

84

Photo	source

AlexNet	(2012)

https://www.wired.com/2013/03/google-hinton/
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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Similar to LeCun’98 with “some” differences: 
• Bigger model (7 hidden layers, 650,000 units, 60,000,000 params) 
• More data (106 vs. 103 images) — ImageNet dataset [Deng et al.] 
• GPU implementation (50x speedup over CPU) ~ 2 weeks to train 
• Some twists: Dropout regularization, ReLU max(0,x) 

ImageNet Challenge 2012

85

Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
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How do we visualize a complicated, non-linear function? 

Good paper: Visualizing and Understanding Convolutional Networks, Matthew D. Zeiler, Rob 
Fergus, ECCV 2014 

Good toolboxes
• Understanding Neural Networks Through Deep Visualization, Jason Yosinski, Jeff Clune, Anh 

Nguyen, Thomas Fuchs, and Hod Lipson, ICML Deep Learning Workshop, 2015 (http://
yosinski.com/deepvis) 

Many other resources online (search for visualizing deep networks)

What do these networks learn?

86

http://yosinski.com/deepvis
http://yosinski.com/deepvis
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Layer 1: Learned filters

87

“edge” and “blob” detectors
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Layer 1: Top-9 Patches

88
• Patches from validation images that give maximal activation of a given feature map 

Layer 1: Top-9 Patches
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Layer 2: Top-9 Patches

89

Layer 2: Top-9 Patches
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Layer 3: Top-9 Patches
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Layer 4: Top-9 Patches
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Layer 5: Top-9 Patches
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Mask parts of input with occluding square

Monitor output (class probability)

Occlusion Experiment

93
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p(True class) Most probable class
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p(True class) Most probable class
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Transfer learning
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ImageNet challenge

98

• 14+ million labeled images, 20k classes 
• Images gathered from Internet 
• Human labels via Amazon Turk  
• The challenge: 1.2 million training images, 
1000 classes

+
Multi-layer CNNs (60M parameters)
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Face recognition

99

Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR 2014

https://www.facebook.com/download/233199633549733/deepface.pdf


Deep	learning	—	reality	vs.	practice

100

Deep	learning	in		
theory

Deep	learning	in
		

practice

source:	reddit

Caltech-UCSD Birds MIT Indoors

PASCAL VOC 2007 FGVC Cars

D
at
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s

M
od
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s

H
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m
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FGVC aircraftCaltech 256

+

+



Issues	with	learning	from	little	data

Unlabeled	examples	

• Self-/Semi-supervised	learning	

• Active	learning	
Related	datasets	

• Transfer	learning	
• Multi-tasking	

• Meta	learning	

Pre-trained	models	

• Robust	finetuning,	adaptors

101

Not	only	a	computational,	but	
also	a	statistical	challenge	…		

• Overfitting,		
• Bias,		
• Calibration,		
• Label	noise,	…

Little	data

solutions
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How do we learn parameter-rich models on small datasets?
• # parameters >> # training data 

Solution: Learn from related tasks
• Training and testing tasks can be different! 
• In general, we can’t expect much when the tasks are too different 

• Will learning how to drive in Amherst help you drive in Cambridge? 

For images we might expect that learning to solve classification tasks on large datasets such as 
ImageNet might help us solve other visual recognition tasks. 

Transfer learning

102
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Train a model on ImageNet
Take outputs of an intermediate layer as features
Train linear classifier on these features
Pros: simpler learning, efficiency
Con: no end-to-end learning

Transfer learning with CNNs

103

Horse	
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Train a model on ImageNet
Take outputs of an intermediate layer as features
Train linear classifier on these features
Pros: simpler learning, efficiency
Con: no end-to-end learning

Transfer learning with CNNs

104

New layer

bakery

Feature extractor trained on ImageNet
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Tapping off features at each layer

105

low-level high-level

conv1

Different layers

11x11x3x96 filters

conv5conv4conv3conv2 fc7
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Datasets and benchmarks

106

Object recognition (VOC07) 
[Everingham et al. 07]

Fine-grained recognition (CUB) 
[Wah et al. 11]

Scene recognition (MIT Indoors) 
[Quattoni and Torralba 09]

Caltech 101/256  
[Fei-Fei et al. 04]

Fine-grained recognition (Aircraft)
[Maji et al. 13]

Fine-grained recognition (Cars)
[Krause et al. 13]
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Tapping off features at each Layer

107

Plug features from each layer into linear classifier
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Results on benchmarks

108

Dataset	 Non-Convnet	
Method	

Non-Convnet	
perf	

Pretrained	
convnet	+	
classifier	

Improvement	

Caltech	101	 MKL	 84.3	 87.7	 +3.4	

VOC	2007	 SIFT+FK	 61.7	 79.7	 +18	

CUB	200	 SIFT+FK	 18.8	 61.0	 +42.2	

AircraB	 SIFT+FK	 61.0	 45.0	 -16	

Cars	 SIFT+FK	 59.2	 36.5	 -22.7	
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Finetuning

109

Horse	

Train a model on ImageNet
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Finetuning

110

Initialized on ImageNet

New layer

bakery

Trained end-to-end with a low learning rate
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Dataset	 Non-
Convnet	
Method	

Non-
Convnet	
perf	

Pretrained	
convnet	+	
classifier	

Finetuned	
convnet	

Improvem
ent	

Caltech	
101	

MKL	 84.3	 87.7	 88.4	 +4.1	

VOC	2007	 SIFT+FK	 61.7	 79.7	 82.4	 +20.7	

CUB	200	 SIFT+FK	 18.8	 61.0	 70.4	 +51.6	

AircraC	 SIFT+FK	 61.0	 45.0	 74.1	 +13.1	

Cars	 SIFT+FK	 59.2	 36.5	 79.8	 +20.6	

Results on benchmarks

111
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Network architectures
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Deeper is better

113
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7	layers	

16	layers	
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Deeper is better

114

0	

5	

10	

15	

20	

25	

30	

2010	 2011	 2012	 2013	 2014	

Challenge	winner's	accuracy	

Alexnet	

VGG16	



Subhransu Maji — UMass Amherst, Spring 25COMPSCI 370

Every convolution is 3x3, padded by 1
Every convolution is followed by a ReLU
Network is divided into “stages”

• Layers within a stage: no subsampling 
• Subsampling by 2 at the end of each stage 

Layers within a stage have the same number of channels
Every subsampling  double the number of channels

The VGG pattern

115
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Residual Networks

116
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Instead of single layers, have residual connection over a block of layers

A residual block

117

Conv	 BN	 ReLU	 Conv	 BN	
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Motivation: non-linearity
Ingredients of a neural network (multi-layer perceptron)

• hidden units, link functions 
Training by back-propagation

• random initialization, chain rule, stochastic gradients, momentum 
• Practical issues: learning, network architecture 

Convolutional networks:
• Good for vision problems where inputs have spatial structure and locality 
• Shared structure of weights leads to significantly fewer parameters 

ImageNet pre-training is a great source of image representations!
 
Lots of research on network architectures, datasets, and training strategies

Summary

118
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Multilayer neural network figure source:
• http://www.ibimapublishing.com/journals/CIBIMA/2012/525995/525995.html 

Cat image: http://www.playbuzz.com/abbeymcneill10/which-cat-breed-are-you
More about the structure of the visual processing system

• http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html
ImageNet visualization slides are by Rob Fergus @ NYU/Facebook http://cs.nyu.edu/~fergus/
presentations/nips2013_final.pdf
LeNet5 figure from: http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
Chain rule of derivatives: http://en.wikipedia.org/wiki/Chain_rule

Slides credit
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http://www.ibimapublishing.com/journals/CIBIMA/2012/525995/525995.html
http://www.playbuzz.com/abbeymcneill10/which-cat-breed-are-you
http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html
http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf
http://cs.nyu.edu/~fergus/presentations/nips2013_final.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://en.wikipedia.org/wiki/Chain_rule

