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Computer Vision Tasks
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Applications of Object Detection
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Detection = Repeated Classification
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Detection

face or not?
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Computational
• Large number of location + scale combinations 
• A mega pixel image has a millions of candidate locations 
• We should try to spend as little time as possible on each candidate 

Accuracy
• The false positive rate of the classifier has to be very low 
• 1 FP per image requires ~ 10-6 FP per candidate location

Challenges
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Sliding-window detectors
• Case study: Dalal & Triggs, CVPR 2005 

• Detection as template matching 
• HOG feature pyramid 
• Non-maximum suppression 

• Learning a template — linear classifiers, hard negative mining 

Evaluating a detector — some detection benchmarks

Region-based detectors
• Case study: Van de Sande et al., ICCV 2013 
• Case study: R-CNN, Girshick et al., CVPR 2014

Lecture outline

6
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Consider matching with image patches
• What could go wrong?

Detection as template matching

7

template

image match quality
e.g., cross correlation
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Compute the HOG feature map for the image
Convolve the template with the feature map to get score
Find peaks of the response map (non-max suppression)
What about multi-scale?

Template matching with HOG

8

TemplateHOG feature map Detector response map
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Multi-scale template matching

Compute HOG of the whole image at multiple resolutions
Score each sub-windows of the feature pyramid
Threshold the score and perform non-maximum suppression

Image pyramid HOG feature pyramid

(a) (b) (c) (d) (e) (f) (g)
Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

would help to improve the detection results in more general
situations.
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Example pedestrian detections

10

Introduction

Detect & localize upright people
in static images

Challenges
Wide variety of articulated poses
Variable appearance/clothing
Complex backgrounds
Unconstrained illumination
Occlusions, different scales

Applications
Pedestrian detection for smart cars
Film & media analysis
Visual surveillance

Histograms of Oriented Gradients for Human Detection – p. 2/13

[Dalal05]
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Learning a template

11

46 4 Histogram of Oriented Gradients Based Encoding of Images

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.10. For the person class, the HOG classifiers cue mainly on silhouette contours, espe-
cially the head, shoulders and feet. More precisely the chosen cells are ones on the contour,
normalised using blocks centred on the image background just outside the contour. (a) The av-
erage gradient image over the training examples. (b) Each “pixel” shows the maximum positive
SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d)
A sketch portraying the most relevant blocks – those lying just outside the contour. (e) A test
image. (f) Its computed R-HOG descriptor. (g,h) The R-HOG descriptor weighted respectively
by the positive and negative SVM weights. Only the dominant orientation is shown for each
cell.

the key HOG parameters for several other object classes. We optimised all of the key parame-
ters for each object class in the Pascal5 Visual Object Challenge (VOC) 20066. This challenge tar-
gets image classification and localisation for 10 different classes: bicycle, bus, car, cat, cow, dog,
horse, motorbike, person and sheep. Table 4.2 summarises the main changes that occurred. The
overall conclusion is that most of the parameters are very similar to those for person class, and
those that do vary can be easily grouped and structured. This can help us by providing quick
first guess of the HOG parameters for any given new object class. The VOC object classes can be
broadly divided into two groups: natural objects such as horses, cows and sheep, and man made
objects such as cars, motorbikes and buses. We treat the person class as an exception and place
it in a separate category: even though people are natural objects whose articulations in result
in characteristics similar to the natural object category and their clothing results in appearance
features similar to the man made object category. We now comment on how performance varies

5 PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning) is a European Commis-
sion funded Network of Excellence programme.

6 Details and results of the Pascal VOC 2006 challenge are available from http://www.

pascal-network.org/challenges/VOC/voc2006/index.html

Cropped
positive HOG

[Dalal05]

Figure 2. Some sample images from our new human detection database. The subjects are always upright, but with some partial occlusions
and a wide range of variations in pose, appearance, clothing, illumination and background.

probabilities to be distinguished more easily. We will often
use miss rate at 10−4FPPW as a reference point for results.
This is arbitrary but no more so than, e.g. Area Under ROC.
In a multiscale detector it corresponds to a raw error rate of
about 0.8 false positives per 640×480 image tested. (The full
detector has an even lower false positive rate owing to non-
maximum suppression). Our DET curves are usually quite
shallow so even very small improvements in miss rate are
equivalent to large gains in FPPW at constant miss rate. For
example, for our default detector at 1e-4 FPPW, every 1%
absolute (9% relative) reduction in miss rate is equivalent to
reducing the FPPW at constant miss rate by a factor of 1.57.

5 Overview of Results
Before presenting our detailed implementation and per-

formance analysis, we compare the overall performance of
our final HOG detectors with that of some other existing
methods. Detectors based on rectangular (R-HOG) or cir-
cular log-polar (C-HOG) blocks and linear or kernel SVM
are compared with our implementations of the Haar wavelet,
PCA-SIFT, and shape context approaches. Briefly, these ap-
proaches are as follows:
Generalized Haar Wavelets. This is an extended set of ori-
ented Haar-like wavelets similar to (but better than) that used
in [17]. The features are rectified responses from 9×9 and
12×12 oriented 1st and 2nd derivative box filters at 45◦ inter-
vals and the corresponding 2nd derivative xy filter.
PCA-SIFT. These descriptors are based on projecting gradi-
ent images onto a basis learned from training images using
PCA [11]. Ke & Sukthankar found that they outperformed
SIFT for key point based matching, but this is controversial
[14]. Our implementation uses 16×16 blocks with the same
derivative scale, overlap, etc., settings as our HOG descrip-
tors. The PCA basis is calculated using positive training im-
ages.
Shape Contexts. The original Shape Contexts [1] used bi-
nary edge-presence voting into log-polar spaced bins, irre-
spective of edge orientation. We simulate this using our C-
HOG descriptor (see below) with just 1 orientation bin. 16
angular and 3 radial intervals with inner radius 2 pixels and
outer radius 8 pixels gave the best results. Both gradient-

strength and edge-presence based voting were tested, with
the edge threshold chosen automatically to maximize detec-
tion performance (the values selected were somewhat vari-
able, in the region of 20–50 graylevels).
Results. Fig. 3 shows the performance of the various detec-
tors on the MIT and INRIA data sets. The HOG-based de-
tectors greatly outperform the wavelet, PCA-SIFT and Shape
Context ones, giving near-perfect separation on the MIT test
set and at least an order of magnitude reduction in FPPW
on the INRIA one. Our Haar-like wavelets outperform MIT
wavelets because we also use 2nd order derivatives and con-
trast normalize the output vector. Fig. 3(a) also shows MIT’s
best parts based and monolithic detectors (the points are in-
terpolated from [17]), however beware that an exact compar-
ison is not possible as we do not know how the database in
[17] was divided into training and test parts and the nega-
tive images used are not available. The performances of the
final rectangular (R-HOG) and circular (C-HOG) detectors
are very similar, with C-HOG having the slight edge. Aug-
menting R-HOG with primitive bar detectors (oriented 2nd

derivatives – ‘R2-HOG’) doubles the feature dimension but
further improves the performance (by 2% at 10−4 FPPW).
Replacing the linear SVM with a Gaussian kernel one im-
proves performance by about 3% at 10−4 FPPW, at the cost
of much higher run times1. Using binary edge voting (EC-
HOG) instead of gradient magnitude weighted voting (C-
HOG) decreases performance by 5% at 10−4 FPPW, while
omitting orientation information decreases it by much more,
even if additional spatial or radial bins are added (by 33% at
10−4 FPPW, for both edges (E-ShapeC) and gradients (G-
ShapeC)). PCA-SIFT also performs poorly. One reason is
that, in comparison to [11], many more (80 of 512) principal
vectors have to be retained to capture the same proportion of
the variance. This may be because the spatial registration is
weaker when there is no keypoint detector.

6 Implementation and Performance Study
We now give details of our HOG implementations and

systematically study the effects of the various choices on de-
1We use the hard examples generated by linear R-HOG to train the ker-

nel R-HOG detector, as kernel R-HOG generates so few false positives that
its hard example set is too sparse to improve the generalization significantly.

Pos ={...                      ...}                         
Annotations

is this template good?
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Score high on pedestrians and low on background patches
Discriminative learning setting — lets use linear classifiers!

Learning a template

12

pedestrians

background

boundary

Issue: too many background patches
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Initial training
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Descriptor Cues

input image weighted
pos wts

weighted
neg wts

avg. grad outside in block

The most important cues
are head, shoulder, leg
silhouettes
Vertical gradients inside
the person count as
negative
Overlapping blocks those
just outside the contour
are the most important

Histograms of Oriented Gradients for Human Detection – p. 11/13

Neg = {...  random background patches  ...}                         

SVM (l2 reg, l1 loss)

Test on cropped
windows

Figure 2. Some sample images from our new human detection database. The subjects are always upright, but with some partial occlusions
and a wide range of variations in pose, appearance, clothing, illumination and background.

probabilities to be distinguished more easily. We will often
use miss rate at 10−4FPPW as a reference point for results.
This is arbitrary but no more so than, e.g. Area Under ROC.
In a multiscale detector it corresponds to a raw error rate of
about 0.8 false positives per 640×480 image tested. (The full
detector has an even lower false positive rate owing to non-
maximum suppression). Our DET curves are usually quite
shallow so even very small improvements in miss rate are
equivalent to large gains in FPPW at constant miss rate. For
example, for our default detector at 1e-4 FPPW, every 1%
absolute (9% relative) reduction in miss rate is equivalent to
reducing the FPPW at constant miss rate by a factor of 1.57.

5 Overview of Results
Before presenting our detailed implementation and per-

formance analysis, we compare the overall performance of
our final HOG detectors with that of some other existing
methods. Detectors based on rectangular (R-HOG) or cir-
cular log-polar (C-HOG) blocks and linear or kernel SVM
are compared with our implementations of the Haar wavelet,
PCA-SIFT, and shape context approaches. Briefly, these ap-
proaches are as follows:
Generalized Haar Wavelets. This is an extended set of ori-
ented Haar-like wavelets similar to (but better than) that used
in [17]. The features are rectified responses from 9×9 and
12×12 oriented 1st and 2nd derivative box filters at 45◦ inter-
vals and the corresponding 2nd derivative xy filter.
PCA-SIFT. These descriptors are based on projecting gradi-
ent images onto a basis learned from training images using
PCA [11]. Ke & Sukthankar found that they outperformed
SIFT for key point based matching, but this is controversial
[14]. Our implementation uses 16×16 blocks with the same
derivative scale, overlap, etc., settings as our HOG descrip-
tors. The PCA basis is calculated using positive training im-
ages.
Shape Contexts. The original Shape Contexts [1] used bi-
nary edge-presence voting into log-polar spaced bins, irre-
spective of edge orientation. We simulate this using our C-
HOG descriptor (see below) with just 1 orientation bin. 16
angular and 3 radial intervals with inner radius 2 pixels and
outer radius 8 pixels gave the best results. Both gradient-

strength and edge-presence based voting were tested, with
the edge threshold chosen automatically to maximize detec-
tion performance (the values selected were somewhat vari-
able, in the region of 20–50 graylevels).
Results. Fig. 3 shows the performance of the various detec-
tors on the MIT and INRIA data sets. The HOG-based de-
tectors greatly outperform the wavelet, PCA-SIFT and Shape
Context ones, giving near-perfect separation on the MIT test
set and at least an order of magnitude reduction in FPPW
on the INRIA one. Our Haar-like wavelets outperform MIT
wavelets because we also use 2nd order derivatives and con-
trast normalize the output vector. Fig. 3(a) also shows MIT’s
best parts based and monolithic detectors (the points are in-
terpolated from [17]), however beware that an exact compar-
ison is not possible as we do not know how the database in
[17] was divided into training and test parts and the nega-
tive images used are not available. The performances of the
final rectangular (R-HOG) and circular (C-HOG) detectors
are very similar, with C-HOG having the slight edge. Aug-
menting R-HOG with primitive bar detectors (oriented 2nd

derivatives – ‘R2-HOG’) doubles the feature dimension but
further improves the performance (by 2% at 10−4 FPPW).
Replacing the linear SVM with a Gaussian kernel one im-
proves performance by about 3% at 10−4 FPPW, at the cost
of much higher run times1. Using binary edge voting (EC-
HOG) instead of gradient magnitude weighted voting (C-
HOG) decreases performance by 5% at 10−4 FPPW, while
omitting orientation information decreases it by much more,
even if additional spatial or radial bins are added (by 33% at
10−4 FPPW, for both edges (E-ShapeC) and gradients (G-
ShapeC)). PCA-SIFT also performs poorly. One reason is
that, in comparison to [11], many more (80 of 512) principal
vectors have to be retained to capture the same proportion of
the variance. This may be because the spatial registration is
weaker when there is no keypoint detector.

6 Implementation and Performance Study
We now give details of our HOG implementations and

systematically study the effects of the various choices on de-
1We use the hard examples generated by linear R-HOG to train the ker-

nel R-HOG detector, as kernel R-HOG generates so few false positives that
its hard example set is too sparse to improve the generalization significantly.

Pos ={...                      ...}                         
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Mining hard negatives
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Descriptor Cues

input image weighted
pos wts

weighted
neg wts

avg. grad outside in block

The most important cues
are head, shoulder, leg
silhouettes
Vertical gradients inside
the person count as
negative
Overlapping blocks those
just outside the contour
are the most important

Histograms of Oriented Gradients for Human Detection – p. 11/13

Negrand = {... random background patches ...}                         

SVM “Hard” negatives

+ Neghard = {... windows with score >= -1 ...}                         

Descriptor Cues

input image weighted
pos wts

weighted
neg wts

avg. grad outside in block

The most important cues
are head, shoulder, leg
silhouettes
Vertical gradients inside
the person count as
negative
Overlapping blocks those
just outside the contour
are the most important

Histograms of Oriented Gradients for Human Detection – p. 11/13

SVM

Figure 2. Some sample images from our new human detection database. The subjects are always upright, but with some partial occlusions
and a wide range of variations in pose, appearance, clothing, illumination and background.

probabilities to be distinguished more easily. We will often
use miss rate at 10−4FPPW as a reference point for results.
This is arbitrary but no more so than, e.g. Area Under ROC.
In a multiscale detector it corresponds to a raw error rate of
about 0.8 false positives per 640×480 image tested. (The full
detector has an even lower false positive rate owing to non-
maximum suppression). Our DET curves are usually quite
shallow so even very small improvements in miss rate are
equivalent to large gains in FPPW at constant miss rate. For
example, for our default detector at 1e-4 FPPW, every 1%
absolute (9% relative) reduction in miss rate is equivalent to
reducing the FPPW at constant miss rate by a factor of 1.57.

5 Overview of Results
Before presenting our detailed implementation and per-

formance analysis, we compare the overall performance of
our final HOG detectors with that of some other existing
methods. Detectors based on rectangular (R-HOG) or cir-
cular log-polar (C-HOG) blocks and linear or kernel SVM
are compared with our implementations of the Haar wavelet,
PCA-SIFT, and shape context approaches. Briefly, these ap-
proaches are as follows:
Generalized Haar Wavelets. This is an extended set of ori-
ented Haar-like wavelets similar to (but better than) that used
in [17]. The features are rectified responses from 9×9 and
12×12 oriented 1st and 2nd derivative box filters at 45◦ inter-
vals and the corresponding 2nd derivative xy filter.
PCA-SIFT. These descriptors are based on projecting gradi-
ent images onto a basis learned from training images using
PCA [11]. Ke & Sukthankar found that they outperformed
SIFT for key point based matching, but this is controversial
[14]. Our implementation uses 16×16 blocks with the same
derivative scale, overlap, etc., settings as our HOG descrip-
tors. The PCA basis is calculated using positive training im-
ages.
Shape Contexts. The original Shape Contexts [1] used bi-
nary edge-presence voting into log-polar spaced bins, irre-
spective of edge orientation. We simulate this using our C-
HOG descriptor (see below) with just 1 orientation bin. 16
angular and 3 radial intervals with inner radius 2 pixels and
outer radius 8 pixels gave the best results. Both gradient-

strength and edge-presence based voting were tested, with
the edge threshold chosen automatically to maximize detec-
tion performance (the values selected were somewhat vari-
able, in the region of 20–50 graylevels).
Results. Fig. 3 shows the performance of the various detec-
tors on the MIT and INRIA data sets. The HOG-based de-
tectors greatly outperform the wavelet, PCA-SIFT and Shape
Context ones, giving near-perfect separation on the MIT test
set and at least an order of magnitude reduction in FPPW
on the INRIA one. Our Haar-like wavelets outperform MIT
wavelets because we also use 2nd order derivatives and con-
trast normalize the output vector. Fig. 3(a) also shows MIT’s
best parts based and monolithic detectors (the points are in-
terpolated from [17]), however beware that an exact compar-
ison is not possible as we do not know how the database in
[17] was divided into training and test parts and the nega-
tive images used are not available. The performances of the
final rectangular (R-HOG) and circular (C-HOG) detectors
are very similar, with C-HOG having the slight edge. Aug-
menting R-HOG with primitive bar detectors (oriented 2nd

derivatives – ‘R2-HOG’) doubles the feature dimension but
further improves the performance (by 2% at 10−4 FPPW).
Replacing the linear SVM with a Gaussian kernel one im-
proves performance by about 3% at 10−4 FPPW, at the cost
of much higher run times1. Using binary edge voting (EC-
HOG) instead of gradient magnitude weighted voting (C-
HOG) decreases performance by 5% at 10−4 FPPW, while
omitting orientation information decreases it by much more,
even if additional spatial or radial bins are added (by 33% at
10−4 FPPW, for both edges (E-ShapeC) and gradients (G-
ShapeC)). PCA-SIFT also performs poorly. One reason is
that, in comparison to [11], many more (80 of 512) principal
vectors have to be retained to capture the same proportion of
the variance. This may be because the spatial registration is
weaker when there is no keypoint detector.

6 Implementation and Performance Study
We now give details of our HOG implementations and

systematically study the effects of the various choices on de-
1We use the hard examples generated by linear R-HOG to train the ker-

nel R-HOG detector, as kernel R-HOG generates so few false positives that
its hard example set is too sparse to improve the generalization significantly.

Pos ={...                      ...}                         
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N. Dalal and B. Triggs, CVPR 2005
A dataset of people in:

• Wide variety of articulated poses 
• Variable appearance/clothing  
• Complex backgrounds  
• Unconstrained illumination  
• Occlusions, different scales

INRIA person dataset

15

http://pascal.inrialpes.fr/data/human/

http://pascal.inrialpes.fr/data/human/
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Assign each prediction to
• true positive (TP)   or   false positive (FP) 

Precision@k = #TP@k / (#TP@k + #FP@k)
Recall@k = #TP@k / #TotalPositives
Average Precision (AP)

Detection evaluation

16

overlap(Bgt, Bp) = |Bgt � Bp|
|Bgt � Bp|
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AP = 0.75 with a linear SVM
Very good, right?

Pedestrian detection on INRIA dataset

17

3.5 Overview of Results 27

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

o
n

Recall−Precision −− different descriptors on INRIA static person database

Ker. R−HOG
Lin. R−HOG
Lin. R2−Hog
Wavelet
PCA−SIFT
Lin. E−ShapeC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

Recall−Precision −− descriptors on INRIA static+moving person database

R−HOG + IMHmd
R−HOG
Wavelet

(a) (b)

Fig. 3.6. The performance of selected detectors on the INRIA static (left) and static+moving
(right) person data sets. For both of the data sets, the plots show the substantial overall gains
obtained by using HOG features rather than other state-of-the-art descriptors. (a) Compares
static HOG descriptors with other state of the art descriptors on INRIA static person data set.
(b) Compares combined the static and motion HOG, the static HOG and the wavelet detectors
on the combined INRIA static and moving person data set.

[2001] but also includes both 1st and 2nd-order derivative filters at 45� interval and the corre-
sponding 2nd derivative xy filter. It yields AP of 0.53. Shape contexts based on edges (E-ShapeC)
perform considerably worse with an AP of 0.25. However, Chapter 4 will show that generalised
shape contexts [Mori and Malik 2003], which like standard shape contexts compute circular
blocks with cells shaped over a log-polar grid, but which use both image gradients and orienta-
tion histograms as in R-HOG, give similar performance. This highlights the fact that orientation
histograms are very effective at capturing the information needed for object recognition.

For the video sequences we compare our combined static and motion HOG, static HOG, and
Haar wavelet detectors. The detectors were trained and tested on training and test portions of
the combined INRIA static and moving person data set. Details on how the descriptors and the
data sets were combined are presented in Chapter 6. Figure 3.6(b) summarises the results. The
HOG-based detectors again significantly outperform the wavelet based one, but surprisingly
the combined static and motion HOG detector does not seem to offer a significant advantage
over the static HOG one: The static detector gives an AP of 0.553 compared to 0.527 for the
motion detector. These results are surprising and disappointing because Sect. 6.5.2, where we
used DET curves (c.f . Sect. B.1) for evaluations, shows that for exactly the same data set, the
individual window classifier for the motion detector gives significantly better performance than
the static HOG window classifier with false positive rates about one order of magnitude lower
than those for the static HOG classifier. We are not sure what is causing this anomaly and are
currently investigating it. It seems to be linked to the threshold used for truncating the scores
in the mean shift fusion stage (during non-maximum suppression) of the combined detector.
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Localize & name (detect) 20 basic-level object categories
• Airplane, bicycle, motorbike, bus, boat, train, car, cat, bird, cow, dog, horse, person, sheep, 

bottle, sofa, monitor, chair, table, plant  

Run from 2005 - 2012
11k training images with 500 to 8000 instances / category
Substantially more challenging images
Dalal and Triggs detector AP on ‘person’ category: 12%

PASCAL VOC Challenge

18

Input

person

motorbike

Desired output
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PASCAL examples

19Image credits: PASCAL VOC
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Viewpoint

PASCAL examples

20

Image credits: PASCAL VOC
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Subcategory –– “airplane” images

PASCAL examples

21Image credits: PASCAL VOC
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Subcategory –– “car” images

PASCAL examples

22Image credits: PASCAL VOC
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A single template is does not capture the variability
• Person detection AP = 12% using a single template 

Lets focus on the person category
• How can we model the variability due to pose, articulation, viewpoint, etc. 
• Idea: Detect parts and stitch them together 
• But what should the parts be?

Part-based models

23



Subhransu Maji — UMass Amherst, Spring 25COMPSCI 370

Parts based on human anatomy

24

it is hard to detect limbs

Fisher & Elchlager 73, Nevatia & Binford 77, 
Felzenszwalb et al. 05, Ren et al. 05, Andriluka 

et al. 09, Ferrari et al. 08, Ramanan 06

pictorial structures

“stick-figure models”

Can we leverage the success of 
face and pedestrian detectors?



Subhransu Maji — UMass Amherst, Spring 25COMPSCI 370

Poselets for person

25
Bourdev et al. 10
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PASCAL VOC detection challenge

26

Method Detection AP

Poselets 48.5%

Dalal & Triggs 12.0%

DPM (Girschik et al.) 43.3%

“person” category VOC 2010 test set

L. Bourdev, S. Maji, T. Brox, J. Malik, Detecting people using mutually consistent poselet activations, ECCV 2010

Poselet detector — same features, 100x templates

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/poselets/

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/poselets/
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Example detections

27
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Example detections

28
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Example detections

29
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Example detections

30

Common 
Error 
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Computationally expensive — there are too many windows
• Multiply by scales, aspect ratio (objects are not square) 

Thus classifiers and features have to be very fast
• Linear classifiers and decision trees commonly used 
• Features: simple pixel-based or gradient features used 

But they also have to accurate!

Limitations of a sliding-window detector 

31
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Choose a small number of regions to evaluate the classifier
• Number of regions (~103) << number of windows (106) 
• We want high recall — no objects should be missed 
• Should be category independent — to share the cost across categories 
• Fast — shouldn’t be slower than running the detector itself!

Alternate design: Region-based detectors

32
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Segmentation as Selective Search for Object Recognition, K. Van de Sande, J. Uijlings, T. Gevers, 
and A. Smeulders, ICCV 2013

We will look at this approach

33

Winner of the PASCAL VOC challenge 2010-12
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Apply some clustering approach using color information (e.g., k-means, graph-based clustering)
Often big objects are broken into multiple regions

How can we fix this?

Lets start with segmentations

34

“Efficient graph-based image segmentation”  
Felzenszwalb and Huttenlocher, IJCV 2004
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Images are intrinsically hierarchical

Regions of a single size are not enough
• Lets merge regions to produce a hierarchy

How to obtain high recall?

35
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1.Merge two most similar regions based on S
2.Update similarities between the new region and its neighbors 
3.Go back to step 1 until the whole image is a single regions

Hierarchical clustering

36
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Compute similarity measure between all adjacent region pairs a and b as:

Hierarchical clustering

37
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Example proposals

38
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Example proposals

39
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“What is an object?” Alexe et al., CVPR 2010
Learns to detect generic objects using simple color, texture, and edge features

Another approach: “Objectness"

40
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Edge Boxes: Locating Object Proposals from Edges, Zitnick and Dollar, ECCV 2014
Number of contours that are fully contained (i.e., non-crossing) inside the box as the “objectness” 
Very fast (0.25s per image on a CPU)

Another approach: “Edge boxes”

41
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Once again, detection = repeated classification
But we only classify object proposals
Training a classifier

Detection using region proposals

42
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HOG + linear classifiers were used in the DT detector for efficiency
But we can use complex features and better classifiers with regions

• In particular SIFT bag-of-words + non-linear SVMs 
• Intersection Kernel SVMs (Maji, Berg & Malik, CVPR 2009)

Details of the features

43

Image credit: Andrea Vedaldi
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PASCAL VOC 2010 Detection

44

Method Person Car Cat Sheep

Poselets 48.5% 48.8% 22.2% 28.0%

DPM 43.3% 49.1% 31.1% 35.1%

Selective search 32.9% 36.8% 46.1% 41.1%

“Texture”“Shape”
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Rapid progress for a while followed by a plateaued

The quest for better features …

45

Figure by Ross Girshick

Poselets++ Poselets++

Poselets
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R-CNNs (Girshick et al., CVPR 14) — regions with CNN features

Use ImageNet pre-trained CNNs to extract features!

Breakthrough in object detection

46
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R-CNN on PASCAL VOC

47

Slide credit: Ross Girshick

VOC 2007 VOC 2010

DPM (Girshick et al. 2011) 33.7% 29.6%

UVA selective search (Uijlings et.al. 2013) 35.1%

R-CNN (Girshick et al. 2014) 54.2% 50.2%

average MAP across 20 categories
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Fast R-CNN [Girshick et al., 15]
• Reshape features instead of image 

Faster R-CNN [Ren et al. 15]
• Use the CNN backbone to propose regions (no external region proposal scheme) 

Single-Shot Detector (SSD) [Liu et al. 16] 
• Directly predict a list of bounding boxes and scores  

Many other designs, including Transformers to replace CNNs

Current state of the art

48

crop reshape

CNN

crop reshape

CNN

R-CNN Fast R-CNN
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COCO dataset

49

Coco

•  80	diverse	categories	
•  100K	images	
• Heavy	occlusions,	many	
objects	per	image,	large	scale	
varia;ons	

1990’s	

Faces	

2000’s	 2007	-	2012	 2014	-		

Pedestrians PASCAL	VOC	(20	categories) COCO
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Mask R-CNN: Very Good Results!

50Figure	Credit:	Kaiming	He
50
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Some of the slides are by Ross Girshick, Andrea Vedaldi, Van de Sande, and others

Slides credit

51


